Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba

La implementación de modelos de aprendizaje automático ha emergido como una solución efectiva para prever el rendimiento académico en distintos niveles educativos, potenciando la calidad de los procesos de enseñanza y aprendizaje. Sin embargo, el escaso uso de análisis predictivo por parte de los do...

Full description

Autores:
Echenique Hernández, Jesús David
Pantoja Wilches, Jabit Julio
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/8095
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/8095
https://repositorio.unicordoba.edu.co
Palabra clave:
Rendimiento académico
Aprendizaje automático
Árbol de decisión
Análisis predictivo
Academic performance
Machine learning
Decision tree
Predictive analysis
Rights
openAccess
License
Copyright Universidad de Córdoba, 2024
id UCORDOBA2_c2781255d7f02e4a0c86ff1546af637f
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/8095
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.spa.fl_str_mv Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba
title Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba
spellingShingle Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba
Rendimiento académico
Aprendizaje automático
Árbol de decisión
Análisis predictivo
Academic performance
Machine learning
Decision tree
Predictive analysis
title_short Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba
title_full Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba
title_fullStr Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba
title_full_unstemmed Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba
title_sort Modelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de Córdoba
dc.creator.fl_str_mv Echenique Hernández, Jesús David
Pantoja Wilches, Jabit Julio
dc.contributor.advisor.none.fl_str_mv Madera Doval, Dalia Patricia
Caro Piñeres, Manuel Fernando
dc.contributor.author.none.fl_str_mv Echenique Hernández, Jesús David
Pantoja Wilches, Jabit Julio
dc.contributor.jury.none.fl_str_mv Giraldo, Juan Carlos
Palomino, Miguel Ángel
dc.subject.proposal.spa.fl_str_mv Rendimiento académico
Aprendizaje automático
Árbol de decisión
Análisis predictivo
topic Rendimiento académico
Aprendizaje automático
Árbol de decisión
Análisis predictivo
Academic performance
Machine learning
Decision tree
Predictive analysis
dc.subject.keywords.eng.fl_str_mv Academic performance
Machine learning
Decision tree
Predictive analysis
description La implementación de modelos de aprendizaje automático ha emergido como una solución efectiva para prever el rendimiento académico en distintos niveles educativos, potenciando la calidad de los procesos de enseñanza y aprendizaje. Sin embargo, el escaso uso de análisis predictivo por parte de los docentes en la materia "Producción de Artefactos" ha generado resultados académicos inesperados. El propósito de esta investigación es desarrollar una estrategia de análisis predictivo basada en aprendizaje automático para predecir el desempeño de los estudiantes en dicha asignatura. La metodología empleada se fundamenta en los "Marcos de Investigación de Ciencia del Diseño", abarcando cinco fases. Una etapa crucial implica la recopilación de datos a través de una encuesta, explorando aspectos relacionados con los métodos de aprendizaje y los factores que influyen en estos procesos. Para la formulación de la estrategia de análisis predictivo, se consideran diversos modelos de aprendizaje automático, como la regresión lineal, los árboles de decisión y las redes neuronales. La estrategia diseñada utiliza un enfoque de árbol de decisión, demostrando un rendimiento superior en comparación con modelos de predicción alternativos, aplicando los hallazgos de la investigación. Este proyecto resalta la relevancia del análisis basado en aprendizaje automático y respalda la implementación de enfoques como los árboles de decisiones.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-25T12:58:30Z
dc.date.available.none.fl_str_mv 2024-01-25T12:58:30Z
dc.date.issued.none.fl_str_mv 2024-01-25
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/8095
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio Universidad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/8095
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio Universidad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv -Vera, G., Gil-Vera, V. D., & Quintero-López, C. (2021). Versión final Ago. 26, 2021, Publicado Dic. 2021 Palabras clave: inteligencia artificial; RNA; educación; rendimiento. Estudiantes Información Tecnológica, 32(6), 221–228. https://doi.org/10.4067/S0718-07642021000600221
Alonzo Jiménez, C. D., & Fernández Cáceres, C. A. (2021). INTELIGENCIA ARTIFICIAL Y MACHINE LEARNING EN LA EDUCACIÓN.
Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). Practice of Epidemiology What is Machine Learning? A Primer for the Epidemiologist. https://doi.org/10.1093/aje/kwz189
Contreras, L. E., Fuentes, H. J., & Rodrfguez, J. I. (2020). Academic performance prediction by machine learning as a success/failure indicator for engineering students. Formacion Universitaria, 13(5), 233–246. https://doi.org/10.4067/S0718-50062020000500233
Cruz, E., González, M., & Rangel, J. C. (2022). Vista de Técnicas de machine learning aplicadas a la evaluación del rendimiento y a la predicción de la deserción de estudiantes universitarios, una revisión. https://revistas.utp.ac.pa/index.php/prisma/article/view/3039/4191
Dionisio, G., Donato, J., Menéndez Mueras, M., & Investigación, L. DE. (2021). FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS Machine Learning para predecir el rendimiento académico de los estudiantes universitarios.
Flores, F. A. I., Sanchez, D. L. C., Urbina, R. O. E., Soto, J. A. D., & Medrano, S. E. V. (2021). Diseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLB. REVISTA VERITAS ET SCIENTIA - UPT, 10(1), 107–117. https://doi.org/10.47796/VES.V10I1.464
Gamboa-Cruzado, J., Alvarez-Cuellar, C. Y., Martinez-Medina, S., Turpo Chaparro, J. E., Sifuentes Damián, A., & Rodríguez Kong, M. (2023). Predicción de repitencias en estudiantes a nivel escolar usando Machine Learning: una revisión sistemática. Apuntes Universitarios, 13(2). https://doi.org/10.17162/au.v13i2.1438
García, A. E. (2018). Estilos de aprendizaje y rendimiento académico. Revista Boletín Redipe, 7(7), 218–228. https://revista.redipe.org/index.php/1/article/view/536
Gil-Vera, V. D., Quintero-López, C., Gil-Vera, V. D., & Quintero-López, C. (2021). Predicción del rendimiento académico estudiantil con redes neuronales artificiales. Información Tecnológica, 32(6), 221–228. https://doi.org/10.4067/S0718-07642021000600221
Goleman, D. (1996). Emotional Intelligence. Why It Can Matter More than IQ. Learning, 24(6), 49–50.
Gonzales Lopez, E., & Evaristo Chiyong, I. (2021). Academic achievement and dropout of university students from a course in both an online and face-to-face modality. RIED-Revista Iberoamericana de Educacion a Distancia, 24(2), 189–202. https://doi.org/10.5944/ried.24.2.29103
Hevner, A., & Chatterjee, S. (2010). Design Science Research Frameworks (pp. 23–31). https://doi.org/10.1007/978-1-4419-5653-8_3
Hinojo Lucena, F. J., Aznar Díaz, I., Romero Rodríguez, J. M., & Marín Marín, J. A. (2019). Influencia del aula invertida en el rendimiento académico : una revisión sistemática. Campus Virtuales : Revista Científica Iberoamericana de Tecnología Educativa, 8(1), 2019. https://redined.educacion.gob.es/xmlui/handle/11162/184523
Imig, P. G., & Imig, P. G. (2020). Rendimiento académico: un recorrido conceptual que aproxima a una definición unificada para el ámbito superior / Academic performance: a conceptual journey that approximates a unified definition for the higher level. Revista de Educación, 0(20), 89–104. https://fh.mdp.edu.ar/revistas/index.php/r_educ/article/view/4165
