A machine learning methodology for land use/land cover classification in tropical areas using medium resolution satellite imagery, case: Colombia
ABSTRACT : In this work, we first present a methodology for preparing 10 m to 60 m spatial resolution Sentinel-1, Sentinel-2, and ALOS DSM imagery of forest/grassland areas in Colombia to train a DeepLabV3+ convolutional neural network model. Our preprocessing pipeline for the Sentinel-2 imagery com...
- Autores:
-
Ceballos Arroyo, Alberto Mario
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/20659
- Acceso en línea:
- http://hdl.handle.net/10495/20659
- Palabra clave:
- Remote sensing
Teledetección
Machine learning
Aprendizaje electrónico
Imágenes por satélites
Satellite imagery
Redes de neuronas
Neural networks
Tratamiento de imágenes
Image processing
Deep Learning
Sentinel-2
Convolutional Neural Network
Satellite Imagery
http://aims.fao.org/aos/agrovoc/c_49834
http://aims.fao.org/aos/agrovoc/c_37359
http://aims.fao.org/aos/agrovoc/c_36761
http://aims.fao.org/aos/agrovoc/c_37467
http://vocabularies.unesco.org/thesaurus/concept1557
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/