Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira

Tomato (Solanum lycopersicum) is considered one of the main vegetables in the world, thanks to its nutritional content. Due to climate change, tomato crops, like others, are potentially exposed to abiotic factors that have a negative effect on their productivity. In this work, the ability of B. amyl...

Full description

Autores:
Amado Caro, Tatiana Milena
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/7968
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/7968
Palabra clave:
Factores abióticos
Solanum lycopersicum
Promoción del crecimiento
Salinidad
Metales
T 40.23 A481e
Abiotic factors
Solanum lycopersicum
Growth promotion
Salinity
Metals
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_3882dff901f0b5b44f9f71bd3f464b75
oai_identifier_str oai:repositorio.uan.edu.co:123456789/7968
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
title Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
spellingShingle Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
Factores abióticos
Solanum lycopersicum
Promoción del crecimiento
Salinidad
Metales
T 40.23 A481e
Abiotic factors
Solanum lycopersicum
Growth promotion
Salinity
Metals
title_short Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
title_full Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
title_fullStr Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
title_full_unstemmed Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
title_sort Evaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la Guajira
dc.creator.fl_str_mv Amado Caro, Tatiana Milena
dc.contributor.advisor.spa.fl_str_mv Cuervo Soto, Laura
dc.contributor.author.spa.fl_str_mv Amado Caro, Tatiana Milena
dc.subject.es_ES.fl_str_mv Factores abióticos
Solanum lycopersicum
Promoción del crecimiento
Salinidad
Metales
topic Factores abióticos
Solanum lycopersicum
Promoción del crecimiento
Salinidad
Metales
T 40.23 A481e
Abiotic factors
Solanum lycopersicum
Growth promotion
Salinity
Metals
dc.subject.ddc.es_ES.fl_str_mv T 40.23 A481e
dc.subject.keyword.es_ES.fl_str_mv Abiotic factors
Solanum lycopersicum
Growth promotion
Salinity
Metals
description Tomato (Solanum lycopersicum) is considered one of the main vegetables in the world, thanks to its nutritional content. Due to climate change, tomato crops, like others, are potentially exposed to abiotic factors that have a negative effect on their productivity. In this work, the ability of B. amyloliquefaciens to promote plant growth of tomato exposed to salinity (0, 50, 100 and 150 mM) and stress by metals such as Cadmium, Cobalt, and Nickel at concentrations of 5 and 10 mM was evaluated. The results showed that plants with and without inoculum were affected at high salt concentrations (100 and 150 mM), with low values in fresh and dry weight variables of stem and root, compared to control plants without salinity. In the metals assay, it was observed that the presence of metals favored the growth of plants without inoculum
publishDate 2022
dc.date.issued.spa.fl_str_mv 2022-12-13
dc.date.accessioned.none.fl_str_mv 2023-04-15T16:43:43Z
dc.date.available.none.fl_str_mv 2023-04-15T16:43:43Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/7968
dc.identifier.bibliographicCitation.spa.fl_str_mv Aazami, M. A., Rasouli, F., & Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology, 21(1). https://doi.org/10.1186/S12870-021-03379-7
Akeel, A., & Jahan, A. (2020). Role of cobalt in plants: Its stress and alleviation. Contaminants in Agriculture: Sources, Impacts and Management, 339–357. https://doi.org/10.1007/978-3- 030-41552-5_17/TABLES/1
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 1–34. https://doi.org/10.3390/TOXICS9030042
Astroza Sepúlveda, G. D. (2018). Respuesta de plantas de tomate inoculadas con bacterias productoras de acc-deaminasa al estrés por salinidad. Http://Ezpbibliotecas.Udec.Cl/Login?Url=http://Tesisencap.Udec.Cl/Chillan/Agronomia/As troza_g. http://repositorio.udec.cl/jspui/handle/11594/1267
Bravo, D. (2022). Bacterial Cadmium-Immobilization Activity Measured by Isothermal Microcalorimetry in Cacao-Growing Soils From Colombia. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.910234
Cámara de comercio de Bogotá. (2015). manual tomate. en programa de apoyo agrícola y agroindustrial vicepresidencia de fortalecimiento empresarial cámara de comercio de bogotá. https:////efaidnbmnnnibpcajpcglclefindmkaj/https://bibliotecadigital.ccb.org.co/bitstream/ha ndle/11520/14307/tomate.pdf?sequence=1&isallowed=y
