Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.

Este artículo prueba el grado de integración de México en los mercados internacionales del petróleo a través de la evolución de las correlaciones dinámicas en periodos estables, de crisis e inestables. Las estimaciones del modelo GARCH-CCD muestran que las correlaciones son positivas y cambian con e...

Full description

Autores:
De Jesús-Gutiérrez, Raúl
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Universidad Católica de Colombia
Repositorio:
RIUCaC - Repositorio U. Católica
Idioma:
spa
OAI Identifier:
oai:repository.ucatolica.edu.co:10983/29404
Acceso en línea:
https://hdl.handle.net/10983/29404
https://doi.org/10.14718/revfinanzpolitecon.2019.11.2.8
Palabra clave:
Financial crises
Integration crude oil markets
Dynamics conditional correlations
Correlaciones condicionales dinámicas
Crisis financieras
Integración de los mercados de petróleo
Correlações condicionais dinâmicas
Crises financeiras
Integração dos mercados de petróleo
Rights
openAccess
License
Raúl de Jesús Gutiérrez - 2019
id UCATOLICA2_22f89f71a6621dc0ff1bc6d56708858f
oai_identifier_str oai:repository.ucatolica.edu.co:10983/29404
network_acronym_str UCATOLICA2
network_name_str RIUCaC - Repositorio U. Católica
repository_id_str
dc.title.spa.fl_str_mv Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.
dc.title.translated.eng.fl_str_mv Integration among world and low quality crude oil markets based on dynamic conditional correlations.
title Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.
spellingShingle Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.
Financial crises
Integration crude oil markets
Dynamics conditional correlations
Correlaciones condicionales dinámicas
Crisis financieras
Integración de los mercados de petróleo
Correlações condicionais dinâmicas
Crises financeiras
Integração dos mercados de petróleo
title_short Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.
title_full Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.
title_fullStr Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.
title_full_unstemmed Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.
title_sort Integración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.
dc.creator.fl_str_mv De Jesús-Gutiérrez, Raúl
dc.contributor.author.spa.fl_str_mv De Jesús-Gutiérrez, Raúl
dc.subject.eng.fl_str_mv Financial crises
Integration crude oil markets
Dynamics conditional correlations
topic Financial crises
Integration crude oil markets
Dynamics conditional correlations
Correlaciones condicionales dinámicas
Crisis financieras
Integración de los mercados de petróleo
Correlações condicionais dinâmicas
Crises financeiras
Integração dos mercados de petróleo
dc.subject.spa.fl_str_mv Correlaciones condicionales dinámicas
Crisis financieras
Integración de los mercados de petróleo
Correlações condicionais dinâmicas
Crises financeiras
Integração dos mercados de petróleo
description Este artículo prueba el grado de integración de México en los mercados internacionales del petróleo a través de la evolución de las correlaciones dinámicas en periodos estables, de crisis e inestables. Las estimaciones del modelo GARCH-CCD muestran que las correlaciones son positivas y cambian con el tiempo en respuesta al origen de choques en los precios del petróleo para los periodos de relativa calma, crisis y turbulencia financiera. Asimismo, los resultados del estadístico-t y valor-p bootstrap confirman que las correlaciones son significativamente diferentes en periodos de estabilidad e inestabilidad con respecto a las correlaciones del periodo de crisis, lo que favorece la hipótesis de regionalización entre los mercados de petróleo. Los hallazgos tienen importantes implicaciones económicas y financieras para el gobierno y los consumidores.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-01 00:00:00
2023-01-23T16:15:28Z
dc.date.available.none.fl_str_mv 2019-07-01 00:00:00
2023-01-23T16:15:28Z
dc.date.issued.none.fl_str_mv 2019-07-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.14718/revfinanzpolitecon.2019.11.2.8
dc.identifier.eissn.none.fl_str_mv 2011-7663
dc.identifier.issn.none.fl_str_mv 2248-6046
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10983/29404
