Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas

Introducción: las quitinasas son enzimas modificadoras de quitina y se han reportado como alérgenos en plantas y poco en animales, aunque poseen reactividad cruzada debido a su alta conservación. Objetivo: explorar el potencial alergénico y el mimetismo molecular entre quitinasas de fuentes alergéni...

Full description

Autores:
Munera, Marlon
Contreras, Neyder
Sanchez, Andres
Sanchez, Jorge
Emiliani, Yuliana
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad de Cartagena
Repositorio:
Repositorio Universidad de Cartagena
Idioma:
spa
OAI Identifier:
oai:repositorio.unicartagena.edu.co:11227/17963
Acceso en línea:
https://hdl.handle.net/11227/17963
https://doi.org/10.32997/rcb-2023-4769
Palabra clave:
alérgeno
quitinasas
reactividad cruzada
bioinformática
epitope
acoplamiento molecular
allergen
chitinase
cross reactivity
bioinformatics
epitope
docking
Rights
openAccess
License
Marlon Munera, Neyder Contreras, Andres Sanchez, Jorge Sanchez, Yuliana Emiliani - 2023
id UCART2_1c5d50c8a461583b76eaa37e1665de0b
oai_identifier_str oai:repositorio.unicartagena.edu.co:11227/17963
network_acronym_str UCART2
network_name_str Repositorio Universidad de Cartagena
repository_id_str
dc.title.spa.fl_str_mv Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas
dc.title.translated.eng.fl_str_mv Chitinases as a new group of pan allergens: an in silico approach to their structural and immunological basis
title Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas
spellingShingle Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas
alérgeno
quitinasas
reactividad cruzada
bioinformática
epitope
acoplamiento molecular
allergen
chitinase
cross reactivity
bioinformatics
epitope
docking
title_short Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas
title_full Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas
title_fullStr Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas
title_full_unstemmed Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas
title_sort Quitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicas
dc.creator.fl_str_mv Munera, Marlon
Contreras, Neyder
Sanchez, Andres
Sanchez, Jorge
Emiliani, Yuliana
dc.contributor.author.spa.fl_str_mv Munera, Marlon
Contreras, Neyder
Sanchez, Andres
Sanchez, Jorge
Emiliani, Yuliana
dc.subject.spa.fl_str_mv alérgeno
quitinasas
reactividad cruzada
bioinformática
epitope
acoplamiento molecular
topic alérgeno
quitinasas
reactividad cruzada
bioinformática
epitope
acoplamiento molecular
allergen
chitinase
cross reactivity
bioinformatics
epitope
docking
dc.subject.eng.fl_str_mv allergen
chitinase
cross reactivity
bioinformatics
epitope
docking
description Introducción: las quitinasas son enzimas modificadoras de quitina y se han reportado como alérgenos en plantas y poco en animales, aunque poseen reactividad cruzada debido a su alta conservación. Objetivo: explorar el potencial alergénico y el mimetismo molecular entre quitinasas de fuentes alergénicas comunes mediante bioinformática. Métodos: se utilizaron ElliPro y BepiPred para predecir epítopos de células B y T. Se realizaron estudios filogenéticos, de identidad y de conservación estructural con MEGA 5, PRALINE y Consurf. Se obtuvieron modelos 3D de quitinasas no reportadas en el Protein Data Bank mediante Swiss model. La capacidad de unión de ligandos se exploró con AutoDock Vina, utilizando Bisdionina C, Bisdionina F y Montelukast como ligandos. Resultados: la quitinasa de P. americana (Per a 12) comparte un 44% de identidad con homólogos en P. vannamei, ácaros e insectos, y una identidad moderada con la quitinasa humana. Se reveló una alta homología estructural. Un epítopo lineal entre los residuos 127 y 144 está altamente conservado en todas las quitinasas. Se predijeron tres epítopos de células T conservados. Las simulaciones de acoplamiento molecular revelaron el sitio activo y el potencial de unión de varios ligandos, identificando residuos críticos. Conclusión: proponemos a las quitinasas como un nuevo grupo potencial de panalérgenos, explicando casos de sensibilización a varias fuentes alérgenas. Dado su homología con proteínas humanas, merece una exploración inmunológica para apoyar su implicación en la respuesta autoinmune.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-15T00:00:00Z
2024-09-05T20:35:03Z
dc.date.available.none.fl_str_mv 2023-10-15T00:00:00Z
2024-09-05T20:35:03Z
dc.date.issued.none.fl_str_mv 2023-10-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2215-7840
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11227/17963
dc.identifier.doi.none.fl_str_mv 10.32997/rcb-2023-4769
dc.identifier.eissn.none.fl_str_mv 2389-7252
dc.identifier.url.none.fl_str_mv https://doi.org/10.32997/rcb-2023-4769
identifier_str_mv 2215-7840
10.32997/rcb-2023-4769
2389-7252
url https://hdl.handle.net/11227/17963
https://doi.org/10.32997/rcb-2023-4769
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ciencias Biomédicas
dc.relation.bitstream.none.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/4769/3732
dc.relation.citationendpage.none.fl_str_mv 169
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationstartpage.none.fl_str_mv 154
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.references.spa.fl_str_mv Oyeleye A, Normi Yahaya M. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Bioscience Reports. 2018;38(4): BSR2018032300.
Rathore AS, Gupta RD. Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives. Enzyme Research. 2015; 2015:8.
O'Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C, et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clin Exp Allergy. 2002;32(3):455-62.
Blanco C, Diaz-Perales A, Collada C, Sanchez-Monge R, Aragoncillo C, Castillo R, et al. Class I chitinases as potential panallergens involved in the latex-fruit syndrome. J Allergy Clin Immunol. 1999;103(3 Pt 1):507-13.
Volpicella M, Leoni C, Fanizza I, Placido A, Pastorello EA, Ceci LR. Overview of plant chitinases identified as food allergens. J Agric Food Chem. 2014;62(25):5734-42.
Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, et al. Chitinases: An update. J Pharm Bioallied Sci. 2013;5(1):21-9.
Fang Y, Long C, Bai X, Liu W, Rong M, Lai R, et al. Two new types of allergens from the cockroach, Periplaneta americana. Allergy. 2015;70(12):1674-8.
Resch Y, Blatt K, Malkus U, Fercher C, Swoboda I, Focke-Tejkl M, et al. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen. PLoS One. 2016;11(8): e0160641.
Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Current allergy and asthma reports. 2017;17(4):25-.
Pomes A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep. 2017;17(4):25.
Huss K, Adkinson NF, Jr., Eggleston PA, Dawson C, Van Natta ML, Hamilton RG. House dust mite and cockroach exposure are strong risk factors for positive allergy skin test responses in the Childhood Asthma Management Program. J Allergy Clin Immunol. 2001;107(1):48-54.
Hradetzky S, Werfel T, Rösner LM. Autoallergy in atopic dermatitis. Allergo J Int. 2015;24(1):16-22.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13): 1605-12.
Liu T, Chen L, Ma Q, Shen X, Yang Q. Structural insights into chitinolytic enzymes and inhibition mechanisms of selective inhibitors. Curr Pharm Des. 2014;20(5): 754-70.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1): 235-42.
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44(D1): D1202-13.
BIOVIA DS. Discovery Studio Modeling Environment, Release 2017: San Diego: Dassault Systèmes; 2016.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2): 455-61.
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263: 243-50.
Contreras-Puentes N, Mercado-Camargo J, Alvíz-Amador A. In silico study of ginsenoside analogues as possible BACE1 inhibitors involved in Alzheimer's disease [version 1; peer review: 1 approved]. F1000Research. 2019;8(1169).
DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallography. 2002;40.
BIOVIA DS. Discovery Studio Visualizaer, 4.5: San Diego: Dassault Systèmes; 2016
Yang Z, Zhao J, Wei N, Feng M, Xian M, Shi X, et al. Cockroach is a major cross-reactive allergen source in shrimp-sensitized rural children in southern China. Allergy. 2018;73(3): 585-92.
Múnera M, Gómez L, Puerta L. El camarón como una fuente de alérgenos. Biomédica. 2013;33: 161-78.
Fernandez-Caldas E, Puerta L, Caraballo L. Mites and allergy. Chem Immunol Allergy. 2014;100: 234-42.
