Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos

Este proyecto de grado presenta el diseño y desarrollo de un robot móvil omnidireccional que brinde capacidades de movilidad a robots sociales y actuadores robóticos. Se detalla el diseño mecánico, electrónico y de software necesarios para el funcionamiento del robot. Se realizan los cálculos de cin...

Full description

Autores:
Rozo Manrique, Tatiana Andrea
Pallares Olivares, Brayan Stiven
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/34735
Acceso en línea:
http://hdl.handle.net/11634/34735
Palabra clave:
SLAM
Mechatronic systems and robotics
Cost-oriented automation
Intelligent systems and applications
Social robotics
Mobile Robot
Sistemas inteligentes y aplicaciones
Robot móvil
Automatización orientada al costo
SLAM
Sistemas mecatrónicos y robótica
Robótica social
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_e255af2359b78493ead879499e498717
oai_identifier_str oai:repository.usta.edu.co:11634/34735
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos
title Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos
spellingShingle Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos
SLAM
Mechatronic systems and robotics
Cost-oriented automation
Intelligent systems and applications
Social robotics
Mobile Robot
Sistemas inteligentes y aplicaciones
Robot móvil
Automatización orientada al costo
SLAM
Sistemas mecatrónicos y robótica
Robótica social
title_short Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos
title_full Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos
title_fullStr Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos
title_full_unstemmed Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos
title_sort Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos
dc.creator.fl_str_mv Rozo Manrique, Tatiana Andrea
Pallares Olivares, Brayan Stiven
dc.contributor.advisor.none.fl_str_mv Calderon Chavez, Juan Manuel
Guarnizo Marin, Jose Guillermo
Camacho Poveda, Edgar Camilo
dc.contributor.author.none.fl_str_mv Rozo Manrique, Tatiana Andrea
Pallares Olivares, Brayan Stiven
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-4471-3980
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000380938
dc.subject.keyword.spa.fl_str_mv SLAM
Mechatronic systems and robotics
Cost-oriented automation
Intelligent systems and applications
Social robotics
Mobile Robot
topic SLAM
Mechatronic systems and robotics
Cost-oriented automation
Intelligent systems and applications
Social robotics
Mobile Robot
Sistemas inteligentes y aplicaciones
Robot móvil
Automatización orientada al costo
SLAM
Sistemas mecatrónicos y robótica
Robótica social
dc.subject.lemb.spa.fl_str_mv Sistemas inteligentes y aplicaciones
Robot móvil
Automatización orientada al costo
dc.subject.proposal.spa.fl_str_mv SLAM
Sistemas mecatrónicos y robótica
Robótica social
description Este proyecto de grado presenta el diseño y desarrollo de un robot móvil omnidireccional que brinde capacidades de movilidad a robots sociales y actuadores robóticos. Se detalla el diseño mecánico, electrónico y de software necesarios para el funcionamiento del robot. Se realizan los cálculos de cinemática y odometría para el movimiento del robot y se implementa el algoritmo de SLAM, RTAB-Map, que le permite al robot realizar mapas de entornos domésticos, localizarse y navegar en ellos. Como producto final se presenta: el diseño y modelo 3D del robot, un repositorio con los paquetes desarrollados en ROS y el robot construido.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-03T05:45:23Z
dc.date.available.none.fl_str_mv 2021-07-03T05:45:23Z
dc.date.issued.none.fl_str_mv 2021-06-28
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Pallares, B.S. & Rozo, T. A. (2021). Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos.. [Trabajo de pregrado, Universidad Santo Tomas]. Repositorio Institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/34735
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Pallares, B.S. & Rozo, T. A. (2021). Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos.. [Trabajo de pregrado, Universidad Santo Tomas]. Repositorio Institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/34735
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Carlos Quintero, Saith Rodríguez, Katherín Pérez, Jorge López,Eyberth Rojas, and Juan Calderón. Learning soccer drills for thesmall size league of robocup. InRobot Soccer World Cup, pages 395–406. Springer, 2014.
Saith Rodríguez, Eyberth Rojas, Katherín Pérez, Jorge López, CarlosQuintero, and Juan Calderón. Fast path planning algorithm for therobocup small size league. InRobot Soccer World Cup, pages 407–418.Springer, 2014.
Gustavo A Cardona, Wilfrido Moreno, Alfredo Weitzenfeld, andJuan M Calderon. Reduction of impact force in falling robots usingvariable stiffness. InSoutheastCon 2016, pages 1–6. IEEE, 2016.
Ercan Elibol, Juan Calderon, Martin Llofriu, Carlos Quintero,Wilfrido Moreno, and Alfredo Weitzenfeld. Power usage reductionof humanoid standing process using q-learning. InRobot Soccer WorldCup, pages 251–263. Springer, 2015.
Ercan Elibol, Juan Calderon, Martin Llofriu, Wilfrido Moreno, andAlfredo Weitzenfeld.Analyzing and reducing energy usage ina humanoid robot during standing up and sitting down tasks.International Journal of Humanoid Robotics, 13(04):1650014, 2016.
Juan Calderon, Gustavo A Cardona, Martin Llofriu, Muhaimen Shamsi, Fallon Williams, Wilfrido Moreno, and Alfredo Weitzenfeld. Impact force reduction using variable stiffness with an optimal approach for falling robots. In Robot World Cup, pages 404–415. Springer, 2016.
Juan M Calderon, Eyberth R Rojas, Saith Rodriguez, Heyson R Baez, and Jorge A Lopez. A robot soccer team as a strategy to develop educational iniciatives. In Latin American and Caribbean Conference for Engineering and Technology, Panama City, Panama, 2012.
Jose Guillermo Guarnizo Marin, Glen Camilo Ortega Díaz, Andrés Felipe Téllez Rodríguez, and Édgar Camilo Camacho Poveda. Entorno pedagógico para la enseñanza en básica primaria mediante el uso de sistema robótico comercial. Ingeniería, 26(1), 2021.
Heyson Báez, Katherin Perez, Eyberth Rojas, Saith Rodriguez, Jorge López, Carlos Quintero, and Juan Manuel Calderón. Application of an educational strategy based on a soccer robotic platform. In 2013 16th International Conference on Advanced Robotics (ICAR), pages 1–6. IEEE, 2013.
Carolina Higuera, Fernando Lozano, Edgar Camilo Camacho, and Carlos Hernando Higuera. Multiagent reinforcement learning applied to traffic light signal control. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 115– 126. Springer, 2019.
Wilson O Quesada, Jonathan I Rodriguez, Juan C Murillo, Gustavo A Cardona, David Yanguas-Rojas, Luis G Jaimes, and Juan M Calderón. Leader-follower formation for uav robot swarm based on fuzzy logic theory. In International Conference on Artificial Intelligence and Soft Computing, pages 740–751. Springer, 2018.
Jose León, Gustavo A Cardona, Andres Botello, and Juan M Calderón. Robot swarms theory applicable to seek and rescue operation. In International Conference on Intelligent Systems Design and Applications, pages 1061–1070. Springer, 2016.
Juan Calderon, Alexa Obando, and Diego Jaimes. Road detection algorithm for an autonomous ugv based on monocular vision. In Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007), pages 253–259. IEEE, 2007.
Jose Guillermo Guarnizo and Luis Fernando Niño. Clonal selection algorithm applied to object recognition in mobile robots. In MLDM (1), pages 49–62, 2019.
Sindy Amaya and Armando Mateus. Tasks allocation for rescue robotics: a replicator dynamics approach. In International Conference on Artificial Intelligence and Soft Computing, pages 609–621. Springer, 2019.
Yeison Suarez, Carolina Higuera, and Edgar Camilo Camacho. Inverse reinforcement learning application for discrete and continuous environments. In International Conference on Advanced Engineering Theory and Applications, pages 345–355. Springer, 2019.
P Nuñez, P Bustos, E Jaramillo, Pilar Bachiller, and Ismael García Varea. Robots sociales para la mejora de la calidad de vida de las personas dependientes. In VI Congreso Iberoamericano de Tecnologías de Apoyo a la Discapacidad IBERDISCAP, volume 1, pages 94–103, 2011.
Wolfram Burgard, Armin B Cremers, Dieter Fox, Dirk Hähnel, Gerhard Lakemeyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. Experiences with an interactive museum tour-guide robot. Artificial intelligence, 114(1-2):3–55, 1999.
Mikael Svenstrup, Thomas Bak, and Hans Jørgen Andersen. Trajectory planning for robots in dynamic human environments. In Trajectory Planning for Robots in Dynamic Human Environments, I E E E International Conference on Intelligent Robots and Systems. Proceedings, pages 4293–4298. IEEE Press, 2010.
C. Wang, Y. Li, S. S. Ge, and T. H. Lee. Adaptive control for robot navigation in human environments based on social force model. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 5690–5695, May 2016.
U.S. Department of labor. American time use survey — 2018 results, 06 2019.
United Nations Department of Economic and Social Affairs. World Population Ageing 2019: Highlights. United Nations, 2019.
Rachid Alami, Alin Albu-Schäffer, Antonio Bicchi, Rainer Bischoff, Raja Chatila, Alessandro De Luca, Agostino De Santis, Georges Giralt, Jérémie Guiochet, Gerd Hirzinger, et al. Safe and dependable physical human-robot interaction in anthropic domains: State of the art and challenges. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1–16. IEEE, 2006.
Roland Siegwart, Illah R Nourbakhsh, and Davide Scaramuzza. Autonomous mobile robots. A Bradford Book, 2:15, 2011.
Priska Flandorfer. Population ageing and socially assistive robots for elderly persons: The importance of sociodemographic factors for user acceptance. International Journal of Population Research, page 13, 2012.