dc.identifier.url.none.fl_str_mv https://doi.org/10.14718/revfinanzpolitecon.2019.11.2.8
identifier_str_mv 10.14718/revfinanzpolitecon.2019.11.2.8
2011-7663
2248-6046
url https://hdl.handle.net/10983/29404
https://doi.org/10.14718/revfinanzpolitecon.2019.11.2.8
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.bitstream.none.fl_str_mv https://revfinypolecon.ucatolica.edu.co/article/download/2574/3076
https://revfinypolecon.ucatolica.edu.co/article/download/2574/3108
https://revfinypolecon.ucatolica.edu.co/article/download/2574/3487
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2019
dc.relation.citationendpage.none.fl_str_mv 374
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 353
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.spa.fl_str_mv Revista Finanzas y Política Económica
dc.relation.references.spa.fl_str_mv Adelman, M. A. (1984). International oil agreements. Energy Journal, 5(3), 1-9. https://www.jstor.org/stable/41321691
Bachmeier, L. J. y Griffin, J. M. (2006). Testing for market integration crude oil, coal, and natural gas. Energy Journal, 27(2), 55-71. https://econpapers.repec.org/article/aenjournl/2006v27-02-a04.htm
Bentzen, J. (2007). Does OPEC influence crude oil price? Testing for co-movements and causality between regional crude oil prices. Applied Economics, 39(11), 1375-1385. 10.1080/00036840600606344
British Petroleum (2017). Statistical Review of World Energy. Londres: BP:
Candelon, B., Joëts, M. y Tokpavi, S. (2013). Testing for Granger causality in distribution tails: An application to oil markets integration. Economic Modeling, 31, 276-285. 10.1016/j.econmod.2012.11.049
Caporin, M. y McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1 (1), 115-126. 10.3390/econometrics1010115
Collins, D. y Biekpe, N. (2003). Contagion a fear for Africa equity market? Journal of Economics and Business, 55(3), 285-297. 10.1016/S0148-6195(03)00020-1
Cook, J. (1998). California crude oil [Mimeo]. Recuperado de https://www.eia.doe.gov/pub/
De Jesús, R. (2016). Estrategias dinámicas de cobertura cruzada eficiente para el mercado del petróleo mexicano: evidencia de dos modelos GARCH multivariados con término de corrección de error. Economía: Teoría y Práctica, 44, 115-146. 10.24275/ETYPUAM/NE
Domínguez, R. M., Venegas, F. y Palafox, A. O. (2018). Short-and long-term relations among prices of the Mexican Crude Oil Blend, West Texas Intermediate, and Brent: Market Trend and Risk Premia, 2005-2016. International Journal of Energy Economics and Policy, 8(3), 87-91. https://ideas.repec.org/a/eco/journ2/2018-03-13.html
Energy Information Administration (2012). International Energy Statistics. Recuperado de https://www.eia.gov/international/data/world
Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autore-gressive conditional heteroskedasticity models. Journal of Business and Economics Statistics, 20(3), 339-350. 10.1198/073500102288618487
Ewing, B. T y Harter, C. L. (2000). Co-movements of Alaska North Slope and UK Brent crude oil prices. Applied Economics Letters, 7(8), 553-558. 10.1080/13504850050033373
Fattouh, B. (2010). The dynamics of crude oil price differentials. Energy Economics, 32 (2), 334-342. 10.1016/j.eneco.2009.06.007
Forbes, K. y Rigobon, R. (2002). No contagion, only interdenpendence: measuring stock market co-movements. Journal of Finance, 57(5), 2223-2261. 10.1111/0022-1082.00494
Gülen, S. G. (1997). Regionalization in the world crude oil market. Energy Journal, 18(2), 109-127.
Gülen, S. G. (1999). Regionalization in the world crude oil market: Further results. Energy Journal, 20(1), 125-139. https://researchers.dellmed.utexas.edu/en/publications/regionalization-in-the-world-crude-oil-market-further-evidence
Hammoudeh, S., Thompson, M. y Ewing, B. (2008). Threshold cointegration analysis of crude oil benchmarks. Energy Journal, 29(4), 79-95. 10.2307/41323182
Jia, X., An, H., Fang, W. Sun, X. y Huang, X. (2015). How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective. Energy Economics, 49, 588-598. 10.1016/j.eneco.2015.03.008
Jiao, J. L., Fan, Y., Wei, Y. M., Han, Z. Y. y Zhang, J. T (2007). Analysis of the co-movements between Chinese and International crude oil price. International Journal of Global Energy, 27(1), 61-76.
Ji, Q. y Fan, Y. (2015). Dynamic integration of world oil prices: A reinvestigation of globalisation vs. regionalization. Applied Energy, 155(1), 171-180. https://www.deepdyve.com/lp/elsevier/dynamic-integration-of-world-oil-prices-a-reinvestigation-of-Daf3SxZWrD
Kleit, A.N. (2001). Are regional oil markets growing closer together? An arbitrage cost approach. Energy Journal, 22(2), 1-15. 10.5547/ISSN0195-6574-EJ-Vol22-No2-1
Kuck, K. y Schweikert, K. (2017). A Markov regime-switching model of crude oil market integration. Journal of Commodity Markets, 6, 16-31. 10.1016/j.jcomm.2017.03.001
Lanza, A., Manera, M. y McAleer, M. (2006). Modeling dynamic conditional correlations in WTI oil forward and futures returns. Finance Research Letters, 3 (2), 114-132. 10.1016/j.frl.2006.01.005
Laurent, S., Rombouts, J. V. y Violante, F. (2012). On the forecasting accuracy of multivariate GARCH models. Journal of Applied Econometrics, 27(6), 934-955. 10.1002/jae.1248
Li, R. y Leung, G. C. (2011). The integration of China into the world crude oil market since 1998. Energy Policy, 39(9), 5159-5165. https://ideas.repec.org/a/eee/enepol/v39y2011i9p5159-5166.html
Liao, H. C., Lin, S. C. y Huang, H. C. (2014). Are crude oil markets globalized or regionalized? Evidence from WTI and Brent. Applied Economics Letters, 21 (4), 235-241.
Liu, L., Chen, C. y Wan, J. (2013). Is world oil market "one great pool"? An example from China's and international oil market. Economic Modelling, 35, 364-373. 10.1016/j.econmod.2013.07.027
Lu, F., Hong, Y., Wang, S. Lai, K. y Liu, J. (2014). Time-varying Granger causality tests for applications in global crude oil markets. Energy Economics, 42, 289-298. 10.1016ZJ.eneco.2014.01.002
Milonas, N. y Henker, T (2001). Price spread and convenience yield behaviour in the international oil market. Applied Financial Economics, 11 (1), 23-36. 10.1080/09603100150210237
Montepeque, J. (2005). Sour crude pricing: A pressing global issue. Middle East Economic Survey, 48(14), 1-42.
Politis, D. N. y Romano, J. P (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303-1313. 10.1080/01621459.1994.10476870
Reboredo, J. C. (2011). How do crude oil prices co-move? A copula approach. Energy Economics, 33(5), 948-955. https://ideas.repec.org/a/eee/eneeco/v33y2011i5p948-955.html
Ruiz, A. y Anguiano, J. E. (2016). Modelación de las dinámicas, volatilidades e interrelaciones de los rendimientos del petróleo mexicano, BRENT y WTI. Ensayos, Revista de Economía, 2, 175-194. https://ideas.repec.org/a/ere/journl/vxxxvy2016i2p175-194.html
Weiner, R. J. (1991). Is the world oil market one great pool? Energy Journal, 12(3), 95-107. https://pdfs.semanticscholar.org/cf53/f3cd19d2dfc859ada89d740c4910c6fe333e.pdf
Wilmot, N. A. (2013). Cointegration in the oil market among regional blends. International Journal Energy Economic Policy, 3(4), 424-433. https://experts.umn.edu/en/publications/cointegration-in-the-oil-market-among-regional-blends
dc.rights.spa.fl_str_mv Raúl de Jesús Gutiérrez - 2019
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Raúl de Jesús Gutiérrez - 2019
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
text/xml
dc.publisher.spa.fl_str_mv Universidad Católica de Colombia
dc.source.spa.fl_str_mv https://revfinypolecon.ucatolica.edu.co/article/view/2574
institution Universidad Católica de Colombia
bitstream.url.fl_str_mv https://repository.ucatolica.edu.co/bitstreams/7ceb01dc-0f21-4266-b198-fb31652483d5/download
bitstream.checksum.fl_str_mv 2d3eb13ca04108e524557703aabdd04b
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Católica de Colombia - RIUCaC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812183395715776512
spelling De Jesús-Gutiérrez, Raúlec72b255-c711-4add-80b4-843bcc67870c2019-07-01 00:00:002023-01-23T16:15:28Z2019-07-01 00:00:002023-01-23T16:15:28Z2019-07-01Este artículo prueba el grado de integración de México en los mercados internacionales del petróleo a través de la evolución de las correlaciones dinámicas en periodos estables, de crisis e inestables. Las estimaciones del modelo GARCH-CCD muestran que las correlaciones son positivas y cambian con el tiempo en respuesta al origen de choques en los precios del petróleo para los periodos de relativa calma, crisis y turbulencia financiera. Asimismo, los resultados del estadístico-t y valor-p bootstrap confirman que las correlaciones son significativamente diferentes en periodos de estabilidad e inestabilidad con