Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
Tomato (Solanum lycopersicum) is considered one of the main vegetables in the world, thanks to its nutritional content. Due to climate change, tomato crops, like others, are potentially exposed to abiotic factors that have a negative effect on their productivity. In this work, the ability of B. amyl...
- Autores:
-
Amado Caro, Tatiana Milena
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/7968
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/7968
- Palabra clave:
- Factores abióticos
Solanum lycopersicum
Promoción del crecimiento
Salinidad
Metales
T 40.23 A481e
Abiotic factors
Solanum lycopersicum
Growth promotion
Salinity
Metals
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id |
UAntonioN2_3882dff901f0b5b44f9f71bd3f464b75 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/7968 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira |
title |
Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira |
spellingShingle |
Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira Factores abióticos Solanum lycopersicum Promoción del crecimiento Salinidad Metales T 40.23 A481e Abiotic factors Solanum lycopersicum Growth promotion Salinity Metals |
title_short |
Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira |
title_full |
Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira |
title_fullStr |
Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira |
title_full_unstemmed |
Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira |
title_sort |
Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira |
dc.creator.fl_str_mv |
Amado Caro, Tatiana Milena |
dc.contributor.advisor.spa.fl_str_mv |
Cuervo Soto, Laura |
dc.contributor.author.spa.fl_str_mv |
Amado Caro, Tatiana Milena |
dc.subject.es_ES.fl_str_mv |
Factores abióticos Solanum lycopersicum Promoción del crecimiento Salinidad Metales |
topic |
Factores abióticos Solanum lycopersicum Promoción del crecimiento Salinidad Metales T 40.23 A481e Abiotic factors Solanum lycopersicum Growth promotion Salinity Metals |
dc.subject.ddc.es_ES.fl_str_mv |
T 40.23 A481e |
dc.subject.keyword.es_ES.fl_str_mv |
Abiotic factors Solanum lycopersicum Growth promotion Salinity Metals |
description |
Tomato (Solanum lycopersicum) is considered one of the main vegetables in the world, thanks to its nutritional content. Due to climate change, tomato crops, like others, are potentially exposed to abiotic factors that have a negative effect on their productivity. In this work, the ability of B. amyloliquefaciens to promote plant growth of tomato exposed to salinity (0, 50, 100 and 150 mM) and stress by metals such as Cadmium, Cobalt, and Nickel at concentrations of 5 and 10 mM was evaluated. The results showed that plants with and without inoculum were affected at high salt concentrations (100 and 150 mM), with low values in fresh and dry weight variables of stem and root, compared to control plants without salinity. In the metals assay, it was observed that the presence of metals favored the growth of plants without inoculum |
publishDate |
2022 |
dc.date.issued.spa.fl_str_mv |
2022-12-13 |
dc.date.accessioned.none.fl_str_mv |
2023-04-15T16:43:43Z |
dc.date.available.none.fl_str_mv |
2023-04-15T16:43:43Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/7968 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Aazami, M. A., Rasouli, F., & Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology, 21(1). https://doi.org/10.1186/S12870-021-03379-7 Akeel, A., & Jahan, A. (2020). Role of cobalt in plants: Its stress and alleviation. Contaminants in Agriculture: Sources, Impacts and Management, 339–357. https://doi.org/10.1007/978-3- 030-41552-5_17/TABLES/1 Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 1–34. https://doi.org/10.3390/TOXICS9030042 Astroza Sepúlveda, G. D. (2018). Respuesta de plantas de tomate inoculadas con bacterias productoras de acc-deaminasa al estrés por salinidad. Http://Ezpbibliotecas.Udec.Cl/Login?Url=http://Tesisencap.Udec.Cl/Chillan/Agronomia/As troza_g. http://repositorio.udec.cl/jspui/handle/11594/1267 Bravo, D. (2022). Bacterial Cadmium-Immobilization Activity Measured by Isothermal Microcalorimetry in Cacao-Growing Soils From Colombia. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.910234 Cámara de comercio de Bogotá. (2015). manual tomate. en programa de apoyo agrícola y agroindustrial vicepresidencia de fortalecimiento empresarial cámara de comercio de bogotá. https:////efaidnbmnnnibpcajpcglclefindmkaj/https://bibliotecadigital.ccb.org.co/bitstream/ha ndle/11520/14307/tomate.pdf?sequence=1&isallowed=y Chandrangsu, P., Rensing, C., & Helmann, J. D. (2017). Metal homeostasis and resistance in bacteria. Nature Reviews. Microbiology, 15(6), 338–350. https://doi.org/10.1038/NRMICRO.2017.15 Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833–2849. https://doi.org/10.1007/S13197-018-3221-Z/FIGURES/2 Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., & Zhang, R. (2017). Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 Induces Plant Salt Tolerance through Spermidine Production. Molecular Plant-Microbe Interactions : MPMI, 30(5), 423–432. https://doi.org/10.1094/MPMI-02-17-0027-R Chi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., & Zhang, D. (2020). Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. The Science of the Total Environment, 741. https://doi.org/10.1016/J.SCITOTENV.2020.140422 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/7968 |
identifier_str_mv |
Aazami, M. A., Rasouli, F., & Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology, 21(1). https://doi.org/10.1186/S12870-021-03379-7 Akeel, A., & Jahan, A. (2020). Role of cobalt in plants: Its stress and alleviation. Contaminants in Agriculture: Sources, Impacts and Management, 339–357. https://doi.org/10.1007/978-3- 030-41552-5_17/TABLES/1 Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 1–34. https://doi.org/10.3390/TOXICS9030042 Astroza Sepúlveda, G. D. (2018). Respuesta de plantas de tomate inoculadas con bacterias productoras de acc-deaminasa al estrés por salinidad. Http://Ezpbibliotecas.Udec.Cl/Login?Url=http://Tesisencap.Udec.Cl/Chillan/Agronomia/As troza_g. http://repositorio.udec.cl/jspui/handle/11594/1267 Bravo, D. (2022). Bacterial Cadmium-Immobilization Activity Measured by Isothermal Microcalorimetry in Cacao-Growing Soils From Colombia. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.910234 Cámara de comercio de Bogotá. (2015). manual tomate. en programa de apoyo agrícola y agroindustrial vicepresidencia de fortalecimiento empresarial cámara de comercio de bogotá. https:////efaidnbmnnnibpcajpcglclefindmkaj/https://bibliotecadigital.ccb.org.co/bitstream/ha ndle/11520/14307/tomate.pdf?sequence=1&isallowed=y Chandrangsu, P., Rensing, C., & Helmann, J. D. (2017). Metal homeostasis and resistance in bacteria. Nature Reviews. Microbiology, 15(6), 338–350. https://doi.org/10.1038/NRMICRO.2017.15 Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833–2849. https://doi.org/10.1007/S13197-018-3221-Z/FIGURES/2 Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., & Zhang, R. (2017). Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 Induces Plant Salt Tolerance through Spermidine Production. Molecular Plant-Microbe Interactions : MPMI, 30(5), 423–432. https://doi.org/10.1094/MPMI-02-17-0027-R Chi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., & Zhang, D. (2020). Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. The Science of the Total Environment, 741. https://doi.org/10.1016/J.SCITOTENV.2020.140422 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Acceso abierto https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Circunvalar |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/c72f0ae3-dbe4-423e-a796-6f873524380b/download https://repositorio.uan.edu.co/bitstreams/54641a44-8951-4327-bf8f-fe4fce6a9a84/download https://repositorio.uan.edu.co/bitstreams/7ce6c026-b68a-48c3-a100-dffd724d6b01/download https://repositorio.uan.edu.co/bitstreams/1c653c19-b2f9-4b09-ad18-0e4e043ca45d/download |
bitstream.checksum.fl_str_mv |
3d75ce9b06f4ecc05df17b93ec73b495 6e8879ad5791de712ffa2a53835a2321 7381c4670dfe08d96fd310a880e3137d 9868ccc48a14c8d591352b6eaf7f6239 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300349154983936 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cuervo Soto, LauraAmado Caro, Tatiana Milena118218241752023-04-15T16:43:43Z2023-04-15T16:43:43Z2022-12-13http://repositorio.uan.edu.co/handle/123456789/7968Aazami, M. A., Rasouli, F., & Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology, 21(1). https://doi.org/10.1186/S12870-021-03379-7Akeel, A., & Jahan, A. (2020). Role of cobalt in plants: Its stress and alleviation. Contaminants in Agriculture: Sources, Impacts and Management, 339–357. https://doi.org/10.1007/978-3- 030-41552-5_17/TABLES/1Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 1–34. https://doi.org/10.3390/TOXICS9030042Astroza Sepúlveda, G. D. (2018). Respuesta de plantas de tomate inoculadas con bacterias productoras de acc-deaminasa al estrés por salinidad. Http://Ezpbibliotecas.Udec.Cl/Login?Url=http://Tesisencap.Udec.Cl/Chillan/Agronomia/As troza_g. http://repositorio.udec.cl/jspui/handle/11594/1267Bravo, D. (2022). Bacterial Cadmium-Immobilization Activity Measured by Isothermal Microcalorimetry in Cacao-Growing Soils From Colombia. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.910234Cámara de comercio de Bogotá. (2015). manual tomate. en programa de apoyo agrícola y agroindustrial vicepresidencia de fortalecimiento empresarial cámara de comercio de bogotá. https:////efaidnbmnnnibpcajpcglclefindmkaj/https://bibliotecadigital.ccb.org.co/bitstream/ha ndle/11520/14307/tomate.pdf?sequence=1&isallowed=yChandrangsu, P., Rensing, C., & Helmann, J. D. (2017). Metal homeostasis and resistance in bacteria. Nature Reviews. Microbiology, 15(6), 338–350. https://doi.org/10.1038/NRMICRO.2017.15Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833–2849. https://doi.org/10.1007/S13197-018-3221-Z/FIGURES/2Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., & Zhang, R. (2017). Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 Induces Plant Salt Tolerance through Spermidine Production. Molecular Plant-Microbe Interactions : MPMI, 30(5), 423–432. https://doi.org/10.1094/MPMI-02-17-0027-RChi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., & Zhang, D. (2020). Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. The Science of the Total Environment, 741. https://doi.org/10.1016/J.SCITOTENV.2020.140422instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Tomato (Solanum lycopersicum) is considered one of the main vegetables in the world, thanks to its nutritional content. Due to climate change, tomato crops, like others, are potentially exposed to abiotic factors that have a negative effect on their productivity. In this work, the ability of B. amyloliquefaciens to promote plant growth of tomato exposed to salinity (0, 50, 100 and 150 mM) and stress by metals such as Cadmium, Cobalt, and Nickel at concentrations of 5 and 10 mM was evaluated. The results showed that plants with and without inoculum were affected at high salt concentrations (100 and 150 mM), with low values in fresh and dry weight variables of stem and root, compared to control plants without salinity. In the metals assay, it was observed that the presence of metals favored the growth of plants without inoculumEl tomate (Solanum lycopersicum), es considerada una de las principales hortalizas en el mundo, gracias a su contenido nutricional. Debido al cambio climático, el cultivo de tomate como otros son potencialmente expuestos a factores abióticos que ejercen un efecto negativo en su productividad. En este trabajo se evaluó la capacidad de B. amyloliquefaciens para promover el crecimiento vegetal de tomate expuesto a salinidad (0, 50, 100 y 150 mM) y estrés por metales como Cadmio, Cobalto y Níquel en concentraciones de 5 y 10 mM. Los resultados mostraron que las plantas con y sin inóculo se vieron afectadas a altas concentraciones de sal (100 y 150 mM), con valores bajos en las variables de peso fresco y seco de tallo y raíz, respecto a las plantas control sin salinidad. En el ensayo de metales, se observó que la presencia de metales favoreció el crecimiento de las plantas sin inóculo. En las plantas más inóculo, se observó que B. amyloliquefaciens promovió el crecimiento de tomate, mitigando el efecto de Cd a 5 mM, con valores de peso fresco de raíz y tallo mayores a los obtenidos en las plantas control con y sin inóculoBioquímico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarFactores abióticosSolanum lycopersicumPromoción del crecimientoSalinidadMetalesT 40.23 A481eAbiotic factorsSolanum lycopersicumGrowth promotionSalinityMetalsEvaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la GuajiraTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_TatianaMilenaAmadoCaro.pdf2023_TatianaMilenaAmadoCaro.pdfapplication/pdf1007376https://repositorio.uan.edu.co/bitstreams/c72f0ae3-dbe4-423e-a796-6f873524380b/download3d75ce9b06f4ecc05df17b93ec73b495MD522023_TatianaMilenaAmadoCaro_Acta.pdf2023_TatianaMilenaAmadoCaro_Acta.pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.document22176https://repositorio.uan.edu.co/bitstreams/54641a44-8951-4327-bf8f-fe4fce6a9a84/download6e8879ad5791de712ffa2a53835a2321MD532023_TatianaMilenaAmadoCaro_Autorización.pdf2023_TatianaMilenaAmadoCaro_Autorización.pdfapplication/pdf1049234https://repositorio.uan.edu.co/bitstreams/7ce6c026-b68a-48c3-a100-dffd724d6b01/download7381c4670dfe08d96fd310a880e3137dMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/1c653c19-b2f9-4b09-ad18-0e4e043ca45d/download9868ccc48a14c8d591352b6eaf7f6239MD56123456789/7968oai:repositorio.uan.edu.co:123456789/79682024-10-09 22:51:58.727https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |