Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia

La investigación se centró en evaluar la viabilidad de un sistema de almacenamiento térmico con material de cambio de fase (PCM) para cocinas solares parabólicas en el departamento de Córdoba, Colombia, con el objetivo de mejorar la eficiencia en la cocción de alimentos. Tras evaluar cuatro PCM medi...

Full description

Autores:
Cogollo Torres, Cristina Isabel
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/8264
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/8264
https://repositorio.unicordoba.edu.co
Palabra clave:
Cocinas solares
Dispositivos de Almacenamiento Térmico
Materiales de Cambio de Fase
Estabilidad Térmica
Solar cookers
Thermal storage devices
Phase change materials
Thermal stability
Rights
openAccess
License
Copyright Universidad de Córdoba, 2024
id UCORDOBA2_8d425ddcef2387864bbb1ab7c3790754
oai_identifier_str oai:repositorio.unicordoba.edu.co:ucordoba/8264
network_acronym_str UCORDOBA2
network_name_str Repositorio Institucional Unicórdoba
repository_id_str
dc.title.none.fl_str_mv Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
title Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
spellingShingle Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
Cocinas solares
Dispositivos de Almacenamiento Térmico
Materiales de Cambio de Fase
Estabilidad Térmica
Solar cookers
Thermal storage devices
Phase change materials
Thermal stability
title_short Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
title_full Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
title_fullStr Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
title_full_unstemmed Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
title_sort Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, Colombia
dc.creator.fl_str_mv Cogollo Torres, Cristina Isabel
dc.contributor.advisor.none.fl_str_mv Martínez Guarín, Arnold Rafael
Mendoza Fandiño, Jorge Mario
dc.contributor.author.none.fl_str_mv Cogollo Torres, Cristina Isabel
dc.contributor.jury.none.fl_str_mv Arango Meneses, Juan Fernando
Palacio Vega, Mario Andrés
dc.subject.proposal.none.fl_str_mv Cocinas solares
Dispositivos de Almacenamiento Térmico
Materiales de Cambio de Fase
Estabilidad Térmica
topic Cocinas solares
Dispositivos de Almacenamiento Térmico
Materiales de Cambio de Fase
Estabilidad Térmica
Solar cookers
Thermal storage devices
Phase change materials
Thermal stability
dc.subject.keywords.none.fl_str_mv Solar cookers
Thermal storage devices
Phase change materials
Thermal stability
description La investigación se centró en evaluar la viabilidad de un sistema de almacenamiento térmico con material de cambio de fase (PCM) para cocinas solares parabólicas en el departamento de Córdoba, Colombia, con el objetivo de mejorar la eficiencia en la cocción de alimentos. Tras evaluar cuatro PCM mediante una matriz de ponderación, se concluyó que el ácido oxálico es la mejor opción para ser implementado como sistema de almacenamiento térmico. Posteriormente, se llevaron a cabo experimentos utilizando cocinas solares parabólicas equipadas con dispositivos de almacenamiento térmico en configuraciones de diferentes espesores (DAT 1 cm y DAT 2 cm). Los resultados indicaron que los dispositivos con PCM lograron mantener temperaturas del fluido de trabajo más estables, destacándose el DAT de 2 cm por su mayor estabilidad térmica. Además, se comparó el desempeño de las cocinas solares con y sin dispositivos de almacenamiento térmico, evidenciando que, si bien los recipientes de cocción convencionales superan ligeramente a los dispositivos de almacenamiento térmico en la absorción de calor, estos últimos ofrecen una capacidad de almacenamiento de calor y estabilidad térmica superiores. Se sugiere explorar métodos alternativos para medir el calor absorbido por los dispositivos de almacenamiento térmico, considerando la transferencia de calor al material de cambio de fase, para obtener mediciones más precisas y completas del rendimiento de las cocinas solares parabólicas.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-04T13:20:19Z
dc.date.available.none.fl_str_mv 2024-04-04T13:20:19Z
dc.date.issued.none.fl_str_mv 2024-02-27
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unicordoba.edu.co/handle/ucordoba/8264
dc.identifier.instname.none.fl_str_mv Universidad de Córdoba
dc.identifier.reponame.none.fl_str_mv Repositorio universidad de Córdoba
dc.identifier.repourl.none.fl_str_mv https://repositorio.unicordoba.edu.co
url https://repositorio.unicordoba.edu.co/handle/ucordoba/8264
https://repositorio.unicordoba.edu.co
identifier_str_mv Universidad de Córdoba
Repositorio universidad de Córdoba
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abu-Hamdeh, N.H., Alnefaie, K.A., 2018. Assessment of thermal performance of PCM in latent heat storage system for different applications. https://doi.org/10.1016/j.solener.2018.11.035
Aftab, W., Usman, A., Shi, J., Yuan, K., Qin, M., Zou, R., 2021. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ Sci 14, 4268–4291. https://doi.org/10.1039/D1EE00527H
Ahmed, S.M.M., Al-Amin, M.R., Ahammed, S., Ahmed, F., Saleque, A.M., Abdur Rahman, M., 2020. Design, construction and testing of parabolic solar cooker for rural households and refugee camp. Solar Energy 205, 230–240. https://doi.org/10.1016/J.SOLENER.2020.05.007
Almutairi, K., Aungkulanon, P., Algarni, S., Alqahtani, T., Keshuov, S.A., 2022. Solar irradiance and efficient use of energy: Residential construction toward net-zero energy building. Sustainable Energy Technologies and Assessments 53, 102550. https://doi.org/10.1016/J.SETA.2022.102550
Alva, G., Lin, Y., Fang, G., 2018. An overview of thermal energy storage systems. Energy 144, 341–378. https://doi.org/10.1016/J.ENERGY.2017.12.037
Álvarez Criado, Y., 2016. Almacenamiento de energía mediante ciclos termoquímicos de CaO. Universidad de Oviedo, Oviedo.
