Modelo de lealtad a partir de un análisis de ecuaciones estructurales

Para una compañía siempre ha sido importante la relación con sus clientes, por ello en diferentes trabajos se han planteado patrones para describir dicha asociación, en esta búsqueda ha cobrado relevancia el uso de modelos estadísticos que permiten establecer la forma en que interactúan las distinta...

Full description

Autores:
Romero, Gil Robert
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2015
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/468
Acceso en línea:
https://hdl.handle.net/11634/468
Palabra clave:
Statistics
Equations
Linear Models (Statistics)
Statistics
Estadística
Ecuaciones
Modelos lineales (Estadística)
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_bbe4f4a039dc819fb4fb60b0ecfdbea3
oai_identifier_str oai:repository.usta.edu.co:11634/468
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.eng.fl_str_mv Modelo de lealtad a partir de un análisis de ecuaciones estructurales
title Modelo de lealtad a partir de un análisis de ecuaciones estructurales
spellingShingle Modelo de lealtad a partir de un análisis de ecuaciones estructurales
Statistics
Equations
Linear Models (Statistics)
Statistics
Estadística
Ecuaciones
Modelos lineales (Estadística)
title_short Modelo de lealtad a partir de un análisis de ecuaciones estructurales
title_full Modelo de lealtad a partir de un análisis de ecuaciones estructurales
title_fullStr Modelo de lealtad a partir de un análisis de ecuaciones estructurales
title_full_unstemmed Modelo de lealtad a partir de un análisis de ecuaciones estructurales
title_sort Modelo de lealtad a partir de un análisis de ecuaciones estructurales
dc.creator.fl_str_mv Romero, Gil Robert
dc.contributor.advisor.none.fl_str_mv Babativa Márquez, Giovanny
dc.contributor.author.none.fl_str_mv Romero, Gil Robert
dc.subject.keyword.none.fl_str_mv Statistics
Equations
Linear Models (Statistics)
Statistics
topic Statistics
Equations
Linear Models (Statistics)
Statistics
Estadística
Ecuaciones
Modelos lineales (Estadística)
dc.subject.proposal.eng.fl_str_mv Estadística
Ecuaciones
Modelos lineales (Estadística)
description Para una compañía siempre ha sido importante la relación con sus clientes, por ello en diferentes trabajos se han planteado patrones para describir dicha asociación, en esta búsqueda ha cobrado relevancia el uso de modelos estadísticos que permiten establecer la forma en que interactúan las distintas variables que determinan el comportamiento de un cliente. Adicionalmente, también se ha analizado la causalidad y se ha encontrado un ciclo en el comportamiento de compra, así, cuando un cliente es más leal a una marca, mayor es su grado de recomendación y recompra hacia ésta. Así mismo, se ha buscado establecer la relación entre satisfacción y lealtad ya que no necesariamente un alto grado de satisfacción causa lealtad ni tampoco un alto grado de lealtad causa satisfacción.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-12-01T14:21:59Z
2017-02-13T19:31:02Z
dc.date.available.none.fl_str_mv 2015-12-01T14:21:59Z
2017-02-13T19:31:02Z
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.spa.fl_str_mv 2017-06-24T16:19:03Z
dc.date.available.spa.fl_str_mv 2017-06-24T16:19:03Z
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Romero, Gil Robert. (2015). Modelo de lealtad a partir de un análisis de ecuaciones estructurales. Universidad Santo Tomas. Bogotá
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11634/468
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Romero, Gil Robert. (2015). Modelo de lealtad a partir de un análisis de ecuaciones estructurales. Universidad Santo Tomas. Bogotá
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url https://hdl.handle.net/11634/468
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Aish, A.M., Joreskog, K.G., Apanel model for political efficacy and responsiveness: an application of LISREL 7 with weighted least squares Qual Quant. 24, 1990.
Anderson,JamesC.Gerbing,DavidW.,StructuralequationmodelinginpracticePsychological Bulletin, 1988.
Anderson, James C. Gerbing, David W., Monte Carlo evaluations of goodness of fit indices for structural equation models Sage Periodical Press, 1992.
Anderson, James C. Gerbing, David W., The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis Psychometrica, 1984.
Anderson, James C. Gerbing, David W., The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis Psychometrica, 1984.
Batista F. Joan M., Coenders G. Germá, Modelos de Ecuaciones Estructurales. Editorial La Muralla, 2000.