Biel Piero E. Alvarado Vásquez and Fernando Matía. A tour guide robot: Moving towards interaction with humans. Engineering Applications of Artificial Intelligence, 88:103356, 2020.
A. K. Telkar and B. Gadgay. Iot based smart multi application surveillance robot. In 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pages 931–935, 2020.
Sangwon Park. Multifaceted trust in tourism service robots. Annals of Tourism Research, 81:102888, 2020.
Gustavo A Cardona and Juan M Calderon. Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations. Applied Sciences, 9(8):1702, 2019.
Juan M Calderon, Gustavo A Cardona, Juan Ramirez-Rugeles, and Eduardo Mojica-Nava. Visual victim detection and quadrotor-swarm coordination control in search and rescue environment. International Journal of Electrical & Computer Engineering (2088-8708), 11(3), 2021.
Evan Ackerman. Autonomous robots are helping kill coronavirus in hospitals. IEEE Spectrum, 11, 2020.
Liang Tang, Guanjun Liu, Min Yang, Feiyang Li, Fangping Ye, and Chenyu Li. Joint design and torque feedback experiment of rehabilitation robot. Advances in Mechanical Engineering, 12(5), 2020.
Liang Tang, Guanjun Liu, Min Yang, Feiyang Li, Fangping Ye, and Chenyu Li. Joint design and torque feedback experiment of rehabilitation robot. Advances in Mechanical Engineering, 12(5), 2020.
Mordechai Ben-Ari and Francesco Mondada. Robots and Their Applications, pages 1–20. Elements of Robotics. Springer, Cham., 01 2018.
X.Q. Chen, Y.Q. Chen, and J.G. Chase. Mobiles robots - past present and future. In XiaoQi Chen, Y.Q. Chen, and J.G. Chase, editors, Mobile Robots, chapter 1. IntechOpen, Rijeka, 2009.
Ioan Doroftei, Victor Grosu, and Veaceslav Spinu. Omnidirectional mobile robot - design and implementation. In Maki K. Habib, editor, Bioinspiration and Robotics, chapter 29. IntechOpen, Rijeka, 2007.
Jun Qian, Bin Zi, Daoming Wang, Yangang Ma, and Dan Zhang. The design and development of an omni-directional mobile robot oriented to an intelligent manufacturing system. Sensors, 17(9):2073, 2017.
Jefri Efendi Mohd Salih, Mohamed Rizon, Sazali Yaacob, Abdul Adom, and Mohd Mamat. Designing omni-directional mobile robot with mecanum wheel. American Journal of Applied Sciences, 3, 05 2006.
A. Gfrerrer. Geometry and kinematics of the mecanum wheel. Comput. Aided Geom. Des., 25(9):784–791, December 2008.
Bing Qiao Hamid Taheri and Nurallah Ghaeminezhad. Kinematic model of a four mecanum wheeled mobile robot, 2015.
TA Baede. Motion control of an omnidirectional mobile robot. Traineeship report DCT, 2006, 2006.
N. Tlale and M. de Villiers. Kinematics and dynamics modelling of a mecanum wheeled mobile platform. In 2008 15th International Conference on Mechatronics and Machine Vision in Practice, pages 657– 662, Dec 2008.
Chengcheng Wang, Xiaofeng Liu, Xianqiang Yang, Fang Hu, Aimin Jiang, and Chenguang Yang. Trajectory tracking of an omni directional wheeled mobile robot using a model predictive control strategy. Applied Sciences, 8:231, 02 2018.
Jun Qian, Bin Zi, Daoming Wang, Yangang Ma, and Dan Zhang. The design and development of an omni-directional mobile robot oriented to an intelligent manufacturing system. Sensors, 17(9):2073, 2017.
R. K. Panda and B. B. Choudhury. An effective path planning of mobile robot using genetic algorithm. In 2015 IEEE International Conference on Computational Intelligence Communication Technology, pages 287–291, Feb 2015.
M. Labbé and F. Michaud. Rtab-map as an open-source lidar and visual slam library for large-scale and long-term online operation. Field Robotics, 36:416–446, 09 2019.
Mathieu Labbé and François Michaud. Memory management for real-time appearance-based loop closure detection. In 2011 IEEE/RSJ international conference on intelligent robots and systems, pages 1271– 1276. IEEE, 2011.
M. Labbé and F. Michaud. Online global loop closure detection for large-scale multi-session graph-based slam. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2661– 2666, 2014.
M. Labbé and F. Michaud. Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Transactions on Robotics, 29(3):734–745, 2013.
Mathieu Labbe and François Michaud. Online global loop closure detection for large-scale multi-session graph-based slam. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2661–2666. IEEE, 2014.
Joshua Samuel P Siy, Robert Keith C Chan, and Renann G Baldovino. Implementation of a real-time appearance-based mapping in a fully autonomous urban search robot. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pages 1–4. IEEE, 2019.