Chandrangsu, P., Rensing, C., & Helmann, J. D. (2017). Metal homeostasis and resistance in bacteria. Nature Reviews. Microbiology, 15(6), 338–350. https://doi.org/10.1038/NRMICRO.2017.15
Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833–2849. https://doi.org/10.1007/S13197-018-3221-Z/FIGURES/2
Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., & Zhang, R. (2017). Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 Induces Plant Salt Tolerance through Spermidine Production. Molecular Plant-Microbe Interactions : MPMI, 30(5), 423–432. https://doi.org/10.1094/MPMI-02-17-0027-R
Chi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., & Zhang, D. (2020). Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. The Science of the Total Environment, 741. https://doi.org/10.1016/J.SCITOTENV.2020.140422
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/7968
identifier_str_mv Aazami, M. A., Rasouli, F., & Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology, 21(1). https://doi.org/10.1186/S12870-021-03379-7
Akeel, A., & Jahan, A. (2020). Role of cobalt in plants: Its stress and alleviation. Contaminants in Agriculture: Sources, Impacts and Management, 339–357. https://doi.org/10.1007/978-3- 030-41552-5_17/TABLES/1
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 1–34. https://doi.org/10.3390/TOXICS9030042
Astroza Sepúlveda, G. D. (2018). Respuesta de plantas de tomate inoculadas con bacterias productoras de acc-deaminasa al estrés por salinidad. Http://Ezpbibliotecas.Udec.Cl/Login?Url=http://Tesisencap.Udec.Cl/Chillan/Agronomia/As troza_g. http://repositorio.udec.cl/jspui/handle/11594/1267
Bravo, D. (2022). Bacterial Cadmium-Immobilization Activity Measured by Isothermal Microcalorimetry in Cacao-Growing Soils From Colombia. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.910234
Cámara de comercio de Bogotá. (2015). manual tomate. en programa de apoyo agrícola y agroindustrial vicepresidencia de fortalecimiento empresarial cámara de comercio de bogotá. https:////efaidnbmnnnibpcajpcglclefindmkaj/https://bibliotecadigital.ccb.org.co/bitstream/ha ndle/11520/14307/tomate.pdf?sequence=1&isallowed=y
Chandrangsu, P., Rensing, C., & Helmann, J. D. (2017). Metal homeostasis and resistance in bacteria. Nature Reviews. Microbiology, 15(6), 338–350. https://doi.org/10.1038/NRMICRO.2017.15
Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833–2849. https://doi.org/10.1007/S13197-018-3221-Z/FIGURES/2
Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., & Zhang, R. (2017). Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 Induces Plant Salt Tolerance through Spermidine Production. Molecular Plant-Microbe Interactions : MPMI, 30(5), 423–432. https://doi.org/10.1094/MPMI-02-17-0027-R
Chi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., & Zhang, D. (2020). Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. The Science of the Total Environment, 741. https://doi.org/10.1016/J.SCITOTENV.2020.140422
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/c72f0ae3-dbe4-423e-a796-6f873524380b/download
https://repositorio.uan.edu.co/bitstreams/54641a44-8951-4327-bf8f-fe4fce6a9a84/download
https://repositorio.uan.edu.co/bitstreams/7ce6c026-b68a-48c3-a100-dffd724d6b01/download
https://repositorio.uan.edu.co/bitstreams/1c653c19-b2f9-4b09-ad18-0e4e043ca45d/download
bitstream.checksum.fl_str_mv 3d75ce9b06f4ecc05df17b93ec73b495
6e8879ad5791de712ffa2a53835a2321
7381c4670dfe08d96fd310a880e3137d
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928327149682688
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cuervo Soto, LauraAmado Caro, Tatiana Milena118218241752023-04-15T16:43:43Z2023-04-15T16:43:43Z2022-12-13http://repositorio.uan.edu.co/handle/123456789/7968Aazami, M. A., Rasouli, F., & Ebrahimzadeh, A. (2021). Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biology, 21(1). https://doi.org/10.1186/S12870-021-03379-7Akeel, A., & Jahan, A. (2020). Role of cobalt in plants: Its stress and alleviation. Contaminants in Agriculture: Sources, Impacts and Management, 339–357. https://doi.org/10.1007/978-3- 030-41552-5_17/TABLES/1Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 1–34. https://doi.org/10.3390/TOXICS9030042Astroza Sepúlveda, G. D. (2018). Respuesta de plantas de tomate inoculadas con bacterias productoras de acc-deaminasa al estrés por salinidad. Http://Ezpbibliotecas.Udec.Cl/Login?Url=http://Tesisencap.Udec.Cl/Chillan/Agronomia/As troza_g. http://repositorio.udec.cl/jspui/handle/11594/1267Bravo, D. (2022). Bacterial Cadmium-Immobilization Activity Measured by Isothermal Microcalorimetry in Cacao-Growing Soils From Colombia. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.910234Cámara de comercio de Bogotá. (2015). manual tomate. en programa de apoyo agrícola y agroindustrial vicepresidencia de fortalecimiento empresarial cámara de comercio de bogotá. https:////efaidnbmnnnibpcajpcglclefindmkaj/https://bibliotecadigital.ccb.org.co/bitstream/ha ndle/11520/14307/tomate.pdf?sequence=1&isallowed=yChandrangsu, P., Rensing, C., & Helmann, J. D. (2017). Metal homeostasis and resistance in bacteria. Nature Reviews. Microbiology, 15(6), 338–350. https://doi.org/10.1038/NRMICRO.2017.15Chaudhary, P., Sharma, A., Singh, B., & Nagpal, A. K. (2018). Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology, 55(8), 2833–2849. https://doi.org/10.1007/S13197-018-3221-Z/FIGURES/2Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., & Zhang, R. (2017). Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 Induces Plant Salt Tolerance through Spermidine Production. Molecular Plant-Microbe Interactions : MPMI, 30(5), 423–432. https://doi.org/10.1094/MPMI-02-17-0027-RChi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., & Zhang, D. (2020). Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. The Science of the Total Environment, 741. https://doi.org/10.1016/J.SCITOTENV.2020.140422instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Tomato (Solanum lycopersicum) is considered one of the main vegetables in the world, thanks to its nutritional content. Due to climate change, tomato crops, like others, are potentially exposed to abiotic factors that have a negative effect on their productivity. In this work, the ability of B. amyloliquefaciens to promote plant growth of tomato exposed to salinity (0, 50, 100 and 150 mM) and stress by metals such as Cadmium, Cobalt, and Nickel at concentrations of 5 and 10 mM was evaluated. The results showed that plants with and without inoculum were affected at high salt concentrations (100 and 150 mM), with low values in fresh and dry weight variables of stem and root, compared to control plants without salinity. In the metals assay, it was observed that the presence of metals favored the growth of plants without inoculumEl tomate (Solanum lycopersicum), es considerada una de las principales hortalizas en el mundo, gracias a su contenido nutricional. Debido al cambio climático, el cultivo de tomate como otros son potencialmente expuestos a factores abióticos que ejercen un efecto negativo en su productividad. En este trabajo se evaluó la capacidad de B. amyloliquefaciens para promover el crecimiento vegetal de tomate expuesto a salinidad (0, 50, 100 y 150 mM) y estrés por metales como Cadmio, Cobalto y Níquel en concentraciones de 5 y 10 mM. Los resultados mostraron que las plantas con y sin inóculo se vieron afectadas a altas concentraciones de sal (100 y 150 mM), con valores bajos en las variables de peso fresco y seco de tallo y raíz, respecto a las plantas control sin salinidad. En el ensayo de metales, se observó que la presencia de metales favoreció el crecimiento de las plantas sin inóculo. En las plantas más inóculo, se observó que B. amyloliquefaciens promovió el crecimiento de tomate, mitigando el efecto de Cd a 5 mM, con valores de peso fresco de raíz y tallo mayores a los obtenidos en las plantas control con y sin inóculoBioquímico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarFactores abióticosSolanum lycopersicumPromoción del crecimientoSalinidadMetalesT 40.23 A481eAbiotic factorsSolanum lycopersicumGrowth promotionSalinityMetalsEvaluación y mitigación de factores abióticos en plantas de tomate (Solanum lycopersicum) por B. amyloliquefaciens aisladas de un ambiente semiárido de la GuajiraTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_TatianaMilenaAmadoCaro.pdf2023_TatianaMilenaAmadoCaro.pdfapplication/pdf1007376https://repositorio.uan.edu.co/bitstreams/c72f0ae3-dbe4-423e-a796-6f873524380b/download3d75ce9b06f4ecc05df17b93ec73b495MD522023_TatianaMilenaAmadoCaro_Acta.pdf2023_TatianaMilenaAmadoCaro_Acta.pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.document22176https://repositorio.uan.edu.co/bitstreams/54641a44-8951-4327-bf8f-fe4fce6a9a84/download6e8879ad5791de712ffa2a53835a2321MD532023_TatianaMilenaAmadoCaro_Autorización.pdf2023_TatianaMilenaAmadoCaro_Autorización.pdfapplication/pdf1049234https://repositorio.uan.edu.co/bitstreams/7ce6c026-b68a-48c3-a100-dffd724d6b01/download7381c4670dfe08d96fd310a880e3137dMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/1c653c19-b2f9-4b09-ad18-0e4e043ca45d/download9868ccc48a14c8d591352b6eaf7f6239MD56123456789/7968oai:repositorio.uan.edu.co:123456789/79682024-10-09 22:51:58.727https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co