Estimación Bayesiana para el cálculo del Valor en Riesgo (VaR) en modelos de series financieras con relaciones de dependencia no lineal en Colombia

El Valor en Riesgo (VaR), se define como la máxima perdida que se puede tener en la inversión de un portafolio con un determinado nivel de confianza, en un periodo determinado, en condiciones normales del mercado. Para calcularlo, existen diversas herramientas paramétricas y no paramétricas que se f...

Full description

Autores:
Triana, Daniel
Torres Aponte, Luis Miguel
Alba, Miguel Ángel
Pineda Ríos, Wilmer
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Santo Tomás
Repositorio:
Universidad Santo Tomás
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/14885
Acceso en línea:
https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/9
Palabra clave:
Valor en riesgo, cópulas, dependencia no lineal.
Rights
License
Copyright (c) 2018 Comunicaciones en Estadística
Description
Summary:El Valor en Riesgo (VaR), se define como la máxima perdida que se puede tener en la inversión de un portafolio con un determinado nivel de confianza, en un periodo determinado, en condiciones normales del mercado. Para calcularlo, existen diversas herramientas paramétricas y no paramétricas que se fundamentan en el supuesto de que los rendimientos de los activos siguen una distribución de probabilidad (con frecuencia la distribución Normal). Por su parte las copulas, vistas como funciones de distribución multivariadas, capturan las relaciones de dependencia diferentes a las lineales, ayudando a condensar la volatilidad de los activos multivariados que usualmente presentan comportamientos complejos de dependencia. Este trabajo presenta la implementación de la teoría de copulas bajo estándares del paradigma bayesiano con el objetivo de obtener la distribución de probabilidad que permita una correcta estimación del VaR de un portafolio comprendido por las acciones de Bancolombia y Ecopetrol.