Roesner LM, Ernst M, Chen W, Begemann G, Kienlin P, Raulf MK, et al. Human thioredoxin, a damage-associated molecular pattern and Malassezia-crossreactive autoallergen, modulates immune responses via the C-type lectin receptors Dectin-1 and Dectin-2. Scientific Reports. 2019;9(1): 11210.
Fluckiger S, Mittl PR, Scapozza L, Fijten H, Folkers G, Grutter MG, et al. Comparison of the crystal structures of the human manganese superoxide dismutase and the homologous Aspergillus fumigatus allergen at 2-A resolution. J Immunol. 2002;168(3): 1267-72.
Radauer C, Adhami F, Fürtler I, Wagner S, Allwardt D, Scala E, et al. Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant food allergy. Mol Immunol. 2011;48(4): 600-9.
O'Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C, et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clinical & Experimental Allergy. 2002;32(3): 455-62.
McGowan EC, Peng R, Salo PM, Zeldin DC, Keet CA. Cockroach, dust mite, and shrimp sensitization correlations in the National Health and Nutrition Examination Survey. Ann Allergy Asthma Immunol. 2019;122(5): 536-8.e1.
Drabner B, Reineke U, Schneider-Mergener J, Humphreys RE, Hartmann S, Lucius R. Identification of T helper cell-recognized epitopes in the chitinase of the filarial nematode Onchocerca volvulus. Vaccine. 2002;20(31-32): 3685-94.
Joshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA, et al. Molecular characterization, expression, and in vivo analysis of LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. J Biol Chem. 2005;280(5): 3847-61.
Langer RC, Li F, Popov V, Kurosky A, Vinetz JM. Monoclonal antibody against the Plasmodium falciparum chitinase, PfCHT1, recognizes a malaria transmission-blocking epitope in Plasmodium gallinaceum ookinetes unrelated to the chitinase PgCHT1. Infect Immun. 2002;70(3): 1581-90.
Shen N, Zhang H, Ren Y, He R, Xu J, Li C, et al. A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits. Parasit Vectors. 2018;11(1): 599.
Alrifai M, Marsh LM, Dicke T, Kılıç A, Conrad ML, Renz H, et al. Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PLoS One. 2014;9(1): e85839.
Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276(9): 6770-8.
Okawa K, Ohno M, Kashimura A, Kimura M, Kobayashi Y, Sakaguchi M, et al. Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs. Mol Biol Evol. 2016;33(12): 3183-93.
Kim LK, Morita R, Kobayashi Y, Eisenbarth SC, Lee CG, Elias J, et al. AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc Natl Acad Sci U S A. 2015;112(22): E2891-9.
Sutherland TE, Andersen OA, Betou M, Eggleston IM, Maizels RM, van Aalten D, et al. Analyzing airway inflammation with chemical biology: dissection of acidic mammalian chitinase function with a selective drug-like inhibitor. Chem Biol. 2011;18(5): 569-79.
Andersen OA, Nathubhai A, Dixon MJ, Eggleston IM, van Aalten DM. Structure-based dissection of the natural product cyclopentapeptide chitinase inhibitor argifin. Chem Biol. 2008;15(3): 295-301.
Hirose T, Sunazuka T, Sugawara A, Endo A, Iguchi K, Yamamoto T, et al. Chitinase inhibitors: extraction of the active framework from natural argifin and use of in situ click chemistry. J Antibiot (Tokyo). 2009;62(5):277-82.
Hirose T, Sunazuka T, Omura S. Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(2): 85-102.
Mazur M, Olczak J, Olejniczak S, Koralewski R, Czestkowski W, Jedrzejczak A, et al. Targeting Acidic Mammalian chitinase Is Effective in Animal Model of Asthma. J Med Chem. 2018;61(3): 695-710.
Langlois A, Ferland C, Tremblay GM, Laviolette M. Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. J Allergy Clin Immunol. 2006;118(1):113-9.
Mazur M, Dymek B, Koralewski R, Sklepkiewicz P, Olejniczak S, Mazurkiewicz M, et al. Development of Dual Chitinase Inhibitors as Potential New Treatment for Respiratory System Diseases. J Med Chem. 2019;62(15): 7126-45.
dc.rights.spa.fl_str_mv Marlon Munera, Neyder Contreras, Andres Sanchez, Jorge Sanchez, Yuliana Emiliani - 2023
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Marlon Munera, Neyder Contreras, Andres Sanchez, Jorge Sanchez, Yuliana Emiliani - 2023
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Cartagena
dc.source.spa.fl_str_mv https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/4769
institution Universidad de Cartagena
bitstream.url.fl_str_mv https://repositorio.unicartagena.edu.co/bitstreams/858a39fa-1cb4-437b-8308-7b82196f7ef0/download
bitstream.checksum.fl_str_mv 28dd3b22efdd38e22657b285696ed48a
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital Universidad de Cartagena
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812210174347182080
spelling Munera, MarlonContreras, NeyderSanchez, AndresSanchez, JorgeEmiliani, Yuliana2023-10-15T00:00:00Z2024-09-05T20:35:03Z2023-10-15T00:00:00Z2024-09-05T20:35:03Z2023-10-152215-7840https://hdl.handle.net/11227/1796310.32997/rcb-2023-47692389-7252https://doi.org/10.32997/rcb-2023-4769Introducción: las quitinasas son enzimas modificadoras de quitina y se han reportado como alérgenos en plantas y poco en animales, aunque poseen reactividad cruzada debido a su alta conservación. Objetivo: explorar el potencial alergénico y el mimetismo molecular entre quitinasas de fuentes alergénicas comunes mediante bioinformática. Métodos: se utilizaron ElliPro y BepiPred para predecir epítopos de células B y T. Se realizaron estudios filogenéticos, de identidad y de conservación estructural con MEGA 5, PRALINE y Consurf. Se obtuvieron modelos 3D de quitinasas no reportadas en el Protein Data Bank mediante Swiss model. La capacidad de unión de ligandos se exploró con AutoDock Vina, utilizando Bisdionina C, Bisdionina F y Montelukast como ligandos. Resultados: la quitinasa de P. americana (Per a 12) comparte un 44% de identidad con homólogos en P. vannamei, ácaros e insectos, y una identidad moderada con la quitinasa humana. Se reveló una alta homología estructural. Un epítopo lineal entre los residuos 127 y 144 está altamente conservado en todas las quitinasas. Se predijeron tres epítopos de células T conservados. Las simulaciones de acoplamiento molecular revelaron el sitio activo y el potencial de unión de varios ligandos, identificando residuos críticos. Conclusión: proponemos a las quitinasas como un nuevo grupo potencial de panalérgenos, explicando casos de sensibilización a varias fuentes alérgenas. Dado su homología con proteínas humanas, merece una exploración inmunológica para apoyar su implicación en la respuesta autoinmune.Introduction: chitinases are chitin-modifying enzymes that have been reported as allergens in plants and, to a lesser extent, in animals, though they possess cross-reactivity due to their high conservation. Objectives:  to explore the allergenic potential and molecular mimicry among chitinases from common allergenic sources using bioinformatics. Methods: ElliPro and BepiPred were used to predict B and T cell epitopes. Phylogenetic, identity, and structural conservation studies were conducted using MEGA 5, PRALINE, and Consurf. 3D models of chitinases not reported in the Protein Data Bank were obtained using Swiss model. Ligand binding capacity was explored with AutoDock Vina, using Bisdionin C, Bisdionin F, and Montelukast as ligands. Results: the chitinase from P. americana (Per a 12) shares 44% identity with homologs in P. vannamei, mites, and insects, and moderate identity with human chitinase. High structural homology was revealed. A linear epitope between residues 127 and 144 is highly conserved in all chitinases. Three conserved T cell epitopes were predicted. Molecular docking simulations revealed the active site and ligand-binding potential, identifying critical residues. Conclusions: we propose chitinases as a potential new group of panallergens, explaining sensitization cases to various allergenic sources. Given their homology to human proteins, they deserve immunological exploration to support their implication in autoimmune responses.application/pdfspaUniversidad de CartagenaRevista Ciencias Biomédicashttps://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/download/4769/3732169415412Oyeleye A, Normi Yahaya M. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Bioscience Reports. 2018;38(4): BSR2018032300.Rathore AS, Gupta RD. Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives. Enzyme Research. 2015; 2015:8.O'Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C, et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clin Exp Allergy. 2002;32(3):455-62.Blanco C, Diaz-Perales A, Collada C, Sanchez-Monge R, Aragoncillo C, Castillo R, et al. Class I chitinases as potential panallergens involved in the latex-fruit syndrome. J Allergy Clin Immunol. 1999;103(3 Pt 1):507-13.Volpicella M, Leoni C, Fanizza I, Placido A, Pastorello EA, Ceci LR. Overview of plant chitinases identified as food allergens. J Agric Food Chem. 2014;62(25):5734-42.Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, et al. Chitinases: An update. J Pharm Bioallied Sci. 2013;5(1):21-9.Fang Y, Long C, Bai X, Liu W, Rong M, Lai R, et al. Two new types of allergens from the cockroach, Periplaneta americana. Allergy. 2015;70(12):1674-8.Resch Y, Blatt K, Malkus U, Fercher C, Swoboda I, Focke-Tejkl M, et al. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen. PLoS One. 2016;11(8): e0160641.Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Current allergy and asthma reports. 2017;17(4):25-.Pomes A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New Insights into Cockroach Allergens. Curr Allergy Asthma Rep. 2017;17(4):25.Huss K, Adkinson NF, Jr., Eggleston PA, Dawson C, Van Natta ML, Hamilton RG. House dust mite and cockroach exposure are strong risk factors for positive allergy skin test responses in the Childhood Asthma Management Program. J Allergy Clin Immunol. 2001;107(1):48-54.Hradetzky S, Werfel T, Rösner LM. Autoallergy in atopic dermatitis. Allergo J Int. 2015;24(1):16-22.Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13): 1605-12.Liu T, Chen L, Ma Q, Shen X, Yang Q. Structural insights into chitinolytic enzymes and inhibition mechanisms of selective inhibitors. Curr Pharm Des. 2014;20(5): 754-70.Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1): 235-42.Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44(D1): D1202-13.BIOVIA DS. Discovery Studio Modeling Environment, Release 2017: San Diego: Dassault Systèmes; 2016.Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2): 455-61.Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263: 243-50.Contreras-Puentes N, Mercado-Camargo J, Alvíz-Amador A. In silico study of ginsenoside analogues as possible BACE1 inhibitors involved in Alzheimer's disease [version 1; peer review: 1 approved]. F1000Research. 2019;8(1169).DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallography. 2002;40.BIOVIA DS. Discovery Studio Visualizaer, 4.5: San Diego: Dassault Systèmes; 2016Yang Z, Zhao J, Wei N, Feng M, Xian M, Shi X, et al. Cockroach is a major cross-reactive allergen source in shrimp-sensitized rural children in southern China. Allergy. 2018;73(3): 585-92.Múnera M, Gómez L, Puerta L. El camarón como una fuente de alérgenos. Biomédica. 2013;33: 161-78.Fernandez-Caldas E, Puerta L, Caraballo L. Mites and allergy. Chem Immunol Allergy. 2014;100: 234-42.Roesner LM, Ernst M, Chen W, Begemann G, Kienlin P, Raulf MK, et al. Human thioredoxin, a damage-associated molecular pattern and Malassezia-crossreactive autoallergen, modulates immune responses via the C-type lectin receptors Dectin-1 and Dectin-2. Scientific Reports. 2019;9(1): 11210.Fluckiger S, Mittl PR, Scapozza L, Fijten H, Folkers G, Grutter MG, et al. Comparison of the crystal structures of the human manganese superoxide dismutase and the homologous Aspergillus fumigatus allergen at 2-A resolution. J Immunol. 2002;168(3): 1267-72.Radauer C, Adhami F, Fürtler I, Wagner S, Allwardt D, Scala E, et al. Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant food allergy. Mol Immunol. 2011;48(4): 600-9.O'Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C, et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clinical & Experimental Allergy. 2002;32(3): 455-62.McGowan EC, Peng R, Salo PM, Zeldin DC, Keet CA. Cockroach, dust mite, and shrimp sensitization correlations in the National Health and Nutrition Examination Survey. Ann Allergy Asthma Immunol. 2019;122(5): 536-8.e1.Drabner B, Reineke U, Schneider-Mergener J, Humphreys RE, Hartmann S, Lucius R. Identification of T helper cell-recognized epitopes in the chitinase of the filarial nematode Onchocerca volvulus. Vaccine. 2002;20(31-32): 3685-94.Joshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA, et al. Molecular characterization, expression, and in vivo analysis of LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. J Biol Chem. 2005;280(5): 3847-61.Langer RC, Li F, Popov V, Kurosky A, Vinetz JM. Monoclonal antibody against the Plasmodium falciparum chitinase, PfCHT1, recognizes a malaria transmission-blocking epitope in Plasmodium gallinaceum ookinetes unrelated to the chitinase PgCHT1. Infect Immun. 2002;70(3): 1581-90.Shen N, Zhang H, Ren Y, He R, Xu J, Li C, et al. A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits. Parasit Vectors. 2018;11(1): 599.Alrifai M, Marsh LM, Dicke T, Kılıç A, Conrad ML, Renz H, et al. Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PLoS One. 2014;9(1): e85839.Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276(9): 6770-8.Okawa K, Ohno M, Kashimura A, Kimura M, Kobayashi Y, Sakaguchi M, et al. Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs. Mol Biol Evol. 2016;33(12): 3183-93.Kim LK, Morita R, Kobayashi Y, Eisenbarth SC, Lee CG, Elias J, et al. AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc Natl Acad Sci U S A. 2015;112(22): E2891-9.Sutherland TE, Andersen OA, Betou M, Eggleston IM, Maizels RM, van Aalten D, et al. Analyzing airway inflammation with chemical biology: dissection of acidic mammalian chitinase function with a selective drug-like inhibitor. Chem Biol. 2011;18(5): 569-79.Andersen OA, Nathubhai A, Dixon MJ, Eggleston IM, van Aalten DM. Structure-based dissection of the natural product cyclopentapeptide chitinase inhibitor argifin. Chem Biol. 2008;15(3): 295-301.Hirose T, Sunazuka T, Sugawara A, Endo A, Iguchi K, Yamamoto T, et al. Chitinase inhibitors: extraction of the active framework from natural argifin and use of in situ click chemistry. J Antibiot (Tokyo). 2009;62(5):277-82.Hirose T, Sunazuka T, Omura S. Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(2): 85-102.Mazur M, Olczak J, Olejniczak S, Koralewski R, Czestkowski W, Jedrzejczak A, et al. Targeting Acidic Mammalian chitinase Is Effective in Animal Model of Asthma. J Med Chem. 2018;61(3): 695-710.Langlois A, Ferland C, Tremblay GM, Laviolette M. Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. J Allergy Clin Immunol. 2006;118(1):113-9.Mazur M, Dymek B, Koralewski R, Sklepkiewicz P, Olejniczak S, Mazurkiewicz M, et al. Development of Dual Chitinase Inhibitors as Potential New Treatment for Respiratory System Diseases. J Med Chem. 2019;62(15): 7126-45.Marlon Munera, Neyder Contreras, Andres Sanchez, Jorge Sanchez, Yuliana Emiliani - 2023https://creativecommons.org/licenses/by-nc-nd/4.0http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.https://revistas.unicartagena.edu.co/index.php/cbiomedicas/article/view/4769alérgenoquitinasasreactividad cruzadabioinformáticaepitopeacoplamiento molecularallergenchitinasecross reactivitybioinformaticsepitopedockingQuitinasas como un nuevo grupo de panalérgenos: un enfoque in silico desde sus bases estructurales e inmunológicasChitinases as a new group of pan allergens: an in silico approach to their structural and immunological basisArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTPublicationOREORE.xmltext/xml2793https://repositorio.unicartagena.edu.co/bitstreams/858a39fa-1cb4-437b-8308-7b82196f7ef0/download28dd3b22efdd38e22657b285696ed48aMD5111227/17963oai:repositorio.unicartagena.edu.co:11227/179632024-09-05 15:35:03.352https://creativecommons.org/licenses/by-nc-nd/4.0Marlon Munera, Neyder Contreras, Andres Sanchez, Jorge Sanchez, Yuliana Emiliani - 2023metadata.onlyhttps://repositorio.unicartagena.edu.coBiblioteca Digital Universidad de Cartagenabdigital@metabiblioteca.com