Segmentación de clientes con afectación en sus servicios Área Analytics TIGO

RESUMEN : Este estudio tiene como objetivo identificar la criticidad de los clientes con afectación de servicios de la corporación TIGO, mediante el uso de aprendizaje automático no supervisado, con el método de K-Means. El estudio se realizó bajo la metodología de CRISPDM, se escoge una muestra ale...

Full description

Autores:
López Stan, Sebastian
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/29116
Acceso en línea:
http://hdl.handle.net/10495/29116
Palabra clave:
Transmisión de datos
Data transmission
Segmentación del mercado
Market segmentation
Análisis documental
Document analysis
Centrales telefónicas
Telephone stations
Internet
http://vocabularies.unesco.org/thesaurus/concept7413
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
Description
Summary:RESUMEN : Este estudio tiene como objetivo identificar la criticidad de los clientes con afectación de servicios de la corporación TIGO, mediante el uso de aprendizaje automático no supervisado, con el método de K-Means. El estudio se realizó bajo la metodología de CRISPDM, se escoge una muestra aleatoria de una de las bases de datos de la compañía, con un total de 500.000 registros, y 6 variables en total, en primera instancia se realizó un preprocesamiento de los datos aplicando una normalización de los mismos, con el fin de evitar ruido de datos atípicos, seguido se procede a llenar los valores faltantes, utilizando la media de cada columna, se utilizó el codo de Jambú para tener una idea del número óptimo de clúster dando como resultado 3, 5 y 7, posteriormente se apoya en el método de la curva ROC, que permite ver el peso de influencia de cada variable por cada clúster, luego se entrena el modelo K-Means con 3 y 7 clústeres, dado que se aplicó una métrica de validación interna como el coeficiente de silueta y arrojando como resultados 0.631 con 3 clústeres, mientras que para una combinación de 7 clústeres se obtuvo un puntaje satisfactorio de silueta de 0.729. Por lo tanto, la compañía podría dirigirse a sus clientes con precisión en función de sus necesidades y preferencias para aumentar la satisfacción del servicio, debido a la segmentación final de los clientes.