Llópis, P. E. A., Morales, Y. G., Estévez, A. L. G., & Mesa, C. R. (2021). La comunicación científica en investigaciones que asumen el enfoque cualitativo: una mirada valorativa. EduMeCentro, 13(2), 172–191. https://orcid.org/0000-0002-8218-5082
Mahesh, B. (2018). Machine Learning Algorithms-A Review. International Journal of Science and Research. https://doi.org/10.21275/ART20203995
Montoya Becerril, G., Oropeza Tena, R., & Luisa Ávalos Latorre, M. (2019). Academic Performance and Artistic Practice Extracurricular in High School Student. 21(e13). https://doi.org/10.24320/redie.2019.21.e13.1877
Moret Sánchez, M. (2021). Estudio del funcionamiento de técnicas de minería de datos sobre Conjuntos de Datos relacionados con la Biología. http://crea.ujaen.es/jspui/handle/10953.1/14426
Muñoz Hurtado, L. V. (2012). Las construcciones de autoridad en el aula y su interrelación con los procesos de enseñanza. https://repositorio.unal.edu.co/handle/unal/11496
Namoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. In Applied Sciences (Switzerland) (Vol. 11, Issue 1, pp. 1–28). MDPI AG. https://doi.org/10.3390/app11010237
Núñez Reiz, A., Armengol de la Hoz, M. A., & Sánchez García, M. (2019). Big Data Analysis y Machine Learning en medicina intensiva. Medicina Intensiva, 43(7), 416–426. https://doi.org/10.1016/J.MEDIN.2018.10.007
Propósitos Y Representaciones ; Ocaña-Fernandez, Y., Valenzuela-Fernandez, L., & Garro-Aburto, L. (2019). Artificial Intelligence and its Implications in Higher Education. Propósitos y Representaciones, 7(2), 536–568. https://doi.org/10.20511/pyr2019.v7n2.274
Rico Páez, A., & Sánchez Guzmán, D. (2018). Diseño de un modelo para automatizar la predicción del rendimiento académico en estudiantes del IPN / Design of a model to automate the prediction of academic performance in students of IPN. RIDE Revista Iberoamericana Para La Investigación y El Desarrollo Educativo, 8(16), 246–266. https://doi.org/10.23913/ride.v8i16.340
Rouhiainen, L. (2018). Inteligencia artificial 101 cosas que debes saber. Alienta Editorial, 1(978-84-17568-08–5), 352.
Shaik, A. B., & Srinivasan, S. (2019). A brief survey on random forest ensembles in classification model. Lecture Notes in Networks and Systems, 56, 253–260. https://doi.org/10.1007/978-981-13-2354-6_27/COVER
Sistemas Informáticos Y De Computación Juan Carlos Tituaña Jami, I. E. (2018). Desarrollo de un método para la clasificación automatizada de imágenes Landsat 8 mediante Redes Neuronales Artificiales. http://bibdigital.epn.edu.ec/handle/15000/19806
Tulic, M. L. (1998). LCSHD Paper Series Department of Human Development Algunos Factores del Rendimiento: las Expectativas y el Género.
Valero, J. E., Navarro, Á. F., & Larios, A. C. (2022). Deserción universitaria: Evaluación de diferentes algoritmos de Machine Learning para su predicción. Como Citar APA, XXVIII(3), 362–375.
Wang, L., & Ren, Y. (2021). Python teaching research and practice from the perspective of computational ecology. Smart Innovation, Systems and Technologies, 191, 177–182. https://doi.org/10.1007/978-981-15-5879-5_22/COVER
dc.rights.spa.fl_str_mv Copyright Universidad de Córdoba, 2024
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Córdoba
dc.publisher.faculty.none.fl_str_mv Facultad de Educación y Ciencias Humanas
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Licenciatura en Informática y Medios Audiovisuales
publisher.none.fl_str_mv Universidad de Córdoba
dc.source.none.fl_str_mv https://repositorio.unicordoba.edu.co
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/bbab87a2-09e9-432d-891a-c0c970fe8d35/download
https://repositorio.unicordoba.edu.co/bitstreams/c5bd02e8-7274-4382-ad05-44e358a1a796/download
https://repositorio.unicordoba.edu.co/bitstreams/305d86bf-7be4-4e27-9dc8-951aeb7e3e35/download
https://repositorio.unicordoba.edu.co/bitstreams/68b95ed5-cc58-45d9-8b64-c07b9c93bd95/download
https://repositorio.unicordoba.edu.co/bitstreams/577ce6e5-681e-4ecd-afc2-a70430591661/download
https://repositorio.unicordoba.edu.co/bitstreams/82880eaa-cbd6-4287-a1aa-7e6b7d51261c/download
https://repositorio.unicordoba.edu.co/bitstreams/82a9020f-cd1e-4820-ad52-09a760ea5a4d/download
bitstream.checksum.fl_str_mv e5a1670b73147fc667bcc61d22639ed4
4a01490ffedb5ad0514e68e99de34424
73a5432e0b76442b22b026844140d683
d2a2b966dec519369f474b82cb50c5d3
a696469aa27034c5a6b2db099d95115b
caf5def83d45248f781aa623baac922e
fd0c9dbda8616cb51b378731543911af
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812173332915683328
spelling Madera Doval, Dalia Patricia9e5a406c-6493-48d9-b79d-9b078c14aed5-1Caro Piñeres, Manuel Fernando7710bca2-75de-4473-a17c-614abca52dfb-1Echenique Hernández, Jesús David7c4dbd13-65cf-4acf-89d9-1cc8f492d938-1Pantoja Wilches, Jabit Julio884e5cdc-deff-4ea9-bc68-a32f70793e93-1Giraldo, Juan Carlos9f8507b4-617a-4e30-b51d-58cb7e7def1a-1Palomino, Miguel Ángela6f2b568-562d-47f7-9668-b3dafeb929d3-12024-01-25T12:58:30Z2024-01-25T12:58:30Z2024-01-25https://repositorio.unicordoba.edu.co/handle/ucordoba/8095Universidad de CórdobaRepositorio Universidad de Córdobahttps://repositorio.unicordoba.edu.coLa implementación de modelos de aprendizaje automático ha emergido como una solución efectiva para prever el rendimiento académico en distintos niveles educativos, potenciando la calidad de los procesos de enseñanza y aprendizaje. Sin embargo, el escaso uso de análisis predictivo por parte de los docentes en la materia "Producción de Artefactos" ha generado resultados académicos inesperados. El propósito de esta investigación es desarrollar una estrategia de análisis predictivo basada en aprendizaje automático para predecir el desempeño de los estudiantes en dicha asignatura. La metodología empleada se fundamenta en los "Marcos de Investigación de Ciencia del Diseño", abarcando cinco fases. Una etapa crucial implica la recopilación de datos a través de una encuesta, explorando aspectos relacionados con los métodos de aprendizaje y los factores que influyen en estos procesos. Para la formulación de la estrategia de análisis predictivo, se consideran diversos modelos de aprendizaje automático, como la regresión lineal, los árboles de decisión y las redes neuronales. La estrategia diseñada utiliza un enfoque de árbol de decisión, demostrando un rendimiento superior en comparación con modelos de predicción alternativos, aplicando los hallazgos de la investigación. Este proyecto resalta la relevancia del análisis basado en aprendizaje automático y respalda la implementación de enfoques como los árboles de decisiones.The implementation of machine learning models has emerged as an effective solution to predict academic performance at different educational levels, enhancing the quality of teaching and learning processes. However, the limited use of predictive analysis by teachers in the subject "Artifact Production" has generated unexpected academic results. The purpose of this research is to develop a predictive analysis strategy based on machine learning to predict student performance in this subject. The methodology used is based on the "Design Science Research Frameworks", covering five phases. A crucial stage involves collecting data through a survey, exploring aspects related to learning methods and the factors that influence these processes. To formulate the predictive analytics strategy, various machine learning models are considered, such as linear regression, decision trees, and neural networks. The designed strategy uses a decision tree approach, demonstrating superior performance compared to alternative prediction models, applying the research findings. This project highlights the relevance of machine learning-based analysis and supports the implementation of approaches such as decision trees. Capítulo 1 Contextualización de la problemática............................................... 