Sagarnil Das. Simultaneous localization and mapping (slam) using rtab-map. ArXiv, abs/1809.02989, 2018.
M.S. Achmad, Gigih Priyandoko, R. Roali, and Mohd Daud. Tele operated mobile robot for 3d visual inspection utilizing distributed operating system platform. International Journal of Vehicle Structures and Systems, 9, 09 2017.
N. ALPKIRAY, Y. TORUN, and O. KAYNAR. Probabilistic roadmap and artificial bee colony algorithm cooperation for path planning. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pages 1–6, Sep. 2018.
] German Carro Fernandez, Sergio Martin Gutierrez, Elio Sancristobal Ruiz, Francisco Mur Perez, and Manuel Castro Gil. Robotics, the new industrial revolution. IEEE Technology and Society Magazine, 31(2):51– 58, 2012.
industrial revolution. IEEE Technology and Society Magazine, 31(2):51– 58, 2012.
Frank Hegel, Claudia Muhl, Britta Wrede, Martina Hielscher Fastabend, and Gerhard Sagerer. Understanding social robots. In 2009 Second International Conferences on Advances in Computer-Human Interactions, pages 169–174, 2009.
Gang-Tae Bae, Seung-Won Kim, Dongeun Choi, Changhyun Cho, Woo-Sub Lee, and Sung-Chul Kang. Omni-directional power-assist modular(pam) mobile robot for total nursing service system. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pages 832–834, 2017.
Hamid Taheri, Bing Qiao, and Nurallah Ghaeminezhad. Kinematic model of a four mecanum wheeled mobile robot. International journal of computer applications, 113(3):6–9, 2015.
Debashree Sengupta, Neha Jain, and C. S. Kumar. An educational website on kinematics of robots. In 2013 IEEE Fifth International Conference on Technology for Education (t4e 2013), pages 24–27, 2013.
E. Maulana, M. A. Muslim, and V. Hendrayawan. Inverse kinematic implementation of four-wheels mecanum drive mobile robot using stepper motors. In 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), pages 51–56, 2015.
E. Maulana, M. A. Muslim, and V. Hendrayawan. Inverse kinematic implementation of four-wheels mecanum drive mobile robot using stepper motors. In 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), pages 51–56, 2015.
Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.
M. Labbé and F. Michaud. Memory management for real time appearance-based loop closure detection. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1271– 1276, 2011.
Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation: LabbÉ and michaud. Journal of Field Robotics, 36, 10 2018.
Evgeny Tsykunov, Valery Ilin, Stepan Perminov, Aleksey Fedoseev, and Elvira Zainulina. Coupling of localization and depth data for mapping using intel realsense t265 and d435i cameras. arXiv preprint arXiv:2004.00269, 2020.
Nicolás Alvarez Casadiego, Mario Armando Segura Albarracin, et al. Implementación de algoritmos filtro de kalman y filtro de partículas para localización y mapeo simultáneo aplicado a un robot móvil en ambientes interiores con variaciones de iluminación.
Kanjanapan Sukvichai, Kandith Wongsuwan, Nut Kaewnark, and Piyamate Wisanuvej. Implementation of visual odometry estimation for underwater robot on ros by using raspberrypi 2. In 2016 International Conference on Electronics, Information, and Communications (ICEIC), pages 1–4. IEEE, 2016.
M. Quigley. Ros: an open-source robot operating system. In ICRA 2009, 2009.
Intel RealSense. D400 Series Product Family, 2019.
Intel RealSense. Intel real sense depth camera d435, November 2008.
Intel RealSense. Tracking Camera, 2019.
Intel RealSense. Intel realsense tracking camera t265, November 2008.
PM Meshram and Rohit G Kanojiya. Tuning of pid controller using ziegler-nichols method for speed control of dc motor. In IEEE-international conference on advances in engineering, science and management (ICAESM-2012), pages 117–122. IEEE, 2012.
Bing Qiao Hamid Taheri and Nurallah Ghaeminezhad. Kinematic model of a four mecanum wheeled mobile robot, 2015.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/34735/4/2021tatianarozo.pdf
https://repository.usta.edu.co/bitstream/11634/34735/5/Carta_aprobacion_Biblioteca.%20ROZO%20Y%20PALLARES.pdf
https://repository.usta.edu.co/bitstream/11634/34735/6/Carta%20derechos%20autor.pdf
https://repository.usta.edu.co/bitstream/11634/34735/7/license_rdf
https://repository.usta.edu.co/bitstream/11634/34735/8/license.txt
https://repository.usta.edu.co/bitstream/11634/34735/9/2021tatianarozo.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/34735/10/Carta_aprobacion_Biblioteca.%20ROZO%20Y%20PALLARES.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/34735/11/Carta%20derechos%20autor.pdf.jpg
bitstream.checksum.fl_str_mv 44ae453b37f4c7dd19136faac294d33a
4bb215d78a41c2db010ca7cc6dd6c32d
6a2e5f28d692d10c8f1707005a4b43a2
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
f0481fa5871f1d092139e7b2445340cb
4cb114c26775093a4cf3fa04c94f8bf8
aa3202c242a0361e05fe291f46968822
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026404567711744
spelling Calderon Chavez, Juan ManuelGuarnizo Marin, Jose GuillermoCamacho Poveda, Edgar CamiloRozo Manrique, Tatiana AndreaPallares Olivares, Brayan Stivenhttps://orcid.org/0000-0002-4471-3980https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00003809382021-07-03T05:45:23Z2021-07-03T05:45:23Z2021-06-28Pallares, B.S. & Rozo, T. A. (2021). Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticos.. [Trabajo de pregrado, Universidad Santo Tomas]. Repositorio Institucional.http://hdl.handle.net/11634/34735reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEste proyecto de grado presenta el diseño y desarrollo de un robot móvil omnidireccional que brinde capacidades de movilidad a robots sociales y actuadores robóticos. Se detalla el diseño mecánico, electrónico y de software necesarios para el funcionamiento del robot. Se realizan los cálculos de cinemática y odometría para el movimiento del robot y se implementa el algoritmo de SLAM, RTAB-Map, que le permite al robot realizar mapas de entornos domésticos, localizarse y navegar en ellos. Como producto final se presenta: el diseño y modelo 3D del robot, un repositorio con los paquetes desarrollados en ROS y el robot construido.This degree project presents the design and development of an omnidirectional mobile robot that provides mobility capabilities to social robots and robotic actuators. The mechanical, electronic and software design necessary for the operation of the robot is detailed. The kinematics and odometry calculations for the robot's movement are performed and the SLAM algorithm, RTAB-Map, is implemented, which allows the robot to map, locate and navigate in domestic environments. The final product is presented: the design and 3D model of the robot, a repository with the packages developed in ROS and the built robot.Ingeniero Electronicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 ColombiaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diseño y construcción de un robot móvil autónomo para localización y mapeo simultáneos (SLAM) en ambientes cerrados domésticosSLAMMechatronic systems and roboticsCost-oriented automationIntelligent systems and applicationsSocial roboticsMobile RobotSistemas inteligentes y aplicacionesRobot móvilAutomatización orientada al costoSLAMSistemas mecatrónicos y robóticaRobótica socialTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáCarlos Quintero, Saith Rodríguez, Katherín Pérez, Jorge López,Eyberth Rojas, and Juan Calderón. Learning soccer drills for thesmall size league of robocup. InRobot Soccer World Cup, pages 395–406. Springer, 2014.Saith Rodríguez, Eyberth Rojas, Katherín Pérez, Jorge López, CarlosQuintero, and Juan Calderón. Fast path planning algorithm for therobocup small size league. InRobot Soccer World Cup, pages 407–418.Springer, 2014.Gustavo A Cardona, Wilfrido Moreno, Alfredo Weitzenfeld, andJuan M Calderon. Reduction of impact force in falling robots usingvariable stiffness. InSoutheastCon 2016, pages 1–6. IEEE, 2016.Ercan Elibol, Juan Calderon, Martin Llofriu, Carlos Quintero,Wilfrido Moreno, and Alfredo Weitzenfeld. Power usage reductionof humanoid standing process using q-learning. InRobot Soccer WorldCup, pages 251–263. Springer, 2015.Ercan Elibol, Juan Calderon, Martin Llofriu, Wilfrido Moreno, andAlfredo Weitzenfeld.Analyzing and reducing energy usage ina humanoid robot during standing up and sitting down tasks.International Journal of Humanoid Robotics, 13(04):1650014, 2016.Juan Calderon, Gustavo A Cardona, Martin Llofriu, Muhaimen Shamsi, Fallon Williams, Wilfrido Moreno, and Alfredo Weitzenfeld. Impact force reduction using variable stiffness with an optimal approach for falling robots. In Robot World Cup, pages 404–415. Springer, 2016.Juan M Calderon, Eyberth R Rojas, Saith Rodriguez, Heyson R Baez, and Jorge A Lopez. A robot soccer team as a strategy to develop educational iniciatives. In Latin American and Caribbean Conference for Engineering and Technology, Panama City, Panama, 2012.Jose Guillermo Guarnizo Marin, Glen Camilo Ortega Díaz, Andrés Felipe Téllez Rodríguez, and Édgar Camilo Camacho Poveda. Entorno pedagógico para la enseñanza en básica primaria mediante el uso de sistema robótico comercial. Ingeniería, 26(1), 2021.Heyson Báez, Katherin Perez, Eyberth Rojas, Saith Rodriguez, Jorge López, Carlos Quintero, and Juan Manuel Calderón. Application of an educational strategy based on a soccer robotic platform. In 2013 16th International Conference on Advanced Robotics (ICAR), pages 1–6. IEEE, 2013.Carolina Higuera, Fernando Lozano, Edgar Camilo Camacho, and Carlos Hernando Higuera. Multiagent reinforcement learning applied to traffic light signal control. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 115– 126. Springer, 2019.Wilson O Quesada, Jonathan I Rodriguez, Juan C Murillo, Gustavo A Cardona, David Yanguas-Rojas, Luis G Jaimes, and Juan M Calderón. Leader-follower formation for uav robot swarm based on fuzzy logic theory. In International Conference on Artificial Intelligence and Soft Computing, pages 740–751. Springer, 2018.Jose León, Gustavo A Cardona, Andres Botello, and Juan M Calderón. Robot swarms theory applicable to seek and rescue operation. In International Conference on Intelligent Systems Design and Applications, pages 1061–1070. Springer, 2016.Juan Calderon, Alexa Obando, and Diego Jaimes. Road detection algorithm for an autonomous ugv based on monocular vision. In Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007), pages 253–259. IEEE, 2007.Jose Guillermo Guarnizo and Luis Fernando Niño. Clonal selection algorithm applied to object recognition in mobile robots. In MLDM (1), pages 49–62, 2019.Sindy Amaya and Armando Mateus. Tasks allocation for rescue robotics: a replicator dynamics approach. In International Conference on Artificial Intelligence and Soft Computing, pages 609–621. Springer, 2019.Yeison Suarez, Carolina Higuera, and Edgar Camilo Camacho. Inverse reinforcement learning application for discrete and continuous environments. In International Conference on Advanced Engineering Theory and Applications, pages 345–355. Springer, 2019.P Nuñez, P Bustos, E Jaramillo, Pilar Bachiller, and Ismael García Varea. Robots sociales para la mejora de la calidad de vida de las personas dependientes. In VI Congreso Iberoamericano de Tecnologías de Apoyo a la Discapacidad IBERDISCAP, volume 1, pages 94–103, 2011.Wolfram Burgard, Armin B Cremers, Dieter Fox, Dirk Hähnel, Gerhard Lakemeyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. Experiences with an interactive museum tour-guide robot. Artificial intelligence, 114(1-2):3–55, 1999.Mikael Svenstrup, Thomas Bak, and Hans Jørgen Andersen. Trajectory planning for robots in dynamic human environments. In Trajectory Planning for Robots in Dynamic Human Environments, I E E E International Conference on Intelligent Robots and Systems. Proceedings, pages 4293–4298. IEEE Press, 2010.C. Wang, Y. Li, S. S. Ge, and T. H. Lee. Adaptive control for robot navigation in human environments based on social force model. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 5690–5695, May 2016.U.S. Department of labor. American time use survey — 2018 results, 06 2019.United Nations Department of Economic and Social Affairs. World Population Ageing 2019: Highlights. United Nations, 2019.Rachid Alami, Alin Albu-Schäffer, Antonio Bicchi, Rainer Bischoff, Raja Chatila, Alessandro De Luca, Agostino De Santis, Georges Giralt, Jérémie Guiochet, Gerd Hirzinger, et al. Safe and dependable physical human-robot interaction in anthropic domains: State of the art and challenges. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1–16. IEEE, 2006.Roland Siegwart, Illah R Nourbakhsh, and Davide Scaramuzza. Autonomous mobile robots. A Bradford Book, 2:15, 2011.Priska Flandorfer. Population ageing and socially assistive robots for elderly persons: The importance of sociodemographic factors for user acceptance. International Journal of Population Research, page 13, 2012.Biel Piero E. Alvarado Vásquez and Fernando Matía. A tour guide robot: Moving towards interaction with humans. Engineering Applications of Artificial Intelligence, 88:103356, 2020.A. K. Telkar and B. Gadgay. Iot based smart multi application surveillance robot. In 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pages 931–935, 2020.Sangwon Park. Multifaceted trust in tourism service robots. Annals of Tourism Research, 81:102888, 2020.Gustavo A Cardona and Juan M Calderon. Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations. Applied Sciences, 9(8):1702, 2019.Juan M Calderon, Gustavo A Cardona, Juan Ramirez-Rugeles, and Eduardo Mojica-Nava. Visual victim detection and quadrotor-swarm coordination control in search and rescue environment. International Journal of Electrical & Computer Engineering (2088-8708), 11(3), 2021.Evan Ackerman. Autonomous robots are helping kill coronavirus in hospitals. IEEE Spectrum, 11, 2020.Liang Tang, Guanjun Liu, Min Yang, Feiyang Li, Fangping Ye, and Chenyu Li. Joint design and torque feedback experiment of rehabilitation robot. Advances in Mechanical Engineering, 12(5), 2020.Liang Tang, Guanjun Liu, Min Yang, Feiyang Li, Fangping Ye, and Chenyu Li. Joint design and torque feedback experiment of rehabilitation robot. Advances in Mechanical Engineering, 12(5), 2020.Mordechai Ben-Ari and Francesco Mondada. Robots and Their Applications, pages 1–20. Elements of Robotics. Springer, Cham., 01 2018.X.Q. Chen, Y.Q. Chen, and J.G. Chase. Mobiles robots - past present and future. In XiaoQi Chen, Y.Q. Chen, and J.G. Chase, editors, Mobile Robots, chapter 1. IntechOpen, Rijeka, 2009.Ioan Doroftei, Victor Grosu, and Veaceslav Spinu. Omnidirectional mobile robot - design and implementation. In Maki K. Habib, editor, Bioinspiration and Robotics, chapter 29. IntechOpen, Rijeka, 2007.Jun Qian, Bin Zi, Daoming Wang, Yangang Ma, and Dan Zhang. The design and development of an omni-directional mobile robot oriented to an intelligent manufacturing system. Sensors, 17(9):2073, 2017.Jefri Efendi Mohd Salih, Mohamed Rizon, Sazali Yaacob, Abdul Adom, and Mohd Mamat. Designing omni-directional mobile robot with mecanum wheel. American Journal of Applied Sciences, 3, 05 2006.A. Gfrerrer. Geometry and kinematics of the mecanum wheel. Comput. Aided Geom. Des., 25(9):784–791, December 2008.Bing Qiao Hamid Taheri and Nurallah Ghaeminezhad. Kinematic model of a four mecanum wheeled mobile robot, 2015.TA Baede. Motion control of an omnidirectional mobile robot. Traineeship report DCT, 2006, 2006.N. Tlale and M. de Villiers. Kinematics and dynamics modelling of a mecanum wheeled mobile platform. In 2008 15th International Conference on Mechatronics and Machine Vision in Practice, pages 657– 662, Dec 2008.Chengcheng Wang, Xiaofeng Liu, Xianqiang Yang, Fang Hu, Aimin Jiang, and Chenguang Yang. Trajectory tracking of an omni directional wheeled mobile robot using a model predictive control strategy. Applied Sciences, 8:231, 02 2018.Jun Qian, Bin Zi, Daoming Wang, Yangang Ma, and Dan Zhang. The design and development of an omni-directional mobile robot oriented to an intelligent manufacturing system. Sensors, 17(9):2073, 2017.R. K. Panda and B. B. Choudhury. An effective path planning of mobile robot using genetic algorithm. In 2015 IEEE International Conference on Computational Intelligence Communication Technology, pages 287–291, Feb 2015.M. Labbé and F. Michaud. Rtab-map as an open-source lidar and visual slam library for large-scale and long-term online operation. Field Robotics, 36:416–446, 09 2019.Mathieu Labbé and François Michaud. Memory management for real-time appearance-based loop closure detection. In 2011 IEEE/RSJ international conference on intelligent robots and systems, pages 1271– 1276. IEEE, 2011.M. Labbé and F. Michaud. Online global loop closure detection for large-scale multi-session graph-based slam. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2661– 2666, 2014.M. Labbé and F. Michaud. Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Transactions on Robotics, 29(3):734–745, 2013.Mathieu Labbe and François Michaud. Online global loop closure detection for large-scale multi-session graph-based slam. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2661–2666. IEEE, 2014.Joshua Samuel P Siy, Robert Keith C Chan, and Renann G Baldovino. Implementation of a real-time appearance-based mapping in a fully autonomous urban search robot. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pages 1–4. IEEE, 2019.Sagarnil Das. Simultaneous localization and mapping (slam) using rtab-map. ArXiv, abs/1809.02989, 2018.M.S. Achmad, Gigih Priyandoko, R. Roali, and Mohd Daud. Tele operated mobile robot for 3d visual inspection utilizing distributed operating system platform. International Journal of Vehicle Structures and Systems, 9, 09 2017.N. ALPKIRAY, Y. TORUN, and O. KAYNAR. Probabilistic roadmap and artificial bee colony algorithm cooperation for path planning. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pages 1–6, Sep. 2018.] German Carro Fernandez, Sergio Martin Gutierrez, Elio Sancristobal Ruiz, Francisco Mur Perez, and Manuel Castro Gil. Robotics, the new industrial revolution. IEEE Technology and Society Magazine, 31(2):51– 58, 2012.industrial revolution. IEEE Technology and Society Magazine, 31(2):51– 58, 2012.Frank Hegel, Claudia Muhl, Britta Wrede, Martina Hielscher Fastabend, and Gerhard Sagerer. Understanding social robots. In 2009 Second International Conferences on Advances in Computer-Human Interactions, pages 169–174, 2009.Gang-Tae Bae, Seung-Won Kim, Dongeun Choi, Changhyun Cho, Woo-Sub Lee, and Sung-Chul Kang. Omni-directional power-assist modular(pam) mobile robot for total nursing service system. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pages 832–834, 2017.Hamid Taheri, Bing Qiao, and Nurallah Ghaeminezhad. Kinematic model of a four mecanum wheeled mobile robot. International journal of computer applications, 113(3):6–9, 2015.Debashree Sengupta, Neha Jain, and C. S. Kumar. An educational website on kinematics of robots. In 2013 IEEE Fifth International Conference on Technology for Education (t4e 2013), pages 24–27, 2013.E. Maulana, M. A. Muslim, and V. Hendrayawan. Inverse kinematic implementation of four-wheels mecanum drive mobile robot using stepper motors. In 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), pages 51–56, 2015.E. Maulana, M. A. Muslim, and V. Hendrayawan. Inverse kinematic implementation of four-wheels mecanum drive mobile robot using stepper motors. In 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), pages 51–56, 2015.Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.M. Labbé and F. Michaud. Memory management for real time appearance-based loop closure detection. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1271– 1276, 2011.Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation: LabbÉ and michaud. Journal of Field Robotics, 36, 10 2018.Evgeny Tsykunov, Valery Ilin, Stepan Perminov, Aleksey Fedoseev, and Elvira Zainulina. Coupling of localization and depth data for mapping using intel realsense t265 and d435i cameras. arXiv preprint arXiv:2004.00269, 2020.Nicolás Alvarez Casadiego, Mario Armando Segura Albarracin, et al. Implementación de algoritmos filtro de kalman y filtro de partículas para localización y mapeo simultáneo aplicado a un robot móvil en ambientes interiores con variaciones de iluminación.Kanjanapan Sukvichai, Kandith Wongsuwan, Nut Kaewnark, and Piyamate Wisanuvej. Implementation of visual odometry estimation for underwater robot on ros by using raspberrypi 2. In 2016 International Conference on Electronics, Information, and Communications (ICEIC), pages 1–4. IEEE, 2016.M. Quigley. Ros: an open-source robot operating system. In ICRA 2009, 2009.Intel RealSense. D400 Series Product Family, 2019.Intel RealSense. Intel real sense depth camera d435, November 2008.Intel RealSense. Tracking Camera, 2019.Intel RealSense. Intel realsense tracking camera t265, November 2008.PM Meshram and Rohit G Kanojiya. Tuning of pid controller using ziegler-nichols method for speed control of dc motor. In IEEE-international conference on advances in engineering, science and management (ICAESM-2012), pages 117–122. IEEE, 2012.Bing Qiao Hamid Taheri and Nurallah Ghaeminezhad. Kinematic model of a four mecanum wheeled mobile robot, 2015.ORIGINAL2021tatianarozo.pdf2021tatianarozo.pdfProyecto de grado - Tatiana Rozo y Brayan Pallares.application/pdf12197217https://repository.usta.edu.co/bitstream/11634/34735/4/2021tatianarozo.pdf44ae453b37f4c7dd19136faac294d33aMD54open accessCarta_aprobacion_Biblioteca. ROZO Y PALLARES.pdfCarta_aprobacion_Biblioteca. ROZO Y PALLARES.pdfCarta aprobación Bibliotecaapplication/pdf174753https://repository.usta.edu.co/bitstream/11634/34735/5/Carta_aprobacion_Biblioteca.%20ROZO%20Y%20PALLARES.pdf4bb215d78a41c2db010ca7cc6dd6c32dMD55metadata only accessCarta derechos autor.pdfCarta derechos autor.pdfCarta derechos autorapplication/pdf468221https://repository.usta.edu.co/bitstream/11634/34735/6/Carta%20derechos%20autor.pdf6a2e5f28d692d10c8f1707005a4b43a2MD56metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/34735/7/license_rdf217700a34da79ed616c2feb68d4c5e06MD57open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/34735/8/license.txtaedeaf396fcd827b537c73d23464fc27MD58open accessTHUMBNAIL2021tatianarozo.pdf.jpg2021tatianarozo.pdf.jpgIM Thumbnailimage/jpeg5864https://repository.usta.edu.co/bitstream/11634/34735/9/2021tatianarozo.pdf.jpgf0481fa5871f1d092139e7b2445340cbMD59open accessCarta_aprobacion_Biblioteca. ROZO Y PALLARES.pdf.jpgCarta_aprobacion_Biblioteca. ROZO Y PALLARES.pdf.jpgIM Thumbnailimage/jpeg6259https://repository.usta.edu.co/bitstream/11634/34735/10/Carta_aprobacion_Biblioteca.%20ROZO%20Y%20PALLARES.pdf.jpg4cb114c26775093a4cf3fa04c94f8bf8MD510open accessCarta derechos autor.pdf.jpgCarta derechos autor.pdf.jpgIM Thumbnailimage/jpeg7070https://repository.usta.edu.co/bitstream/11634/34735/11/Carta%20derechos%20autor.pdf.jpgaa3202c242a0361e05fe291f46968822MD511open access11634/34735oai:repository.usta.edu.co:11634/347352023-01-04 03:18:00.208open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K