Bentler, P. M. Bonett, D. G., Significance test and goodness of fit in the analysis of covariance structures Psychological Bulletin, 1980.
Bollen,KennethA.,StructuralequationswithlatentvariablesPsychologicalBulletin, 1980.
Browne,M.W.,Asymptotically distribution-free methods for the analysis of covariance structures British Journal of Mathematical and Statistical Psychology, 1984
Byrne Barbara, Structural equation modeling with AMOS Routledge, 2009.
Chan Wai, Comparing indirect effects in SEM-A sequential model fitting method using covariance equivalent specifications Structural Equation Modeling: A Multidisciplinary Journal, 2007.
FoxJ., Effect analysis in structural equation models II-Calculation of specific indirect effects Sociological Methods & Research, 1985
Gelin, M.N.,Beasley, T.M., y Zumbo,B.D., Whatistheimpactonscalereliabilityand exploratory factor analysis of a Pearson correlation matrix when some respondents are not able to follow the rating scale?. Annual meeting of the American Educational Research Association (AERA), 2003.
Gelin, M.N.,Beasley, T.M., y Zumbo,B.D., Whatistheimpactonscalereliabilityand exploratory factor analysis of a Pearson correlation matrix when some respondents are not able to follow the rating scale?. Annual meeting of the American Educational Research Association (AERA), 2003.
Germà Coenders , Albert Satorra & Willem E. Saris, Alternative approaches to structural modeling of ordinal data: A Monte Carlo study. Structural Equation Modeling: AMultidisciplinary Journal, 4:4, 1997
Hancock Gregopry & Mueller Ralph, Structural Equation Modeling a second course IAP, 2006.
Heuchenne, Christian, A sufficient rule for identification in structural equation modeling icluding the null B and recursive rules as extreme cases Structural Equation Modeling: A Multidisciplinary Journal, 2009.
HolgerBrandt,AugustinKelava&AndreasKlein,ASimulationStudyComparingRecent Approaches for the Estimation of Nonlinear Effects in SEM Under the Condition of Nonnormality Structural Equation Modeling: A Multidisciplinary Journal, 2014
Hoyle,RickH.,HandbookofStructuralEquationModeling.TheGuilfordPress,2012.
Field, A., Discovering Statistics using SPSS for Windows. Sage publications, 2000.
KennethA.Bollen&WalterR.Davis,TwoRulesofIdentificationforStructuralEquation Models. Structural Equation Modeling: A Multidisciplinary Journal, 2009.
Jöreskog, K.G., Sörbom, D., LISREL 7: A Guide to the Program andApplications SPSS Publications, 1989.
KennethA.Bollen&WalterR.Davis,TwoRulesofIdentificationforStructuralEquation Model Structural Equation Modeling: A Multidisciplinary Journal, 2009
Kline Rex B., Principles and practices of Structural Equation Modeling The Guilford Press, 2004.
Loehlin, John C., Latent Variable Models Laurence Erlbaum Associates Publishers, 2004.
Lyhagen,J., Ornstein, P., A Rank Based estimator of the Polychoric Correlation Uppsala University, 2011.
Marcoulides George A., Schumacker Randall E., New developments and techniques in structural equation modeling Lawrence Erlbaum Associates, 2001
Muthén,B.,Ageneralstructuralequationmodelwithdichotomous,orderedcategorical, and continuous latent variable indicators Psychometrika 49, 1984.
Olsson, Ulf Henning, Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, Volume 44, 1979.
Olsson, Ulf Henning,FossTron,TroyeSigurdV.&HowellRoyD.,ThePerformanceof ML,GLS,andWLSEstimationinStructuralEquationModelingUnderConditionsof Misspecification and Nonnormality Structural Equation Modeling: A Multidisciplinary Journal, 2009
Ory David, Mokhtarian Patricia, The impact of non-normality,sample size and estimation technique on goodness-of-t measures in structural equation modeling: evidence from ten empirical models of travel behavior Springer Science+Business Media, 2009.
Pui-Wa Lei, Evaluating estimation methods for ordinal data in structural equation modeling Springer Science + Business Media, 2007.
Pui-Wa Lei, Qiong Wu, Introduction to structural equation modeling-Issues and practical considerations Pennsylvania State University, 2007
RaudenbushS.W., SampsonR.,Assessing direct and indirect effects in multilevel designs with latent variables Sociological Methods & Research, 1999.
Raykov Tenko &Marcoulides George, A first course in Structural Equation Modeling Lawrence ErlbaumAssociates, 2004.
Revelle, W. & Rocklin, T., Very Simple Structure: an Alternative Procedure for Estimating the Optimal NumberofInterpretable Factors. Multivariate Behavioral Research, 1979.
Rietveld, T. &VanHout,R.,Statistical Techniques for the StudyofLanguageandLanguage Behaviour. De Gruiter Mouton, 1993.
RigdonEdwardE.,Calculatingdegreesoffreedomforastructuralequationmodeling Lawrence ErlbaumAssociates, 1994.
Rosseel Yves, lavaan: an R package for structural equation modeling and more Version 0.3-1 (BETA) Ghent University, 2010.
Rosseel Yves, The lavaan tutorial Ghent University, 2013.
Satorra Albert, Robustness issues in structural equation modeling Kluwer Academic Publishers, 1990.
Saurina C., Evaluación de un modelo de medida de la calidad en el sector servicios. Estadística Española, 1997.
¸Sim¸sek Gülhayat G. & Noyan Fatma, Structural equation modeling with ordinal variables: a large sample case study Yildiz Technical University, 2012.
SkrondalAnders,Rabe-HeskethSophia,Generalizedlatentvariablemodeling Chapman&Hall/CRC,2004.
Sörbom,Dag, Model Modification Uppsala University, 1989.
Streiner D., Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of personality assessment, 2003
Xitao Fan, BruceThompson&LinWang,Effectsofsamplesize,estimationmethods, andmodelspecificationonstructuralequationmodelingfitindexesStructuralEquation Modeling: A Multidisciplinary Journal, 1999.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Estadística
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/468/1/2015RobertRomero.pdf
https://repository.usta.edu.co/bitstream/11634/468/3/cartadefacultad.pdf
https://repository.usta.edu.co/bitstream/11634/468/4/cartaderechosdeautor.pdf
https://repository.usta.edu.co/bitstream/11634/468/2/license.txt
https://repository.usta.edu.co/bitstream/11634/468/5/2015RobertRomero.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/468/6/cartadefacultad.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/468/7/cartaderechosdeautor.pdf.jpg
bitstream.checksum.fl_str_mv da0cfbd539e000923f39bf430018da45
2ff31fbba1695d78cb4c7cdae089f9f8
008a5bab565e460f5cde9336a6bf459e
8a4605be74aa9ea9d79846c1fba20a33
b50dc901ab1c351261612d7eba82fb4d
4be92237079761bd748365f1ff412c08
b6b553ea431250eab058f42ad2d6dd51
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026266376929280
spelling Babativa Márquez, GiovannyRomero, Gil Robert2015-12-01T14:21:59Z2017-02-13T19:31:02Z2017-06-24T16:19:03Z2015-12-01T14:21:59Z2017-02-13T19:31:02Z2017-06-24T16:19:03Z2015Romero, Gil Robert. (2015). Modelo de lealtad a partir de un análisis de ecuaciones estructurales. Universidad Santo Tomas. Bogotáhttps://hdl.handle.net/11634/468reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coPara una compañía siempre ha sido importante la relación con sus clientes, por ello en diferentes trabajos se han planteado patrones para describir dicha asociación, en esta búsqueda ha cobrado relevancia el uso de modelos estadísticos que permiten establecer la forma en que interactúan las distintas variables que determinan el comportamiento de un cliente. Adicionalmente, también se ha analizado la causalidad y se ha encontrado un ciclo en el comportamiento de compra, así, cuando un cliente es más leal a una marca, mayor es su grado de recomendación y recompra hacia ésta. Así mismo, se ha buscado establecer la relación entre satisfacción y lealtad ya que no necesariamente un alto grado de satisfacción causa lealtad ni tampoco un alto grado de lealtad causa satisfacción.For a company, the relationship with its customers has always been important; therefore, different studies have proposed patterns to describe this association. In this search, the use of statistical models that allow establishing the way in which the different variables that determine the behavior of a customer interact has gained relevance. In addition, causality has also been analyzed and a cycle in purchasing behavior has been found; thus, the more loyal a customer is to a brand, the greater the degree of recommendation and repurchase towards it. Likewise, we have sought to establish the relationship between satisfaction and loyalty, since a high degree of satisfaction does not necessarily cause loyalty, nor does a high degree of loyalty cause satisfaction.Pregradoapplication/pdfspaUniversidad Santo TomásPregrado EstadísticaFacultad de EstadísticaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modelo de lealtad a partir de un análisis de ecuaciones estructuralesStatisticsEquationsLinear Models (Statistics)StatisticsEstadísticaEcuacionesModelos lineales (Estadística)Trabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAish, A.M., Joreskog, K.G., Apanel model for political efficacy and responsiveness: an application of LISREL 7 with weighted least squares Qual Quant. 24, 1990.Anderson,JamesC.Gerbing,DavidW.,StructuralequationmodelinginpracticePsychological Bulletin, 1988.Anderson, James C. Gerbing, David W., Monte Carlo evaluations of goodness of fit indices for structural equation models Sage Periodical Press, 1992.Anderson, James C. Gerbing, David W., The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis Psychometrica, 1984.Anderson, James C. Gerbing, David W., The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis Psychometrica, 1984.Batista F. Joan M., Coenders G. Germá, Modelos de Ecuaciones Estructurales. Editorial La Muralla, 2000.Bentler, P. M. Bonett, D. G., Significance test and goodness of fit in the analysis of covariance structures Psychological Bulletin, 1980.Bollen,KennethA.,StructuralequationswithlatentvariablesPsychologicalBulletin, 1980.Browne,M.W.,Asymptotically distribution-free methods for the analysis of covariance structures British Journal of Mathematical and Statistical Psychology, 1984Byrne Barbara, Structural equation modeling with AMOS Routledge, 2009.Chan Wai, Comparing indirect effects in SEM-A sequential model fitting method using covariance equivalent specifications Structural Equation Modeling: A Multidisciplinary Journal, 2007.FoxJ., Effect analysis in structural equation models II-Calculation of specific indirect effects Sociological Methods & Research, 1985Gelin, M.N.,Beasley, T.M., y Zumbo,B.D., Whatistheimpactonscalereliabilityand exploratory factor analysis of a Pearson correlation matrix when some respondents are not able to follow the rating scale?. Annual meeting of the American Educational Research Association (AERA), 2003.Gelin, M.N.,Beasley, T.M., y Zumbo,B.D., Whatistheimpactonscalereliabilityand exploratory factor analysis of a Pearson correlation matrix when some respondents are not able to follow the rating scale?. Annual meeting of the American Educational Research Association (AERA), 2003.Germà Coenders , Albert Satorra & Willem E. Saris, Alternative approaches to structural modeling of ordinal data: A Monte Carlo study. Structural Equation Modeling: AMultidisciplinary Journal, 4:4, 1997Hancock Gregopry & Mueller Ralph, Structural Equation Modeling a second course IAP, 2006.Heuchenne, Christian, A sufficient rule for identification in structural equation modeling icluding the null B and recursive rules as extreme cases Structural Equation Modeling: A Multidisciplinary Journal, 2009.HolgerBrandt,AugustinKelava&AndreasKlein,ASimulationStudyComparingRecent Approaches for the Estimation of Nonlinear Effects in SEM Under the Condition of Nonnormality Structural Equation Modeling: A Multidisciplinary Journal, 2014Hoyle,RickH.,HandbookofStructuralEquationModeling.TheGuilfordPress,2012.Field, A., Discovering Statistics using SPSS for Windows. Sage publications, 2000.KennethA.Bollen&WalterR.Davis,TwoRulesofIdentificationforStructuralEquation Models. Structural Equation Modeling: A Multidisciplinary Journal, 2009.Jöreskog, K.G., Sörbom, D., LISREL 7: A Guide to the Program andApplications SPSS Publications, 1989.KennethA.Bollen&WalterR.Davis,TwoRulesofIdentificationforStructuralEquation Model Structural Equation Modeling: A Multidisciplinary Journal, 2009Kline Rex B., Principles and practices of Structural Equation Modeling The Guilford Press, 2004.Loehlin, John C., Latent Variable Models Laurence Erlbaum Associates Publishers, 2004.Lyhagen,J., Ornstein, P., A Rank Based estimator of the Polychoric Correlation Uppsala University, 2011.Marcoulides George A., Schumacker Randall E., New developments and techniques in structural equation modeling Lawrence Erlbaum Associates, 2001Muthén,B.,Ageneralstructuralequationmodelwithdichotomous,orderedcategorical, and continuous latent variable indicators Psychometrika 49, 1984.Olsson, Ulf Henning, Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, Volume 44, 1979.Olsson, Ulf Henning,FossTron,TroyeSigurdV.