Aramesh, M., Ghalebani, M., Kasaeian, A., Zamani, H., Lorenzini, G., Mahian, O., Wongwises, S., 2019. A review of recent advances in solar cooking technology. Renew Energy 140, 419–435. https://doi.org/10.1016/J.RENENE.2019.03.021
Barrenechea, C., Navarro, H., Serrano, S., Cabeza, L.F., Fernández, A.I., 2014. New Database on Phase Change Materials for Thermal Energy Storage in Buildings to Help PCM Selection. Energy Procedia 57, 2408–2415. https://doi.org/10.1016/J.EGYPRO.2014.10.249
Bhave, A.G., Kale, C.K., 2020. Development of a thermal storage type solar cooker for high temperature cooking using solar salt. https://doi.org/10.1016/j.solmat.2020.110394
Bhave, Atul G, Thakare, K.A., 2018. Development of a solar thermal storage cum cooking device using salt hydrate. https://doi.org/10.1016/j.solener.2018.07.018
Bhave, Atul G., Thakare, K.A., 2018. Development of a solar thermal storage cum cooking device using salt hydrate. Solar Energy 171, 784–789. https://doi.org/10.1016/J.SOLENER.2018.07.018
Bravo Hidalgo, D., 2018. Una Revisión sobre Materiales para Almacenamiento de Energía Solar Térmica. Ingeniería 23. https://doi.org/10.14483/23448393.12510
Cabeza, L.F., Gutierrez, A., Barreneche, C., Ushak, S., Fernández, Á.G., Inés Fernádez, A., Grágeda, M., 2015. Lithium in thermal energy storage: A state-of-the-art review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2014.10.096
Cao, Z., Zhang, G., Wu, Y., Yang, J., Sui, Y., Zhao, X., 2023. Energy storage potential analysis of phase change material (PCM) energy storage units based on tunnel lining ground heat exchangers. Appl Therm Eng 235, 121403. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121403
Cárdenas-Ramírez, C., Fernandez, A.G., Gómez, M.A., Jaramillo, F., Cabeza, L.F., 2020. Sistema de almacenamiento de energía térmica mediante calor latente con eritritol como material de cambio de fase. CIES2020 - XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar 503–510. https://doi.org/10.34637/CIES2020.1.2060
Carolina, M., Pereira, R., Coria, A.S., 2022. Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. Revista EIA, ISSN-e 1794-1237, Vol. 19, No. 38, 2022 19, 24. https://doi.org/10.24050/reia
Carrión-Chamba, W., Murillo-Torres, W., Montero-Izquierdo, A., Carrión-Chamba, W., Murillo-Torres, W., Montero-Izquierdo, A., 2022. Una revisión de los últimos avances de los colectores solares térmicos aplicados en la industria. Ingenius. Revista de Ciencia y Tecnología 2022, 59–73. https://doi.org/10.17163/INGS.N27.2022.06
Castell, A., Solé, C., 2015. Design of latent heat storage systems using phase change materials (PCMs). Advances in Thermal Energy Storage Systems: Methods and Applications 285–305. https://doi.org/10.1533/9781782420965.2.285
Chaudhary, A., Kumar, A., Yadav, A., 2013. Experimental investigation of a solar cooker based on parabolic dish collector with phase change thermal storage unit in Indian climatic conditions, in: Journal of Renewable and Sustainable Energy. https://doi.org/10.1063/1.4794962
Choure, B.K., Alam, T., Kumar, R., 2023. A review on heat transfer enhancement techniques for PCM based thermal energy storage system. J Energy Storage 72, 108161. https://doi.org/10.1016/J.EST.2023.108161
Donkers, P.A.J., Sögütoglu, L.C., Huinink, H.P., Fischer, H.R., Adan, O.C.G., 2017. A review of salt hydrates for seasonal heat storage in domestic applications. https://doi.org/10.1016/j.apenergy.2017.04.080
Erdogan, S., Pata, U.K., Solarin, S.A., 2023. Towards carbon-neutral world: The effect of renewable energy investments and technologies in G7 countries. Renewable and Sustainable Energy Reviews 186, 113683. https://doi.org/10.1016/J.RSER.2023.113683
Espinoza, C., Clemente, W., Martínez, C., 2019. Sistema portátil de almacenamiento y transferencia de calor para lograr confort térmico.
Gautam, A., Saini, R.P., 2020. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications. Solar Energy 207, 937–956. https://doi.org/10.1016/J.SOLENER.2020.07.027
Geddam, S., Dinesh, G.K., Sivasankar, T., 2015. Determination of thermal performance of a box type solar cooker. https://doi.org/10.1016/j.solener.2015.01.014
Goel, V., Dwivedi, A., Kumar, Rajat, Kumar, Reji, Pandey, A.K., Chopra, K., Tyagi, V. V., 2023. PCM-assisted energy storage systems for solar-thermal applications: Review of the associated problems and their mitigation strategies. J Energy Storage 69, 107912. https://doi.org/10.1016/J.EST.2023.107912
González, N., Salazar, M., Mendoza, J., Cano, M., Guerrero, M., Salazar, C., 2019. Sílice Mesoporosa como encapsulador de materiales de cambio de fase (PCM). Revista de Ingeniería Tecnológica 3, 14–19.
Gorjian, A., Rahmati, E., Gorjian, S., Anand, A., Jathar, L.D., 2022. A comprehensive study of research and development in concentrating solar cookers (CSCs): Design considerations, recent advancements, and economics. Solar Energy 245, 80–107. https://doi.org/10.1016/J.SOLENER.2022.08.066
He, M., Yang, L., Lin, W., Chen, J., Mao, X., Ma, Z., 2019. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage 25, 100874. https://doi.org/10.1016/J.EST.2019.100874
Hekimoğlu, G., Sarı, A., 2022. A review on phase change materials (PCMs) for thermal energy storage implementations. Mater Today Proc 58, 1360–1367. https://doi.org/10.1016/J.MATPR.2022.02.231
Herez, A., Ramadan, M., Khaled, M., 2017. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renewable and Sustainable Energy Reviews 81, 421–432. https://doi.org/10.1016/j.rser.2017.08.021
Hussein, H.M.S., El-Ghetany, H.H., Nada, S.A., 2008. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manag 49, 2237–2246. https://doi.org/10.1016/j.enconman.2008.01.026
Jayathunga, D.S., Karunathilake, H.P., Narayana, M., Witharana, S., 2024. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review. Renewable and Sustainable Energy Reviews 189, 113904. https://doi.org/10.1016/J.RSER.2023.113904
Keith, A., Brown, N.J., Zhou, J.L., 2019. The feasibility of a collapsible parabolic solar cooker incorporating phase change materials. Renewable Energy Focus 30, 58–70. https://doi.org/10.1016/J.REF.2019.03.005
Khan, M.I., Asfand, F., Al-Ghamdi, S.G., 2022. Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. J Energy Storage 55, 105860. https://doi.org/10.1016/J.EST.2022.105860
Khatri, R., Goyal, R., Sharma, R.K., 2023. Comparative experimental investigations on a low-cost solar cooker with energy storage materials for sustainable development. Results in Engineering 20, 101546. https://doi.org/10.1016/J.RINENG.2023.101546
Khatri, R., Goyal, R., Sharma, R.K., 2021. Advances in the developments of solar cooker for sustainable development: A comprehensive review. Renewable and Sustainable Energy Reviews 145, 111166. https://doi.org/10.1016/J.RSER.2021.111166
Köll, R., van Helden, W., Engel, G., Wagner, W., Dang, B., Jänchen, J., Kerskes, H., Badenhop, T., Herzog, T., 2017. An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings. Solar Energy 155, 388–397. https://doi.org/10.1016/J.SOLENER.2017.06.043
König-Haagen, A., Diarce, G., 2023. Prediction of the discharging time of a latent heat thermal energy storage system with a UA approach. J Energy Storage 73, 108849. https://doi.org/10.1016/J.EST.2023.108849
Kumar Goyal, R., EswaramoorthyMuthusamy, 2023. Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications. Sustainable Energy Technologies and Assessments 56, 103078. https://doi.org/10.1016/J.SETA.2023.103078
Kunwer, R., Bhurat, S.S., 2022. Thermal characterization of phase change materials (PCM) for heating applications. Mater Today Proc 50, 1690–1696. https://doi.org/10.1016/J.MATPR.2021.09.164
Lee, C.W., Zhong, J., 2014. Top down strategy for renewable energy investment: Conceptual framework and implementation. Renew Energy 68, 761–773. https://doi.org/10.1016/J.RENENE.2014.03.015
Lentswe, K., Mawire, A., Owusu, P., Shobo, A., 2021a. A review of parabolic solar cookers with thermal energy storage. Heliyon 7, 1–16. https://doi.org/10.1016/j.heliyon.2021.e08226
Lentswe, K., Mawire, A., Owusu, P., Shobo, A., 2021b. A review of parabolic solar cookers with thermal energy storage. Heliyon 7, e08226. https://doi.org/10.1016/J.HELIYON.2021.E08226
Liu, Y., Zheng, R., Li, J., 2022. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renewable and Sustainable Energy Reviews 168, 112783. https://doi.org/10.1016/J.RSER.2022.112783
Ma, Z., Jiang, Q., Lv, W., Song, Z., 2021. Novel phase separation method for the microencapsulation of oxalic acid dihydrate/boric acid eutectic system in a hybrid polymer shell for thermal energy storage. https://doi.org/10.1016/j.colsurfa.2021.127369
Maghrabie, H.M., Mohamed, A.S.A., Fahmy, A.M., Samee, A.A.A., 2023. Performance enhancement of PV panels using phase change material (PCM): An experimental implementation. https://doi.org/10.1016/j.csite.2023.102741
Mahesh, A., Shoba Jasmin, K.S., 2013. Role of renewable energy investment in India: An alternative to CO2 mitigation. Renewable and Sustainable Energy Reviews 26, 414–424. https://doi.org/10.1016/J.RSER.2013.05.069
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Calvo, E., Priyadarshi, B., Shukla, R., Slade, R., Connors, S., Van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J.P., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J., 2020. El cambio climático y la tierra Resumen para responsables de políticas Editado por.
Mawire, A., Abedigamba, O.P., Worall, M., 2024. Experimental comparison of a DC PV cooker and a parabolic dish solar cooker under variable solar radiation conditions. Case Studies in Thermal Engineering 54, 103976. https://doi.org/10.1016/J.CSITE.2024.103976
Mawire, A., Lentswe, K., Owusu, P., 2022. Performance of two solar cooking storage pots using parabolic dish solar concentrators during solar and storage cooking periods with different heating loads. Results in Engineering 13, 100336. https://doi.org/10.1016/J.RINENG.2022.100336
Mealla Sánchez, L.E., Daniel, P., Arangoa, B., 2012. Alternativas de construcción utilizando materiales de bajo costo para la evaluación térmica de cocinas solares tipo caja.
Mourad, A., Aissa, A., Said, Z., Younis, O., Iqbal, M., Alazzam, A., 2022. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. J Energy Storage 49, 104186. https://doi.org/10.1016/J.EST.2022.104186
Muthusivagami, R.M., Velraj, R., Sethumadhavan, R., 2010. Solar cookers with and without thermal storage-A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2008.08.018
Nkhonjera, L., Bello-Ochende, T., John, G., King’ondu, C.K., 2017. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renewable and Sustainable Energy Reviews 75, 157–167. https://doi.org/10.1016/J.RSER.2016.10.059
Oliver, A., Neila, F.J., García-Santos, A., 2012. Nota técnica: Clasificación y selección de materiales de cambio de fase según sus características para su aplicación en sistemas de almacenamiento de energíatérmica. Materiales de Construccion. https://doi.org/10.3989/mc.2012.58010
Omara, A.A.M., Abuelnuor, A.A.A., Mohammed, H.A., Habibi, D., Younis, O., 2020. Improving solar cooker performance using phase change materials: A comprehensive review. https://doi.org/10.1016/j.solener.2020.07.015
Osornio-Cárdenas, J.I., Domínguez-Barreto Abril Miranda-Hernández, O., Reyes-Sandoval, F.A., Vargas-Rosas, E.M., 2022. Energía Solar Térmica Thermal solar energy. Publicación semestral 9, 41–43.
Patel, C.P., Pavankumar, T., Narla, A., Bhaskar, A., Mondal, S., Anwer, N., Malmquist, A., 2024. Experimental study of a latent heat thermal energy storage system using erythritol for medium temperature applications. Case Studies in Thermal Engineering 53, 103907. https://doi.org/10.1016/J.CSITE.2023.103907
Qiao, G., Cao, H., Jiang, F., She, X., Cong, L., Liu, Q., Lei, X., Alexiadis, A., Ding, Y., 2019. Experimental Study of Thermo-Physical Characteristics of Molten Nitrate Salts Based Nanofluids for Thermal Energy Storage. ES Energy and Environment 4, 48–58. https://doi.org/10.30919/ESEE8C225
Ramos, J., Hernández, Z., 2023. Vista de Impacto Económico y Ambiental de las Energías Renovables y No Renovables en México. Boletín Científico de las Ciencias Económico Administrativas del ICEA 11, 17–27.
Sánchez, V., Pineda, P., 2020. Sistema De Almacenamiento De Energía Térmica Mediante Calor Latente Con Eritritol Como Material De Cambio De Fase. XVII Congreso Ibérico y XIII Congreso Iberoamericano de Energía Solar 1–8. https://doi.org/10.34637/cies2020.1.2060
Senthil, R., 2021. Enhancement of productivity of parabolic dish solar cooker using integrated phase change material. Mater Today Proc 34, 386–388. https://doi.org/10.1016/J.MATPR.2020.02.197
Sharma, A., Tyagi, V. V., Chen, C.R., Buddhi, D., 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13, 318–345. https://doi.org/10.1016/J.RSER.2007.10.005
Sharma, B., Sarkar, S., Bau, S., 2023. Understanding population exposure to size-segregated aerosol and associated trace elements during residential cooking in northeastern India: Implications for disease burden and health risk. Science of The Total Environment 875, 162539. https://doi.org/10.1016/J.SCITOTENV.2023.162539
Sreepathi, K., Sharadhi, T.S., G, C.S., 2020. Performance Analysis Of Solar Energy Storage Unit For Cooking, JNNCE Journal of Engineering and Management. JJEM.
Su, W., Darkwa, J., Kokogiannakis, G., 2015. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews 48, 373–391. https://doi.org/10.1016/J.RSER.2015.04.044
Sun, X., Lee, K.O., Medina, M.A., Chu, Y., Li, C., 2018. Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis. Phase Transitions 91, 667–680. https://doi.org/10.1080/01411594.2018.1469019
Thirugnanam, C., Karthikeyan, S., Kalaimurugan, K., 2020. Study of phase change materials and its application in solar cooker. https://doi.org/10.1016/j.matpr.2020.02.780
Vadhera, J., Sura, A., Nandan, G., Dwivedi, G., 2018. Study of Phase Change materials and its domestic application. Mater Today Proc 5, 3411–3417. https://doi.org/10.1016/J.MATPR.2017.11.586
Verma, S., Banerjee, S., Das, R., 2022. A fully analytical model of a box solar cooker with sensible thermal storage. Solar Energy 233, 531–542. https://doi.org/10.1016/j.solener.2021.12.035
Verma, V., Shringi, K., Sharma, S., Sengar, N., Chandra Giri, N., 2023. Experimental thermal performance studies on solar hot box cooker with different absorber coating materials. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.05.518
Wang, J., Han, W., Ge, C., Guan, H., Yang, H., Zhang, X., 2019. Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage. Renew Energy 136, 657–663. https://doi.org/10.1016/J.RENENE.2019.01.063
Yadav, V., Kumar, Y., Agrawal, H., Yadav, A., 2017. Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking. Australian Journal of Mechanical Engineering 15, 93–102. https://doi.org/10.1080/14484846.2015.1093260
Yalelet Getnet, M., Gudeta Gunjo, D., Kumar Sinha, D., 2023. Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors. Results in Engineering 18. https://doi.org/10.1016/j.rineng.2023.101022
Yuksel, N., Arabacigil, B., Avci, A., 2012. The thermal analysis of paraffin wax in a box-type solar cooker. Journal of Renewable and Sustainable Energy 4. https://doi.org/10.1063/1.4768547
Zhou, Y.P., Xu, J.C., Ma, X.Y., Yang, P.X., He, Y.L., 2023. Multi-scale multi-physic coupled investigation on the matching and trade-off of conversion and storage of optical, thermal, electrical, and chemical energy in a hybrid system based on a novel full solar spectrum utilization strategy. Energy Convers Manag 283, 116940. https://doi.org/10.1016/J.ENCONMAN.2023.116940
dc.rights.none.fl_str_mv Copyright Universidad de Córdoba, 2024
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright Universidad de Córdoba, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidad de Cordoba
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.place.none.fl_str_mv Montería, Córdoba, Colombia
dc.publisher.program.none.fl_str_mv Maestría en Ingeniería Mecánica
publisher.none.fl_str_mv Universidad de Cordoba
institution Universidad de Córdoba
bitstream.url.fl_str_mv https://repositorio.unicordoba.edu.co/bitstreams/c00d7333-1a57-46f3-a2c3-070b1f44dbfe/download
https://repositorio.unicordoba.edu.co/bitstreams/d8a7b270-18ee-41c3-8250-43ba0c48d1b5/download
https://repositorio.unicordoba.edu.co/bitstreams/0a5365e2-69e8-4903-a5ff-def6507d2890/download
https://repositorio.unicordoba.edu.co/bitstreams/900f613b-910f-4bc2-a472-02784870738d/download
https://repositorio.unicordoba.edu.co/bitstreams/9fd04240-c25f-4fe2-8e92-e4df991af816/download
https://repositorio.unicordoba.edu.co/bitstreams/23bd1ec1-e093-43d6-acb4-dcabfdcbefac/download
https://repositorio.unicordoba.edu.co/bitstreams/c3700127-5a4b-45f6-9e4f-81a2baff3f33/download
bitstream.checksum.fl_str_mv 73a5432e0b76442b22b026844140d683
e393a7ab3ebfecf6f2eb24c78075bc23
86650ab164ea87b985328aa130c692fe
45700e93854e111d2d1c895586e94256
13715b8ec1e6788fa7a9ae0f8bd1782c
a344d8592180b771f0e74bdd55ce34da
315637d599cb9a9ea32a18d2813d13c7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Córdoba
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812173345719844864
spelling Martínez Guarín, Arnold Rafael2cd3b8d0-1e47-4391-95ad-2e2192b983c5-1Mendoza Fandiño, Jorge Mario4bd8539e-d1d9-4132-937f-71b8ffd05803-1Cogollo Torres, Cristina Isabel65be7779-806d-4ec1-baee-5666b96659b4600Arango Meneses, Juan Fernando61225874-94fe-474b-b853-23bc266ef752600Palacio Vega, Mario Andrésfabfb45b-27b1-4544-8327-28dd959842a9-12024-04-04T13:20:19Z2024-04-04T13:20:19Z2024-02-27https://repositorio.unicordoba.edu.co/handle/ucordoba/8264Universidad de CórdobaRepositorio universidad de Córdobahttps://repositorio.unicordoba.edu.coLa investigación se centró en evaluar la viabilidad de un sistema de almacenamiento térmico con material de cambio de fase (PCM) para cocinas solares parabólicas en el departamento de Córdoba, Colombia, con el objetivo de mejorar la eficiencia en la cocción de alimentos. Tras evaluar cuatro PCM mediante una matriz de ponderación, se concluyó que el ácido oxálico es la mejor opción