11.1 Descripción del problema ............................................................................... 11.2 Formulación de la pregunta de investigación .............................................. 41.3 Supuesto (cualitativa) ..................................................................................... 41.4 Objetivos de la investigación ......................................................................... 41.4.1 Objetivo General ......................................................................................... 51.4.2 Objetivos Específicos .................................................................................. 51.5 Justificación e impacto ................................................................................... 51.6 Línea de investigación .................................................................................... 7Capítulo 2 Fundamentación teórica de la investigación .................................. 82.1 Antecedentes investigativos ........................................................................... 82.2 Marco teórico ................................................................................................ 122.2.1 Inteligencia Artificial .................................................................................. 122.2.2 Machine Learning ..................................................................................... 132.2.3 Python........................................................................................................ 152.2.4 Educación ................................................................................................. 162.2.5 Rendimiento Académico ......................................................................... 16Capítulo 3 Aspectos metodológicos de la investigación................................. 183.1 Enfoque de investigación ............................................................................. 183.2 Diseño de la investigación ............................................................................ 183.3 Técnicas e instrumentos de recolección de datos .................................... 213.3.1 Bases de Datos............................................................................................ 213.3.2 Formulario .................................................................................................. 223.3.3 Dataset ....................................................................................................... 223.3.4 Google Colab ............................................................................................. 233.3.5 Software basado en Machine Learning ................................................. 233.4 Población y muestra ..................................................................................... 253.5 Procedimiento ............................................................................................... 25Capítulo 4 Análisis e interpretación de los resultados ................................... 314.1 Síntesis de la revisión sistemática ................................................................ 314.2 Descripción del dataset ................................................................................. 324.3 Software para modelo predictivo ................................................................. 44Capítulo 5 Conclusiones ...................................................................................... 53Capítulo 6 Referencias ......................................................................................... 