&HowellRoyD.,ThePerformanceof ML,GLS,andWLSEstimationinStructuralEquationModelingUnderConditionsof Misspecification and Nonnormality Structural Equation Modeling: A Multidisciplinary Journal, 2009Ory David, Mokhtarian Patricia, The impact of non-normality,sample size and estimation technique on goodness-of-t measures in structural equation modeling: evidence from ten empirical models of travel behavior Springer Science+Business Media, 2009.Pui-Wa Lei, Evaluating estimation methods for ordinal data in structural equation modeling Springer Science + Business Media, 2007.Pui-Wa Lei, Qiong Wu, Introduction to structural equation modeling-Issues and practical considerations Pennsylvania State University, 2007RaudenbushS.W., SampsonR.,Assessing direct and indirect effects in multilevel designs with latent variables Sociological Methods & Research, 1999.Raykov Tenko &Marcoulides George, A first course in Structural Equation Modeling Lawrence ErlbaumAssociates, 2004.Revelle, W. & Rocklin, T., Very Simple Structure: an Alternative Procedure for Estimating the Optimal NumberofInterpretable Factors. Multivariate Behavioral Research, 1979.Rietveld, T. &VanHout,R.,Statistical Techniques for the StudyofLanguageandLanguage Behaviour. De Gruiter Mouton, 1993.RigdonEdwardE.,Calculatingdegreesoffreedomforastructuralequationmodeling Lawrence ErlbaumAssociates, 1994.Rosseel Yves, lavaan: an R package for structural equation modeling and more Version 0.3-1 (BETA) Ghent University, 2010.Rosseel Yves, The lavaan tutorial Ghent University, 2013.Satorra Albert, Robustness issues in structural equation modeling Kluwer Academic Publishers, 1990.Saurina C., Evaluación de un modelo de medida de la calidad en el sector servicios. Estadística Española, 1997.¸Sim¸sek Gülhayat G. & Noyan Fatma, Structural equation modeling with ordinal variables: a large sample case study Yildiz Technical University, 2012.SkrondalAnders,Rabe-HeskethSophia,Generalizedlatentvariablemodeling Chapman&Hall/CRC,2004.Sörbom,Dag, Model Modification Uppsala University, 1989.Streiner D., Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of personality assessment, 2003Xitao Fan, BruceThompson&LinWang,Effectsofsamplesize,estimationmethods, andmodelspecificationonstructuralequationmodelingfitindexesStructuralEquation Modeling: A Multidisciplinary Journal, 1999.ORIGINAL2015RobertRomero.pdfapplication/pdf2320841https://repository.usta.edu.co/bitstream/11634/468/1/2015RobertRomero.pdfda0cfbd539e000923f39bf430018da45MD51open accesscartadefacultad.pdfcartadefacultad.pdfapplication/pdf200946https://repository.usta.edu.co/bitstream/11634/468/3/cartadefacultad.pdf2ff31fbba1695d78cb4c7cdae089f9f8MD53metadata only accesscartaderechosdeautor.pdfcartaderechosdeautor.pdfapplication/pdf235542https://repository.usta.edu.co/bitstream/11634/468/4/cartaderechosdeautor.pdf008a5bab565e460f5cde9336a6bf459eMD54metadata only accessLICENSElicense.txttext/plain1748https://repository.usta.edu.co/bitstream/11634/468/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAIL2015RobertRomero.pdf.jpg2015RobertRomero.pdf.jpgIM Thumbnailimage/jpeg5759https://repository.usta.edu.co/bitstream/11634/468/5/2015RobertRomero.pdf.jpgb50dc901ab1c351261612d7eba82fb4dMD55open accesscartadefacultad.pdf.jpgcartadefacultad.pdf.jpgIM Thumbnailimage/jpeg6822https://repository.usta.edu.co/bitstream/11634/468/6/cartadefacultad.pdf.jpg4be92237079761bd748365f1ff412c08MD56open accesscartaderechosdeautor.pdf.jpgcartaderechosdeautor.pdf.jpgIM Thumbnailimage/jpeg7430https://repository.usta.edu.co/bitstream/11634/468/7/cartaderechosdeautor.pdf.jpgb6b553ea431250eab058f42ad2d6dd51MD57open access11634/468oai:repository.usta.edu.co:11634/4682023-02-25 03:05:15.665open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=