para ser implementado como sistema de almacenamiento térmico. Posteriormente, se llevaron a cabo experimentos utilizando cocinas solares parabólicas equipadas con dispositivos de almacenamiento térmico en configuraciones de diferentes espesores (DAT 1 cm y DAT 2 cm). Los resultados indicaron que los dispositivos con PCM lograron mantener temperaturas del fluido de trabajo más estables, destacándose el DAT de 2 cm por su mayor estabilidad térmica. Además, se comparó el desempeño de las cocinas solares con y sin dispositivos de almacenamiento térmico, evidenciando que, si bien los recipientes de cocción convencionales superan ligeramente a los dispositivos de almacenamiento térmico en la absorción de calor, estos últimos ofrecen una capacidad de almacenamiento de calor y estabilidad térmica superiores. Se sugiere explorar métodos alternativos para medir el calor absorbido por los dispositivos de almacenamiento térmico, considerando la transferencia de calor al material de cambio de fase, para obtener mediciones más precisas y completas del rendimiento de las cocinas solares parabólicas.The research focused on evaluating the feasibility of a thermal storage system with phase change material (PCM) for parabolic solar cookers in the department of Córdoba, Colombia, aiming to improve efficiency in food cooking. After evaluating four PCMs using a weighting matrix, it was concluded that oxalic acid is the best option to be implemented as a thermal storage system. Subsequently, experiments were conducted using parabolic solar cookers equipped with thermal storage devices in configurations of different thicknesses (DAT 1 cm and DAT 2 cm). The results indicated that devices with PCM were able to maintain more stable temperatures of the working fluid, with the DAT of 2 cm standing out for its greater thermal stability. Furthermore, the performance of solar cookers with and without thermal storage devices was compared, showing that while conventional cooking vessels slightly outperform thermal storage devices in heat absorption, the latter offer superior heat storage capacity and thermal stability. It is suggested to explore alternative methods for measuring heat absorbed by thermal storage devices, considering heat transfer to the phase change material, to obtain more precise and comprehensive measurements of the performance of parabolic solar cookers.RESUMEN 8ABSTRACT 91. Capítulo I. Descripción del trabajo de investigación 101.1. Objetivos. 101.1.1. Objetivo general. 101.1.2. Objetivos específicos. 101.2. Estructura de la tesis. 111.3. Revisión de literatura. 121.3.1. Energías renovables 121.3.1.1. Energía solar 121.3.2. Cocinas solares 131.3.2.1. Cocinas solares tipo caja. 131.3.2.2. Cocinas solares con concentradores 141.3.2.3. Cocinas solares indirectas 151.3.3. Sistemas De Almacenamiento De Energía Térmica (TES) 161.3.3.1. Calor sensible 171.3.3.2. Calor latente 181.3.3.3. Energía química 191.3.4. Materiales de cambio de fase (PCM) 202. Capítulo II. Selección del Material de Cambio de Fase como almacenador térmico. 322.1. Introducción. 322.2. Materiales y métodos 332.3. Resultados 352.4. Conclusiones. 413. Capítulo III: Experimentos en la cocina solar con y sin almacenamiento térmico. 433.1. Introducción 433.2. Materiales y métodos. 443.2.1. Protocolo de experimentación 443.2.1.1. Recipiente de cocción convencional (RCC) 443.2.1.2. Dispositivos de almacenamiento térmico (DAT) 453.2.1.3. Seguimiento Solar 463.2.1.4. Desarrollo del Experimento 473.3. Resultados. 483.4. Conclusiones 604. Capítulo IV. Desempeño de las cocinas solares 624.1. Introducción. 624.2. Materiales y métodos. 634.3. Resultados. 654.4. Conclusiones 665. Conclusiones Generales y futuros trabajos 685.1. Conclusiones Generales 685.2. Futuros trabajos: 695.2.1. Optimización de los dispositivos de almacenamiento térmico (DAT) 695.2.2. Mejora de la Evaluación del Rendimiento de Cocinas Solares Parabólicas 69Bibliografía. 706. Anexos. 79MaestríaMagíster en Ingeniería MecánicaTrabajos de Investigación y/o ExtensiónspaUniversidad de CordobaFacultad de IngenieríaMontería, Córdoba, ColombiaMaestría en Ingeniería MecánicaCopyright Universidad de Córdoba, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluación de la factibilidad de un sistema de almacenamiento térmico con material de cambio de fase para cocinas solares parabólicas, con miras a la cocción de alimentos en el departamento de Córdoba, ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbu-Hamdeh, N.H., Alnefaie, K.A., 2018. Assessment of thermal performance of PCM in latent heat storage system for different applications. https://doi.org/10.1016/j.solener.2018.11.035Aftab, W., Usman, A., Shi, J., Yuan, K., Qin, M., Zou, R., 2021. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ Sci 14, 4268–4291. https://doi.org/10.1039/D1EE00527HAhmed, S.M.M., Al-Amin, M.R., Ahammed, S., Ahmed, F., Saleque, A.M., Abdur Rahman, M., 2020. Design, construction and testing of parabolic solar cooker for rural households and refugee camp. Solar Energy 205, 230–240. https://doi.org/10.1016/J.SOLENER.2020.05.007Almutairi, K., Aungkulanon, P., Algarni, S., Alqahtani, T., Keshuov, S.A., 2022. Solar irradiance and efficient use of energy: Residential construction toward net-zero energy building. Sustainable Energy Technologies and Assessments 53, 102550. https://doi.org/10.1016/J.SETA.2022.102550Alva, G., Lin, Y., Fang, G., 2018. An overview of thermal energy storage systems. Energy 144, 341–378. https://doi.org/10.1016/J.ENERGY.2017.12.037Álvarez Criado, Y., 2016. Almacenamiento de energía mediante ciclos termoquímicos de CaO. Universidad de Oviedo, Oviedo.Aramesh, M., Ghalebani, M., Kasaeian, A., Zamani, H., Lorenzini, G., Mahian, O., Wongwises, S., 2019. A review of recent advances in solar cooking technology. Renew Energy 140, 