55PregradoLicenciado(a) en InformáticaTrabajos de Investigación y/o Extensiónapplication/pdfspaUniversidad de CórdobaFacultad de Educación y Ciencias HumanasMontería, Córdoba, ColombiaLicenciatura en Informática y Medios AudiovisualesCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://repositorio.unicordoba.edu.coModelo de machine learning para predecir el rendimiento académico en la asignatura producción de artefactos tecnológicos del programa de licenciatura en informática de la Universidad de CórdobaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionText-Vera, G., Gil-Vera, V. D., & Quintero-López, C. (2021). Versión final Ago. 26, 2021, Publicado Dic. 2021 Palabras clave: inteligencia artificial; RNA; educación; rendimiento. Estudiantes Información Tecnológica, 32(6), 221–228. https://doi.org/10.4067/S0718-07642021000600221Alonzo Jiménez, C. D., & Fernández Cáceres, C. A. (2021). INTELIGENCIA ARTIFICIAL Y MACHINE LEARNING EN LA EDUCACIÓN.Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). Practice of Epidemiology What is Machine Learning? A Primer for the Epidemiologist. https://doi.org/10.1093/aje/kwz189Contreras, L. E., Fuentes, H. J., & Rodrfguez, J. I. (2020). Academic performance prediction by machine learning as a success/failure indicator for engineering students. Formacion Universitaria, 13(5), 233–246. https://doi.org/10.4067/S0718-50062020000500233Cruz, E., González, M., & Rangel, J. C. (2022). Vista de Técnicas de machine learning aplicadas a la evaluación del rendimiento y a la predicción de la deserción de estudiantes universitarios, una revisión. https://revistas.utp.ac.pa/index.php/prisma/article/view/3039/4191Dionisio, G., Donato, J., Menéndez Mueras, M., & Investigación, L. DE. (2021). FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS Machine Learning para predecir el rendimiento académico de los estudiantes universitarios.Flores, F. A. I., Sanchez, D. L. C., Urbina, R. O. E., Soto, J. A. D., & Medrano, S. E. V. (2021). Diseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLB. REVISTA VERITAS ET SCIENTIA - UPT, 10(1), 107–117. https://doi.org/10.47796/VES.V10I1.464Gamboa-Cruzado, J., Alvarez-Cuellar, C. Y., Martinez-Medina, S., Turpo Chaparro, J. E., Sifuentes Damián, A., & Rodríguez Kong, M. (2023). Predicción de repitencias en estudiantes a nivel escolar usando Machine Learning: una revisión sistemática. Apuntes Universitarios, 13(2). https://doi.org/10.17162/au.v13i2.1438García, A. E. (2018). Estilos de aprendizaje y rendimiento académico. Revista Boletín Redipe, 7(7), 218–228. https://revista.redipe.org/index.php/1/article/view/536Gil-Vera, V. D., Quintero-López, C., Gil-Vera, V. D., & Quintero-López, C. (2021). Predicción del rendimiento académico estudiantil con redes neuronales artificiales. Información Tecnológica, 32(6), 221–228. https://doi.org/10.4067/S0718-07642021000600221Goleman, D. (1996). Emotional Intelligence. Why It Can Matter More than IQ. Learning, 24(6), 49–50.Gonzales Lopez, E., & Evaristo Chiyong, I. (2021). Academic achievement and dropout of university students from a course in both an online and face-to-face modality. RIED-Revista Iberoamericana de Educacion a Distancia, 24(2), 189–202. https://doi.org/10.5944/ried.24.2.29103Hevner, A., & Chatterjee, S. (2010). Design Science Research Frameworks (pp. 23–31). https://doi.org/10.1007/978-1-4419-5653-8_3Hinojo Lucena, F. J., Aznar Díaz, I., Romero Rodríguez, J. M., & Marín Marín, J. A. (2019). Influencia del aula invertida en el rendimiento académico : una revisión sistemática. Campus Virtuales : Revista Científica Iberoamericana de Tecnología Educativa, 8(1), 2019. https://redined.educacion.gob.es/xmlui/handle/11162/184523Imig, P. G., & Imig, P. G. (2020). Rendimiento académico: un recorrido conceptual que aproxima a una definición unificada para el ámbito superior / Academic performance: a conceptual journey that approximates a unified definition for the higher level. Revista de Educación, 0(20), 89–104. https://fh.mdp.edu.ar/revistas/index.php/r_educ/article/view/4165Llópis, P. E. A., Morales, Y. G., Estévez, A. L. G., & Mesa, C. R. (2021). La comunicación científica en investigaciones que asumen el enfoque cualitativo: una mirada valorativa. EduMeCentro, 13(2), 172–191. https://orcid.org/0000-0002-8218-5082Mahesh, B. (2018). Machine Learning Algorithms-A Review. International Journal of Science and Research. https://doi.org/10.21275/ART20203995Montoya Becerril, G., Oropeza Tena, R., & Luisa Ávalos Latorre, M. (2019). Academic Performance and Artistic Practice Extracurricular in High School Student. 