Predicción con redes neuronales de un proceso de secado de ñame (dioscorea rotundata) en horno microondas

El objetivo de este trabajo fue evaluar la capacidad predictiva de las redes neuronales artificiales en un proceso de secado de ñame en hornos microondas. Para lo cual se sometieron a secado muestras de ñame cortadas en rodajas, con masas iniciales de 50 g, 60 g y 70 g, a potencias de 420 W, 560 W y...

Full description

Autores:
MACEA HOYOS, ANDERLEY DE JESÚS
MARTELO SALGADO, DARÍO SEGUNDO
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de Córdoba
Repositorio:
Repositorio Institucional Unicórdoba
Idioma:
spa
OAI Identifier:
oai:repositorio.unicordoba.edu.co:ucordoba/1030
Acceso en línea:
https://repositorio.unicordoba.edu.co/handle/ucordoba/1030
Palabra clave:
ñame
redes neuronales
predicción
Rights
openAccess
License
Copyright Universidad de Córdoba, 2020
Description
Summary:El objetivo de este trabajo fue evaluar la capacidad predictiva de las redes neuronales artificiales en un proceso de secado de ñame en hornos microondas. Para lo cual se sometieron a secado muestras de ñame cortadas en rodajas, con masas iniciales de 50 g, 60 g y 70 g, a potencias de 420 W, 560 W y 700 W. Se evaluó la influencia del número de neuronas en la capa oculta y la función de transferencia de las mismas: función tangente hiperbólica, lineal y logarítmica sigmoidal. La red seleccionada se sometió a una validación comparando los datos simulados con datos reales, así mismo, se procedió al modelado con el modelo de Midilli and Cukuk y se comparó la capacidad de predicción de este modelo a la capacidad del modelo de redes neuronales. El número de neuronas seleccionada en la capa oculta fue 5 y la función de transferencia fue la función tangente hiperbólica, debido a que arrojó el más alto ajuste a los datos, con un error medio cuadrático inferior a 0,001. Las redes neuronales mostraron alta capacidad predictiva frente a datos desconocidos con valores de error medio cuadrático inferiores a 0,01 y R2 superior a 0,99. A pesar del buen ajuste del modelo convencional (valores error medio cuadrático entre 0,01 y 0,1), el modelo de redes neuronales presentó una mayor capacidad predictiva frente a nuevos datos