respecto a las correlaciones del periodo de crisis, lo que favorece la hipótesis de regionalización entre los mercados de petróleo. Los hallazgos tienen importantes implicaciones económicas y financieras para el gobierno y los consumidores.This paper tests the degree of integration between Mexico’s and world crude oil markets throughout the evolution of dynamics correlations during the stable, crisis and volatile periods. The estimations of DCC-GARCH model show that the correlations are positive and time-varying in responds to the origin of the oil price shocks in periods of relative calm and financial turmoil. Likewise, the results of statistic-t and bootstrap p-value confirm strongly that the correlations in the crisis period are significantly different from those in the stable and volatile periods, which provides evidence in favor of the regionalization hypothesis between crude oil markets. The findings have important economic and financial implications for the government and consumers.application/pdftext/htmltext/xml10.14718/revfinanzpolitecon.2019.11.2.82011-76632248-6046https://hdl.handle.net/10983/29404https://doi.org/10.14718/revfinanzpolitecon.2019.11.2.8spaUniversidad Católica de Colombiahttps://revfinypolecon.ucatolica.edu.co/article/download/2574/3076https://revfinypolecon.ucatolica.edu.co/article/download/2574/3108https://revfinypolecon.ucatolica.edu.co/article/download/2574/3487Núm. 2 , Año 2019374235311Revista Finanzas y Política EconómicaAdelman, M. A. (1984). International oil agreements. Energy Journal, 5(3), 1-9. https://www.jstor.org/stable/41321691Bachmeier, L. J. y Griffin, J. M. (2006). Testing for market integration crude oil, coal, and natural gas. Energy Journal, 27(2), 55-71. https://econpapers.repec.org/article/aenjournl/2006v27-02-a04.htmBentzen, J. (2007). Does OPEC influence crude oil price? Testing for co-movements and causality between regional crude oil prices. Applied Economics, 39(11), 1375-1385. 10.1080/00036840600606344British Petroleum (2017). Statistical Review of World Energy. Londres: BP:Candelon, B., Joëts, M. y Tokpavi, S. (2013). Testing for Granger causality in distribution tails: An application to oil markets integration. Economic Modeling, 31, 276-285. 10.1016/j.econmod.2012.11.049Caporin, M. y McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1 (1), 115-126. 10.3390/econometrics1010115Collins, D. y Biekpe, N. (2003). Contagion a fear for Africa equity market? Journal of Economics and Business, 55(3), 285-297. 10.1016/S0148-6195(03)00020-1Cook, J. (1998). California crude oil [Mimeo]. Recuperado de https://www.eia.doe.gov/pub/De Jesús, R. (2016). Estrategias dinámicas de cobertura cruzada eficiente para el mercado del petróleo mexicano: evidencia de dos modelos GARCH multivariados con término de corrección de error. Economía: Teoría y Práctica, 44, 115-146. 10.24275/ETYPUAM/NEDomínguez, R. M., Venegas, F. y Palafox, A. O. (2018). Short-and long-term relations among prices of the Mexican Crude Oil Blend, West Texas Intermediate, and Brent: Market Trend and Risk Premia, 2005-2016. International Journal of Energy Economics and Policy, 8(3), 87-91. https://ideas.repec.org/a/eco/journ2/2018-03-13.htmlEnergy Information Administration (2012). International Energy Statistics. Recuperado de https://www.eia.gov/international/data/worldEngle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autore-gressive conditional heteroskedasticity models. Journal of Business and Economics Statistics, 20(3), 339-350. 10.1198/073500102288618487Ewing, B. T y Harter, C. L. (2000). Co-movements of Alaska North Slope and UK Brent crude oil prices. Applied Economics Letters, 7(8), 553-558. 10.1080/13504850050033373Fattouh, B. (2010). The dynamics of crude oil price differentials. Energy Economics, 32 (2), 334-342. 10.1016/j.eneco.2009.06.007Forbes, K. y Rigobon, R. (2002). No contagion, only interdenpendence: measuring stock market co-movements. Journal of Finance, 57(5), 2223-2261. 10.1111/0022-1082.00494Gülen, S. G. (1997). Regionalization in the world crude oil market. Energy Journal, 18(2), 109-127.Gülen, S. G. (1999). Regionalization in the world crude oil market: Further results. Energy Journal, 20(1), 125-139. https://researchers.dellmed.utexas.edu/en/publications/regionalization-in-the-world-crude-oil-market-further-evidenceHammoudeh, S., Thompson, M. y Ewing, B. (2008). Threshold cointegration analysis of crude oil benchmarks. Energy Journal, 29(4), 79-95. 10.2307/41323182Jia, X., An, H., Fang, W. Sun, X. y Huang, X. (2015). How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective. Energy Economics, 49, 588-598. 10.1016/j.eneco.2015.03.008Jiao, J. L., Fan, Y., Wei, Y. M., Han, Z. Y. y Zhang, J. T (2007). Analysis of the co-movements between Chinese and International crude oil price. International Journal of Global Energy, 27(1), 61-76.Ji, Q. y Fan, Y. (2015). Dynamic integration of world oil prices: A reinvestigation of globalisation vs. regionalization. Applied Energy, 155(1), 171-180. https://www.deepdyve.com/lp/elsevier/dynamic-integration-of-world-oil-prices-a-reinvestigation-of-Daf3SxZWrDKleit, A.N. (2001). Are regional oil markets growing closer together? An arbitrage cost approach. Energy Journal, 22(2), 1-15. 10.5547/ISSN0195-6574-EJ-Vol22-No2-1Kuck, K. y Schweikert, K. (2017). A Markov regime-switching model of crude oil market integration. Journal of Commodity Markets, 6, 16-31. 10.1016/j.jcomm.2017.03.001Lanza, A., Manera, M. y McAleer, M. (2006). Modeling dynamic conditional correlations in WTI oil forward and futures returns. Finance Research Letters, 3 (2), 114-132. 10.1016/j.frl.2006.01.005Laurent, S., Rombouts, J. V. y Violante, F. (2012). On the forecasting accuracy of multivariate GARCH models. Journal of Applied Econometrics, 27(6), 934-955. 10.1002/jae.1248Li, R. y Leung, G. C. (2011). The integration of China into the world crude oil market since 1998. Energy Policy, 39(9), 5159-5165. https://ideas.repec.org/a/eee/enepol/v39y2011i9p5159-5166.htmlLiao, H. C., Lin, S. C. y Huang, H. C. (2014). Are crude oil markets globalized or regionalized? Evidence from WTI and Brent. Applied Economics Letters, 21 (4), 235-241.Liu, L., Chen, C. y Wan, J. (2013). Is world oil market "one great pool"? An example from China's and international oil market. Economic Modelling, 35, 364-373. 10.1016/j.econmod.2013.07.027Lu, F., Hong, Y., Wang, S. Lai, K. y Liu, J. (2014). Time-varying Granger causality tests for applications in global crude oil markets. Energy Economics, 42, 289-298. 10.1016ZJ.eneco.2014.01.002Milonas, N. y Henker, T (2001). Price spread and convenience yield behaviour in the international oil market. Applied Financial Economics, 11 (1), 23-36. 10.1080/09603100150210237Montepeque, J. (2005). Sour crude pricing: A pressing global issue. Middle East Economic Survey, 48(14), 1-42.Politis, D. N. y Romano, J. P (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303-1313. 10.1080/01621459.1994.10476870Reboredo, J. C. (2011). How do crude oil prices co-move? A copula approach. Energy Economics, 33(5), 948-955. https://ideas.repec.org/a/eee/eneeco/v33y2011i5p948-955.htmlRuiz, A. y Anguiano, J. E. (2016). Modelación de las dinámicas, volatilidades e interrelaciones de los rendimientos del petróleo mexicano, BRENT y WTI. Ensayos, Revista de Economía, 2, 175-194. https://ideas.repec.org/a/ere/journl/vxxxvy2016i2p175-194.htmlWeiner, R. J. (1991). Is the world oil market one great pool? Energy Journal, 12(3), 95-107. https://pdfs.semanticscholar.org/cf53/f3cd19d2dfc859ada89d740c4910c6fe333e.pdfWilmot, N. A. (2013). Cointegration in the oil market among regional blends. International Journal Energy Economic Policy, 3(4), 424-433. https://experts.umn.edu/en/publications/cointegration-in-the-oil-market-among-regional-blendsRaúl de Jesús Gutiérrez - 2019info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/https://revfinypolecon.ucatolica.edu.co/article/view/2574Financial crisesIntegration crude oil marketsDynamics conditional correlationsCorrelaciones condicionales dinámicasCrisis financierasIntegración de los mercados de petróleoCorrelações condicionais dinâmicasCrises financeirasIntegração dos mercados de petróleoIntegración entre mercados de petróleo de diferente calidad con base en las correlaciones condicionales dinámicas.Integration among world and low quality crude oil markets based on dynamic conditional correlations.Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationOREORE.xmltext/xml2631https://repository.ucatolica.edu.co/bitstreams/7ceb01dc-0f21-4266-b198-fb31652483d5/download2d3eb13ca04108e524557703aabdd04bMD5110983/29404oai:repository.ucatolica.edu.co:10983/294042023-03-24 17:02:14.487https://creativecommons.org/licenses/by-nc-sa/4.0/Raúl de Jesús Gutiérrez - 2019https://repository.ucatolica.edu.coRepositorio Institucional Universidad Católica de Colombia - RIUCaCbdigital@metabiblioteca.com