21(e13). https://doi.org/10.24320/redie.2019.21.e13.1877Moret Sánchez, M. (2021). Estudio del funcionamiento de técnicas de minería de datos sobre Conjuntos de Datos relacionados con la Biología. http://crea.ujaen.es/jspui/handle/10953.1/14426Muñoz Hurtado, L. V. (2012). Las construcciones de autoridad en el aula y su interrelación con los procesos de enseñanza. https://repositorio.unal.edu.co/handle/unal/11496Namoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. In Applied Sciences (Switzerland) (Vol. 11, Issue 1, pp. 1–28). MDPI AG. https://doi.org/10.3390/app11010237Núñez Reiz, A., Armengol de la Hoz, M. A., & Sánchez García, M. (2019). Big Data Analysis y Machine Learning en medicina intensiva. Medicina Intensiva, 43(7), 416–426. https://doi.org/10.1016/J.MEDIN.2018.10.007Propósitos Y Representaciones ; Ocaña-Fernandez, Y., Valenzuela-Fernandez, L., & Garro-Aburto, L. (2019). Artificial Intelligence and its Implications in Higher Education. Propósitos y Representaciones, 7(2), 536–568. https://doi.org/10.20511/pyr2019.v7n2.274Rico Páez, A., & Sánchez Guzmán, D. (2018). Diseño de un modelo para automatizar la predicción del rendimiento académico en estudiantes del IPN / Design of a model to automate the prediction of academic performance in students of IPN. RIDE Revista Iberoamericana Para La Investigación y El Desarrollo Educativo, 8(16), 246–266. https://doi.org/10.23913/ride.v8i16.340Rouhiainen, L. (2018). Inteligencia artificial 101 cosas que debes saber. Alienta Editorial, 1(978-84-17568-08–5), 352.Shaik, A. B., & Srinivasan, S. (2019). A brief survey on random forest ensembles in classification model. Lecture Notes in Networks and Systems, 56, 253–260. https://doi.org/10.1007/978-981-13-2354-6_27/COVERSistemas Informáticos Y De Computación Juan Carlos Tituaña Jami, I. E. (2018). Desarrollo de un método para la clasificación automatizada de imágenes Landsat 8 mediante Redes Neuronales Artificiales. http://bibdigital.epn.edu.ec/handle/15000/19806Tulic, M. L. (1998). LCSHD Paper Series Department of Human Development Algunos Factores del Rendimiento: las Expectativas y el Género.Valero, J. E., Navarro, Á. F., & Larios, A. C. (2022). Deserción universitaria: Evaluación de diferentes algoritmos de Machine Learning para su predicción. Como Citar APA, XXVIII(3), 362–375.Wang, L., & Ren, Y. (2021). Python teaching research and practice from the perspective of computational ecology. Smart Innovation, Systems and Technologies, 191, 177–182. https://doi.org/10.1007/978-981-15-5879-5_22/COVERRendimiento académicoAprendizaje automáticoÁrbol de decisiónAnálisis predictivoAcademic performanceMachine learningDecision treePredictive analysisPublicationORIGINALEcheniqueJesús-PantojaJabit.pdfEcheniqueJesús-PantojaJabit.pdfapplication/pdf2606969https://repositorio.unicordoba.edu.co/bitstreams/bbab87a2-09e9-432d-891a-c0c970fe8d35/downloade5a1670b73147fc667bcc61d22639ed4MD51AutorizaciónEcheniqueJesús-PantojaJabit..pdfapplication/pdf681305https://repositorio.unicordoba.edu.co/bitstreams/c5bd02e8-7274-4382-ad05-44e358a1a796/download4a01490ffedb5ad0514e68e99de34424MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/305d86bf-7be4-4e27-9dc8-951aeb7e3e35/download73a5432e0b76442b22b026844140d683MD53TEXTEcheniqueJesús-PantojaJabit.pdf.txtEcheniqueJesús-PantojaJabit.pdf.txtExtracted texttext/plain101700https://repositorio.unicordoba.edu.co/bitstreams/68b95ed5-cc58-45d9-8b64-c07b9c93bd95/downloadd2a2b966dec519369f474b82cb50c5d3MD55AutorizaciónEcheniqueJesús-PantojaJabit..pdf.txtAutorizaciónEcheniqueJesús-PantojaJabit..pdf.txtExtracted texttext/plain4755https://repositorio.unicordoba.edu.co/bitstreams/577ce6e5-681e-4ecd-afc2-a70430591661/downloada696469aa27034c5a6b2db099d95115bMD57THUMBNAILEcheniqueJesús-PantojaJabit.pdf.jpgEcheniqueJesús-PantojaJabit.pdf.jpgGenerated Thumbnailimage/jpeg8693https://repositorio.unicordoba.edu.co/bitstreams/82880eaa-cbd6-4287-a1aa-7e6b7d51261c/downloadcaf5def83d45248f781aa623baac922eMD56AutorizaciónEcheniqueJesús-PantojaJabit..pdf.jpgAutorizaciónEcheniqueJesús-PantojaJabit..pdf.jpgGenerated Thumbnailimage/jpeg14130https://repositorio.unicordoba.edu.co/bitstreams/82a9020f-cd1e-4820-ad52-09a760ea5a4d/downloadfd0c9dbda8616cb51b378731543911afMD58ucordoba/8095oai:repositorio.unicordoba.edu.co:ucordoba/80952024-02-06 09:51:28.187https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K