419–435. https://doi.org/10.1016/J.RENENE.2019.03.021Barrenechea, C., Navarro, H., Serrano, S., Cabeza, L.F., Fernández, A.I., 2014. New Database on Phase Change Materials for Thermal Energy Storage in Buildings to Help PCM Selection. Energy Procedia 57, 2408–2415. https://doi.org/10.1016/J.EGYPRO.2014.10.249Bhave, A.G., Kale, C.K., 2020. Development of a thermal storage type solar cooker for high temperature cooking using solar salt. https://doi.org/10.1016/j.solmat.2020.110394Bhave, Atul G, Thakare, K.A., 2018. Development of a solar thermal storage cum cooking device using salt hydrate. https://doi.org/10.1016/j.solener.2018.07.018Bhave, Atul G., Thakare, K.A., 2018. Development of a solar thermal storage cum cooking device using salt hydrate. Solar Energy 171, 784–789. https://doi.org/10.1016/J.SOLENER.2018.07.018Bravo Hidalgo, D., 2018. Una Revisión sobre Materiales para Almacenamiento de Energía Solar Térmica. Ingeniería 23. https://doi.org/10.14483/23448393.12510Cabeza, L.F., Gutierrez, A., Barreneche, C., Ushak, S., Fernández, Á.G., Inés Fernádez, A., Grágeda, M., 2015. Lithium in thermal energy storage: A state-of-the-art review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2014.10.096Cao, Z., Zhang, G., Wu, Y., Yang, J., Sui, Y., Zhao, X., 2023. Energy storage potential analysis of phase change material (PCM) energy storage units based on tunnel lining ground heat exchangers. Appl Therm Eng 235, 121403. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121403Cárdenas-Ramírez, C., Fernandez, A.G., Gómez, M.A., Jaramillo, F., Cabeza, L.F., 2020. Sistema de almacenamiento de energía térmica mediante calor latente con eritritol como material de cambio de fase. CIES2020 - XVII Congresso Ibérico e XIII Congresso Ibero-americano de Energia Solar 503–510. https://doi.org/10.34637/CIES2020.1.2060Carolina, M., Pereira, R., Coria, A.S., 2022. Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios. Revista EIA, ISSN-e 1794-1237, Vol. 19, No. 38, 2022 19, 24. https://doi.org/10.24050/reiaCarrión-Chamba, W., Murillo-Torres, W., Montero-Izquierdo, A., Carrión-Chamba, W., Murillo-Torres, W., Montero-Izquierdo, A., 2022. Una revisión de los últimos avances de los colectores solares térmicos aplicados en la industria. Ingenius. Revista de Ciencia y Tecnología 2022, 59–73. https://doi.org/10.17163/INGS.N27.2022.06Castell, A., Solé, C., 2015. Design of latent heat storage systems using phase change materials (PCMs). Advances in Thermal Energy Storage Systems: Methods and Applications 285–305. https://doi.org/10.1533/9781782420965.2.285Chaudhary, A., Kumar, A., Yadav, A., 2013. Experimental investigation of a solar cooker based on parabolic dish collector with phase change thermal storage unit in Indian climatic conditions, in: Journal of Renewable and Sustainable Energy. https://doi.org/10.1063/1.4794962Choure, B.K., Alam, T., Kumar, R., 2023. A review on heat transfer enhancement techniques for PCM based thermal energy storage system. J Energy Storage 72, 108161. https://doi.org/10.1016/J.EST.2023.108161Donkers, P.A.J., Sögütoglu, L.C., Huinink, H.P., Fischer, H.R., Adan, O.C.G., 2017. A review of salt hydrates for seasonal heat storage in domestic applications. https://doi.org/10.1016/j.apenergy.2017.04.080Erdogan, S., Pata, U.K., Solarin, S.A., 2023. Towards carbon-neutral world: The effect of renewable energy investments and technologies in G7 countries. Renewable and Sustainable Energy Reviews 186, 113683. https://doi.org/10.1016/J.RSER.2023.113683Espinoza, C., Clemente, W., Martínez, C., 2019. Sistema portátil de almacenamiento y transferencia de calor para lograr confort térmico.Gautam, A., Saini, R.P., 2020. A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications. Solar Energy 207, 937–956. https://doi.org/10.1016/J.SOLENER.2020.07.027Geddam, S., Dinesh, G.K., Sivasankar, T., 2015. Determination of thermal performance of a box type solar cooker. https://doi.org/10.1016/j.solener.2015.01.014Goel, V., Dwivedi, A., Kumar, Rajat, Kumar, Reji, Pandey, A.K., Chopra, K., Tyagi, V. V., 2023. PCM-assisted energy storage systems for solar-thermal applications: Review of the associated problems and their mitigation strategies. J Energy Storage 69, 107912. https://doi.org/10.1016/J.EST.2023.107912González, N., Salazar, M., Mendoza, J., Cano, M., Guerrero, M., Salazar, C., 2019. Sílice Mesoporosa como encapsulador de materiales de cambio de fase (PCM). Revista de Ingeniería Tecnológica 3, 14–19.Gorjian, A., Rahmati, E., Gorjian, S., Anand, A., Jathar, L.D., 2022. A comprehensive study of research and development in concentrating solar cookers (CSCs): Design considerations, recent advancements, and economics. Solar Energy 245, 80–107. https://doi.org/10.1016/J.SOLENER.2022.08.066He, M., Yang, L., Lin, W., Chen, J., Mao, X., Ma, Z., 2019. Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage 25, 100874. https://doi.org/10.1016/J.EST.2019.100874Hekimoğlu, G., Sarı, A., 2022. A review on phase change materials (PCMs) for thermal energy storage implementations. Mater Today Proc 58, 1360–1367. https://doi.org/10.1016/J.MATPR.2022.02.231Herez, A., Ramadan, M., Khaled, M., 2017. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renewable and Sustainable Energy Reviews 81, 421–432. https://doi.org/10.1016/j.rser.2017.08.021Hussein, H.M.S., El-Ghetany, H.H., Nada, S.A., 2008. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manag 49, 2237–2246. https://doi.org/10.1016/j.enconman.2008.01.026Jayathunga, D.S., Karunathilake, H.P., Narayana, M., Witharana, S., 2024. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review. Renewable and Sustainable Energy Reviews 189, 113904. https://doi.org/10.1016/J.RSER.2023.113904Keith, A., Brown, N.J., Zhou, J.L., 2019. The feasibility of a collapsible parabolic solar cooker incorporating phase change materials. Renewable Energy Focus 30, 58–70. https://doi.org/10.1016/J.REF.2019.03.005Khan, M.I., Asfand, F., Al-Ghamdi, S.G., 2022. Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. J Energy Storage 55, 105860. https://doi.org/10.1016/J.EST.2022.105860Khatri, R., Goyal, R., Sharma, R.K., 2023. Comparative experimental investigations on a low-cost solar cooker with energy storage materials for sustainable development. Results in Engineering 20, 101546. https://doi.org/10.1016/J.RINENG.2023.101546Khatri, R., Goyal, R., Sharma, R.K., 2021. Advances in the developments of solar cooker for sustainable development: A comprehensive review. Renewable and Sustainable Energy Reviews 145, 111166. https://doi.org/10.1016/J.RSER.2021.111166Köll, R., van Helden, W., Engel, G., Wagner, W., Dang, B., Jänchen, J., Kerskes, H., Badenhop, T., Herzog, T., 2017. An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings. Solar Energy 155, 388–397. https://doi.org/10.1016/J.SOLENER.2017.06.043König-Haagen, A., Diarce, G., 2023. Prediction of the discharging time of a latent heat thermal energy storage system with a UA approach. J Energy Storage 73, 108849. https://doi.org/10.1016/J.EST.2023.108849Kumar Goyal, R., EswaramoorthyMuthusamy, 2023. Thermo-physical properties of heat storage material required for effective heat storage and heat transfer enhancement techniques for the solar cooking applications. Sustainable Energy Technologies and Assessments 56, 103078. https://doi.org/10.1016/J.SETA.2023.103078Kunwer, R., Bhurat, S.S., 2022. Thermal characterization of phase change materials (PCM) for heating applications. Mater Today Proc 50, 1690–1696. https://doi.org/10.1016/J.MATPR.2021.09.164Lee, C.W., Zhong, J., 2014. Top down strategy for renewable energy investment: Conceptual framework and implementation. Renew Energy 68, 761–773. https://doi.org/10.1016/J.RENENE.2014.03.015Lentswe, K., Mawire, A., Owusu, P., Shobo, A., 2021a. A review of parabolic solar cookers with thermal energy storage. Heliyon 7, 1–16. https://doi.org/10.1016/j.heliyon.2021.e08226Lentswe, K., Mawire, A., Owusu, P., Shobo, A., 2021b. A review of parabolic solar cookers with thermal energy storage. Heliyon 7, e08226. https://doi.org/10.1016/J.HELIYON.2021.E08226Liu, Y., Zheng, R., Li, J., 2022. High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review. Renewable and Sustainable Energy Reviews 168, 112783. https://doi.org/10.1016/J.RSER.2022.112783Ma, Z., Jiang, Q., Lv, W., Song, Z., 2021. Novel phase separation method for the microencapsulation of oxalic acid dihydrate/boric acid eutectic system in a hybrid polymer shell for thermal energy storage. https://doi.org/10.1016/j.colsurfa.2021.127369Maghrabie, H.M., Mohamed, A.S.A., Fahmy, A.M., Samee, A.A.A., 2023. Performance enhancement of PV panels using phase change material (PCM): An experimental implementation. https://doi.org/10.1016/j.csite.2023.102741Mahesh, A., Shoba Jasmin, K.S., 2013. Role of renewable energy investment in India: An alternative to CO2 mitigation. Renewable and Sustainable Energy Reviews 26, 414–424. https://doi.org/10.1016/J.RSER.2013.05.069Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Calvo, E., Priyadarshi, B., Shukla, R., Slade, R., Connors, S., Van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J.P., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J., 2020. El cambio climático y la tierra Resumen para responsables de políticas Editado por.Mawire, A., Abedigamba, O.P., Worall, M., 2024. Experimental comparison of a DC PV cooker and a parabolic dish solar cooker under variable solar radiation conditions. Case Studies in Thermal Engineering 54, 103976. https://doi.org/10.1016/J.CSITE.2024.103976Mawire, A., Lentswe, K., Owusu, P., 2022. Performance of two solar cooking storage pots using parabolic dish solar concentrators during solar and storage cooking periods with different heating loads. Results in Engineering 13, 100336. https://doi.org/10.1016/J.RINENG.2022.100336Mealla Sánchez, L.E., Daniel, P., Arangoa, B., 2012. Alternativas de construcción utilizando materiales de bajo costo para la evaluación térmica de cocinas solares tipo caja.Mourad, A., Aissa, A., Said, Z., Younis, O., Iqbal, M., Alazzam, A., 2022. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. J Energy Storage 49, 104186. https://doi.org/10.1016/J.EST.2022.104186Muthusivagami, R.M., Velraj, R., Sethumadhavan, R., 2010. Solar cookers with and without thermal storage-A review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2008.08.018Nkhonjera, L., Bello-Ochende, T., John, G., King’ondu, C.K., 2017. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renewable and Sustainable Energy Reviews 75, 157–167. https://doi.org/10.1016/J.RSER.2016.10.059Oliver, A., Neila, F.J., García-Santos, A., 2012. Nota técnica: Clasificación y selección de materiales de cambio de fase según sus características para su aplicación en sistemas de almacenamiento de energíatérmica. Materiales de Construccion. https://doi.org/10.3989/mc.2012.58010Omara, A.A.M., Abuelnuor, A.A.A., Mohammed, H.A., Habibi, D., Younis, O., 2020. Improving solar cooker performance using phase change materials: A comprehensive review. https://doi.org/10.1016/j.solener.2020.07.015Osornio-Cárdenas, J.I., Domínguez-Barreto Abril Miranda-Hernández, O., Reyes-Sandoval, F.A., Vargas-Rosas, E.M., 2022. Energía Solar Térmica Thermal solar energy. Publicación semestral 9, 41–43.Patel, C.P., Pavankumar, T., Narla, A., Bhaskar, A., Mondal, S., Anwer, N., Malmquist, A., 2024. Experimental study of a latent heat thermal energy storage system using erythritol for medium temperature applications. Case Studies in Thermal Engineering 53, 103907. https://doi.org/10.1016/J.CSITE.2023.103907Qiao, G., Cao, H., Jiang, F., She, X., Cong, L., Liu, Q., Lei, X., Alexiadis, A., Ding, Y., 2019. Experimental Study of Thermo-Physical Characteristics of Molten Nitrate Salts Based Nanofluids for Thermal Energy Storage. ES Energy and Environment 4, 48–58. https://doi.org/10.30919/ESEE8C225Ramos, J., Hernández, Z., 2023. Vista de Impacto Económico y Ambiental de las Energías Renovables y No Renovables en México. Boletín Científico de las Ciencias Económico Administrativas del ICEA 11, 17–27.Sánchez, V., Pineda, P., 2020. Sistema De Almacenamiento De Energía Térmica Mediante Calor Latente Con Eritritol Como Material De Cambio De Fase. XVII Congreso Ibérico y XIII Congreso Iberoamericano de Energía Solar 1–8. https://doi.org/10.34637/cies2020.1.2060Senthil, R., 2021. Enhancement of productivity of parabolic dish solar cooker using integrated phase change material. Mater Today Proc 34, 386–388. https://doi.org/10.1016/J.MATPR.2020.02.197Sharma, A., Tyagi, V. V., Chen, C.R., Buddhi, D., 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13, 318–345. https://doi.org/10.1016/J.RSER.2007.10.005Sharma, B., Sarkar, S., Bau, S., 2023. Understanding population exposure to size-segregated aerosol and associated trace elements during residential cooking in northeastern India: Implications for disease burden and health risk. Science of The Total Environment 875, 162539. https://doi.org/10.1016/J.SCITOTENV.2023.162539Sreepathi, K., Sharadhi, T.S., G, C.S., 2020. Performance Analysis Of Solar Energy Storage Unit For Cooking, JNNCE Journal of Engineering and Management. JJEM.Su, W., Darkwa, J., Kokogiannakis, G., 2015. Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews 48, 373–391. https://doi.org/10.1016/J.RSER.2015.04.044Sun, X., Lee, K.O., Medina, M.A., Chu, Y., Li, C., 2018. Melting temperature and enthalpy variations of phase change materials (PCMs): a differential scanning calorimetry (DSC) analysis. Phase Transitions 91, 667–680. https://doi.org/10.1080/01411594.2018.1469019Thirugnanam, C., Karthikeyan, S., Kalaimurugan, K., 2020. Study of phase change materials and its application in solar cooker. https://doi.org/10.1016/j.matpr.2020.02.780Vadhera, J., Sura, A., Nandan, G., Dwivedi, G., 2018. Study of Phase Change materials and its domestic application. Mater Today Proc 5, 3411–3417. https://doi.org/10.1016/J.MATPR.2017.11.586Verma, S., Banerjee, S., Das, R., 2022. A fully analytical model of a box solar cooker with sensible thermal storage. Solar Energy 233, 531–542. https://doi.org/10.1016/j.solener.2021.12.035Verma, V., Shringi, K., Sharma, S., Sengar, N., Chandra Giri, N., 2023. Experimental thermal performance studies on solar hot box cooker with different absorber coating materials. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.05.518Wang, J., Han, W., Ge, C., Guan, H., Yang, H., Zhang, X., 2019. Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage. Renew Energy 136, 657–663. https://doi.org/10.1016/J.RENENE.2019.01.063Yadav, V., Kumar, Y., Agrawal, H., Yadav, A., 2017. Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking. Australian Journal of Mechanical Engineering 15, 93–102. https://doi.org/10.1080/14484846.2015.1093260Yalelet Getnet, M., Gudeta Gunjo, D., Kumar Sinha, D., 2023. Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors. Results in Engineering 18. https://doi.org/10.1016/j.rineng.2023.101022Yuksel, N., Arabacigil, B., Avci, A., 2012. The thermal analysis of paraffin wax in a box-type solar cooker. Journal of Renewable and Sustainable Energy 4. https://doi.org/10.1063/1.4768547Zhou, Y.P., Xu, J.C., Ma, X.Y., Yang, P.X., He, Y.L., 2023. Multi-scale multi-physic coupled investigation on the matching and trade-off of conversion and storage of optical, thermal, electrical, and chemical energy in a hybrid system based on a novel full solar spectrum utilization strategy. Energy Convers Manag 283, 116940. https://doi.org/10.1016/J.ENCONMAN.2023.116940Cocinas solaresDispositivos de Almacenamiento TérmicoMateriales de Cambio de FaseEstabilidad TérmicaSolar cookersThermal storage devicesPhase change materialsThermal stabilityPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.unicordoba.edu.co/bitstreams/c00d7333-1a57-46f3-a2c3-070b1f44dbfe/download73a5432e0b76442b22b026844140d683MD51ORIGINALcogollotorrescristinaisabel.pdfcogollotorrescristinaisabel.pdfapplication/pdf4399002https://repositorio.unicordoba.edu.co/bitstreams/d8a7b270-18ee-41c3-8250-43ba0c48d1b5/downloade393a7ab3ebfecf6f2eb24c78075bc23MD53Formulario repositorio Cristina Cogollo.pdfFormulario repositorio Cristina Cogollo.pdfapplication/pdf1038706https://repositorio.unicordoba.edu.co/bitstreams/0a5365e2-69e8-4903-a5ff-def6507d2890/download86650ab164ea87b985328aa130c692feMD52TEXTcogollotorrescristinaisabel.pdf.txtcogollotorrescristinaisabel.pdf.txtExtracted texttext/plain102117https://repositorio.unicordoba.edu.co/bitstreams/900f613b-910f-4bc2-a472-02784870738d/download45700e93854e111d2d1c895586e94256MD54Formulario repositorio Cristina Cogollo.pdf.txtFormulario repositorio Cristina Cogollo.pdf.txtExtracted texttext/plain85https://repositorio.unicordoba.edu.co/bitstreams/9fd04240-c25f-4fe2-8e92-e4df991af816/download13715b8ec1e6788fa7a9ae0f8bd1782cMD56THUMBNAILcogollotorrescristinaisabel.pdf.jpgcogollotorrescristinaisabel.pdf.jpgGenerated Thumbnailimage/jpeg10804https://repositorio.unicordoba.edu.co/bitstreams/23bd1ec1-e093-43d6-acb4-dcabfdcbefac/downloada344d8592180b771f0e74bdd55ce34daMD55Formulario repositorio Cristina Cogollo.pdf.jpgFormulario repositorio Cristina Cogollo.pdf.jpgGenerated Thumbnailimage/jpeg16299https://repositorio.unicordoba.edu.co/bitstreams/c3700127-5a4b-45f6-9e4f-81a2baff3f33/download315637d599cb9a9ea32a18d2813d13c7MD57ucordoba/8264oai:repositorio.unicordoba.edu.co:ucordoba/82642024-04-10 10:47:27.547https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright Universidad de Córdoba, 2024open.accesshttps://repositorio.unicordoba.edu.coRepositorio Universidad de Córdobabdigital@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K