Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p)
RESUMEN: El estudio de series de tiempo que presentan un comportamiento estacionario o periódico han sido importantes en el análisis y extracción de información. Los procesos autorregresivos son una buena herramienta para modelar un comportamiento de este tipo; existen métodos tradicionales para la...
- Autores:
-
Ramírez Gómez, Daniel Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/16890
- Acceso en línea:
- http://hdl.handle.net/10495/16890
- Palabra clave:
- Matemáticas
Mathematics
Wavelets (Mathematics)
Onditas (matemáticas)
Análisis de series de tiempo - modelos matemáticos
Time-series analysis - mathematical models
http://vocabularies.unesco.org/thesaurus/concept118
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UDEA2_3479365703ee5abf3210c34561c34515 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/16890 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p) |
title |
Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p) |
spellingShingle |
Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p) Matemáticas Mathematics Wavelets (Mathematics) Onditas (matemáticas) Análisis de series de tiempo - modelos matemáticos Time-series analysis - mathematical models http://vocabularies.unesco.org/thesaurus/concept118 |
title_short |
Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p) |
title_full |
Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p) |
title_fullStr |
Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p) |
title_full_unstemmed |
Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p) |
title_sort |
Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p) |
dc.creator.fl_str_mv |
Ramírez Gómez, Daniel Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Cataño Sálazar, Duvan Humberto |
dc.contributor.author.none.fl_str_mv |
Ramírez Gómez, Daniel Alejandro |
dc.subject.unesco.none.fl_str_mv |
Matemáticas Mathematics |
topic |
Matemáticas Mathematics Wavelets (Mathematics) Onditas (matemáticas) Análisis de series de tiempo - modelos matemáticos Time-series analysis - mathematical models http://vocabularies.unesco.org/thesaurus/concept118 |
dc.subject.lemb.none.fl_str_mv |
Wavelets (Mathematics) Onditas (matemáticas) Análisis de series de tiempo - modelos matemáticos Time-series analysis - mathematical models |
dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept118 |
description |
RESUMEN: El estudio de series de tiempo que presentan un comportamiento estacionario o periódico han sido importantes en el análisis y extracción de información. Los procesos autorregresivos son una buena herramienta para modelar un comportamiento de este tipo; existen métodos tradicionales para la estimación de los parámetros, el problema recae cuando la serie no tiene un comportamiento estacionario, en este caso, la estimación tradicional queda corta ya que no logra capturar los cambios estructurales. En el presente trabajo se estudian las propiedades y características principales de las series estacionarias empleando modelos ARMA. Al igual que el análisis de la serie en el dominio de las frecuencias empleando la densidad espectral, con el fin de estudiar el aporte que hace el período de un fenómeno a la varianza del proceso. Por último se estudiará series no estacionaria, específicamente procesos localmente estacionarias, la cual se modelará por medio de un proceso autorregresivo con coeficientes variando en el tiempo, estimando los parámetros empleando una expansión en series de wavelets de tal manera que minimice el error cuadrático medio. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-10-07T22:10:00Z |
dc.date.available.none.fl_str_mv |
2020-10-07T22:10:00Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/16890 |
url |
http://hdl.handle.net/10495/16890 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.extent.spa.fl_str_mv |
62 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
El Carmen de Viboral, Colombia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
http://bibliotecadigital.udea.edu.co/bitstream/10495/16890/7/Ramirez_Alejandro_ARtv%28%20p%29.pdf http://bibliotecadigital.udea.edu.co/bitstream/10495/16890/8/license_rdf http://bibliotecadigital.udea.edu.co/bitstream/10495/16890/9/license.txt |
bitstream.checksum.fl_str_mv |
cec30092f0efbc650e3220f9b1ac3e6b b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173093231132672 |
spelling |
Cataño Sálazar, Duvan HumbertoRamírez Gómez, Daniel Alejandro2020-10-07T22:10:00Z2020-10-07T22:10:00Z2020http://hdl.handle.net/10495/16890RESUMEN: El estudio de series de tiempo que presentan un comportamiento estacionario o periódico han sido importantes en el análisis y extracción de información. Los procesos autorregresivos son una buena herramienta para modelar un comportamiento de este tipo; existen métodos tradicionales para la estimación de los parámetros, el problema recae cuando la serie no tiene un comportamiento estacionario, en este caso, la estimación tradicional queda corta ya que no logra capturar los cambios estructurales. En el presente trabajo se estudian las propiedades y características principales de las series estacionarias empleando modelos ARMA. Al igual que el análisis de la serie en el dominio de las frecuencias empleando la densidad espectral, con el fin de estudiar el aporte que hace el período de un fenómeno a la varianza del proceso. Por último se estudiará series no estacionaria, específicamente procesos localmente estacionarias, la cual se modelará por medio de un proceso autorregresivo con coeficientes variando en el tiempo, estimando los parámetros empleando una expansión en series de wavelets de tal manera que minimice el error cuadrático medio.62application/pdfspainfo:eu-repo/semantics/draftinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Proceso autorregresivo con coeficientes variando en el tiempo tvAR(p)El Carmen de Viboral, ColombiaMatemáticasMathematicsWavelets (Mathematics)Onditas (matemáticas)Análisis de series de tiempo - modelos matemáticosTime-series analysis - mathematical modelshttp://vocabularies.unesco.org/thesaurus/concept118MatemáticoPregradoFacultad de Ciencias Exactas y Naturales. Carrera de MatemáticasUniversidad de AntioquiaORIGINALRamirez_Alejandro_ARtv( p).pdfRamirez_Alejandro_ARtv( p).pdfTrabajo de grado de pregradoapplication/pdf516566http://bibliotecadigital.udea.edu.co/bitstream/10495/16890/7/Ramirez_Alejandro_ARtv%28%20p%29.pdfcec30092f0efbc650e3220f9b1ac3e6bMD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823http://bibliotecadigital.udea.edu.co/bitstream/10495/16890/8/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD58LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/16890/9/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5910495/16890oai:bibliotecadigital.udea.edu.co:10495/168902021-06-14 10:20:56.766Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |