Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R
RESUMEN: El análisis de regresión es una herramienta ampliamente usada en el trabajo estadístico aplicado. En este análisis, la presencia de datos extremos o la existencia de multicolinealidad pueden introducir serias distorsiones en la estimación de parámetros y la inferencia estadística; dichos ef...
- Autores:
-
Palacio Salazar, Juan Esteban
Castaño Vélez, Elkin Argemiro
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/7355
- Palabra clave:
- Datos extremos
Interfaz gráfica
Mínimos cuadrados no lineales
Multicolinealidad
Collinearity
Graphical interface
Nonlinear least squares
Nonlinear regression
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
UDEA2_7370c02069d62cbd95e7257793edb2ea |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/7355 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R |
dc.title.alternative.spa.fl_str_mv |
Detection of outliers and multicollinearity in nonlinear models : a graphical interface in R |
title |
Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R |
spellingShingle |
Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R Datos extremos Interfaz gráfica Mínimos cuadrados no lineales Multicolinealidad Collinearity Graphical interface Nonlinear least squares Nonlinear regression |
title_short |
Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R |
title_full |
Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R |
title_fullStr |
Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R |
title_full_unstemmed |
Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R |
title_sort |
Detección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en R |
dc.creator.fl_str_mv |
Palacio Salazar, Juan Esteban Castaño Vélez, Elkin Argemiro |
dc.contributor.author.none.fl_str_mv |
Palacio Salazar, Juan Esteban Castaño Vélez, Elkin Argemiro |
dc.subject.none.fl_str_mv |
Datos extremos Interfaz gráfica Mínimos cuadrados no lineales Multicolinealidad Collinearity Graphical interface Nonlinear least squares Nonlinear regression |
topic |
Datos extremos Interfaz gráfica Mínimos cuadrados no lineales Multicolinealidad Collinearity Graphical interface Nonlinear least squares Nonlinear regression |
description |
RESUMEN: El análisis de regresión es una herramienta ampliamente usada en el trabajo estadístico aplicado. En este análisis, la presencia de datos extremos o la existencia de multicolinealidad pueden introducir serias distorsiones en la estimación de parámetros y la inferencia estadística; dichos efectos han sido estudiados ampliamente en la literatura. En este artículo se presenta una herramienta construida bajo la librería shiny del paquete computacional R con el objeto de detectar este tipo de problemas en modelos de regresión no lineal, cuando se emplea estimación por mínimos cuadrados no lineales. La interfaz gráfica presentada permite especificar el modelo de regresión no lineal, realizar su estimación por mínimos cuadrados no lineales, y diagnosticar la presencia de datos extremos, o la existencia y severidad de problemas de multicolinealidad. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2017-05-25T14:17:53Z |
dc.date.available.none.fl_str_mv |
2017-05-25T14:17:53Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Palacio Salazar, J. E., & Castaño Vélez, E. A. (2016). Detección de datos extremos y de multicolinealidad en modelos no lineales una interfaz gráfica en R. Revista de la Facultad de Ciencias, 5(1), 111-123. DOI. https://doi.org/10.15446/rev.fac.cienc.v5n1.55358 |
dc.identifier.issn.none.fl_str_mv |
0121-747X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/7355 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.15446/rev.fac.cienc.v5n1.55358 |
dc.identifier.eissn.none.fl_str_mv |
2357-5549 |
identifier_str_mv |
Palacio Salazar, J. E., & Castaño Vélez, E. A. (2016). Detección de datos extremos y de multicolinealidad en modelos no lineales una interfaz gráfica en R. Revista de la Facultad de Ciencias, 5(1), 111-123. DOI. https://doi.org/10.15446/rev.fac.cienc.v5n1.55358 0121-747X 2357-5549 |
url |
http://hdl.handle.net/10495/7355 https://doi.org/10.15446/rev.fac.cienc.v5n1.55358 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional, Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/5/license.txt http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/2/license_url http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/3/license_text http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/4/license_rdf http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/1/CastanoElkin_2016_DetecccionDatosExtremos.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e a77998b06ab8bf7189ead9b4b9ad5e00 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173178741456896 |
spelling |
Palacio Salazar, Juan EstebanCastaño Vélez, Elkin Argemiro2017-05-25T14:17:53Z2017-05-25T14:17:53Z2016Palacio Salazar, J. E., & Castaño Vélez, E. A. (2016). Detección de datos extremos y de multicolinealidad en modelos no lineales una interfaz gráfica en R. Revista de la Facultad de Ciencias, 5(1), 111-123. DOI. https://doi.org/10.15446/rev.fac.cienc.v5n1.553580121-747Xhttp://hdl.handle.net/10495/7355https://doi.org/10.15446/rev.fac.cienc.v5n1.553582357-5549RESUMEN: El análisis de regresión es una herramienta ampliamente usada en el trabajo estadístico aplicado. En este análisis, la presencia de datos extremos o la existencia de multicolinealidad pueden introducir serias distorsiones en la estimación de parámetros y la inferencia estadística; dichos efectos han sido estudiados ampliamente en la literatura. En este artículo se presenta una herramienta construida bajo la librería shiny del paquete computacional R con el objeto de detectar este tipo de problemas en modelos de regresión no lineal, cuando se emplea estimación por mínimos cuadrados no lineales. La interfaz gráfica presentada permite especificar el modelo de regresión no lineal, realizar su estimación por mínimos cuadrados no lineales, y diagnosticar la presencia de datos extremos, o la existencia y severidad de problemas de multicolinealidad.ABSTRACT: Regression analysis is a widely used tool in the statistical work applied. In this analysis, the presence of extreme data or the existence of multicollinearity can introduce serious distortions in parameter estimation and statistical inference; these effects have been widely studied in the literature. This article describes a tool built under the shiny R library software package in order to detect such problems in nonlinear regression models, when estimation is used for nonlinear least squares is presented. The graphical interface presented allows you to specify the nonlinear regression model, make its estimate for nonlinear least squares, and diagnosing the presence of extreme data, or the existence and severity of multicollinearity problems.12application/pdfspaUniversidad Nacional, Facultad de CienciasBogotá, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Datos extremosInterfaz gráficaMínimos cuadrados no linealesMulticolinealidadCollinearityGraphical interfaceNonlinear least squaresNonlinear regressionDetección de datos extremos y de multicolinealidad en modelos no lineales : una interfaz gráfica en RDetection of outliers and multicollinearity in nonlinear models : a graphical interface in RRevista de la Facultad de Ciencias11112351LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALCastanoElkin_2016_DetecccionDatosExtremos.pdfCastanoElkin_2016_DetecccionDatosExtremos.pdfArtículo de investigaciónapplication/pdf885221http://bibliotecadigital.udea.edu.co/bitstream/10495/7355/1/CastanoElkin_2016_DetecccionDatosExtremos.pdfa77998b06ab8bf7189ead9b4b9ad5e00MD5110495/7355oai:bibliotecadigital.udea.edu.co:10495/73552021-06-23 20:12:18.312Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |