Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos

El diagnóstico de la periodontitis genera diversidad de criterios que puede llevar a que la decisión del clínico sea subjetiva. El Deep learning como aprendizaje automático es una herramienta computarizada que permiten el manejo de la información en forma veraz rápida y oportuna, además de contar co...

Full description

Autores:
Galvis Zambrano, Laura Melissa
Amaris Brujes, Liz Dayana
Galeano Torres, Luis Alberto
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/29327
Acceso en línea:
http://hdl.handle.net/11634/29327
Palabra clave:
Bone loss
Periapical radiography
Deep Learning
Clínica dental
Periodoncia
Tecnología dental
Radiodiagnóstico
Periodontitis
Odontología - Toma de decisiones
Pérdida ósea
Radiografía periapical
Deep Learning
Rights
openAccess
License
Atribución-SinDerivadas 2.5 Colombia
id SANTTOMAS2_8f62408726fdb5f559434d2ccffd6690
oai_identifier_str oai:repository.usta.edu.co:11634/29327
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos
title Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos
spellingShingle Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos
Bone loss
Periapical radiography
Deep Learning
Clínica dental
Periodoncia
Tecnología dental
Radiodiagnóstico
Periodontitis
Odontología - Toma de decisiones
Pérdida ósea
Radiografía periapical
Deep Learning
title_short Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos
title_full Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos
title_fullStr Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos
title_full_unstemmed Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos
title_sort Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos
dc.creator.fl_str_mv Galvis Zambrano, Laura Melissa
Amaris Brujes, Liz Dayana
Galeano Torres, Luis Alberto
dc.contributor.advisor.spa.fl_str_mv Plata González, Julio César
dc.contributor.author.spa.fl_str_mv Galvis Zambrano, Laura Melissa
Amaris Brujes, Liz Dayana
Galeano Torres, Luis Alberto
dc.subject.keyword.spa.fl_str_mv Bone loss
Periapical radiography
Deep Learning
topic Bone loss
Periapical radiography
Deep Learning
Clínica dental
Periodoncia
Tecnología dental
Radiodiagnóstico
Periodontitis
Odontología - Toma de decisiones
Pérdida ósea
Radiografía periapical
Deep Learning
dc.subject.lemb.spa.fl_str_mv Clínica dental
Periodoncia
Tecnología dental
Radiodiagnóstico
Periodontitis
Odontología - Toma de decisiones
dc.subject.proposal.spa.fl_str_mv Pérdida ósea
Radiografía periapical
Deep Learning
description El diagnóstico de la periodontitis genera diversidad de criterios que puede llevar a que la decisión del clínico sea subjetiva. El Deep learning como aprendizaje automático es una herramienta computarizada que permiten el manejo de la información en forma veraz rápida y oportuna, además de contar con un alto grado de confiabilidad y precisión, aportando nuevas perspectivas para el diagnóstico, pronostico y la planificación del tratamiento. Desarrollar un sistema para la interpretación radiográfica periapical digitalizada como apoyo al diagnóstico periodontal basado en Deep Learning: Fase I Criterios e insumos radiográficos. La población de estudio conformada por una totalidad de 727 imágenes diagnósticas digitalizadas (radiografías periapicales) almacenadas en centro radiológico de la USTA en los años 2019-2020. Criterios de exclusión: Imágenes radiográficas periapicales elongadas, espacios alveolares que albergan implantes. 727 imágenes extraídas, correspondieron a 72 sujetos, 45 mujeres (62 %) y 27 hombres (38%), El promedio de dientes aportados por persona fue de 24,5 ± 4,4 dientes, de otro lado, la media de pérdida dental fue de 7,3± 3,3 dientes. Las métricas obtenidas son similares a otros estudios, encontramos así, que los insumos generados en la Fase I son correctos para el uso en la Fase II, es decir, para dar continuidad, para lo cual solo se tienen las observaciones generadas en el balance poblacional (en términos de distribución por sexo) y en el tamaño de la muestra (en términos imágenes radiográficas). Este sistema de red neuronal está desarrollado para identificar dientes en su fase inicial y será de gran ayuda al clínico, pudiendo procesar gran número de imágenes con los criterios específicos apoyando en el diagnóstico de manera eficiente.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-08-31T19:01:04Z
dc.date.available.spa.fl_str_mv 2020-08-31T19:01:04Z
dc.date.issued.spa.fl_str_mv 2020-07-02
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Especialización
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Galvis Zambrano, L. M., Amaris Brujes, L. D. y Galeano Torres, L. A. (2020). Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos [Tesis de especialización]. Universidad Santo Tomás, Bucaramanga, Colombia
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/29327
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Galvis Zambrano, L. M., Amaris Brujes, L. D. y Galeano Torres, L. A. (2020). Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos [Tesis de especialización]. Universidad Santo Tomás, Bucaramanga, Colombia
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/29327
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Hirohata N, Aizawa S. Periodontitis y trastornos sistémicos. Rev Asoc Méd Univ Nihon. 2014; 73:211-218.
2. Laine ML, Moustakis V, Koumakis L, Potamias LB. Modelado de susceptibilidad a periodontitis. J Dent Res. 2013; 92:45–50.
3. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018; 89 Suppl 1:S173-S182.
4. Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol [en línea]. 2013. [accesado 5 May 2020]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23762091/
5. Park WJ, Park JB. History and application of artificial neural networks in dentistry. Eur J Dent.2018; 12(4):594-601.
6. Albus JS. Outline for a theory of intelligence. IEEE Trans Sys Man Cybern. 1991; 21(3):473– 509.
7. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep [en línea]. 2016.
8. Suzuki K. Overview of deep learning in medical imaging. adiol Phys Technol. 2017; 10(3):257– 73.
9. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. OMS. Oral diseases: a global public health challenge. Lancet [en línea]. 2019.
10. Ministerio de Salud y Protección Social de Colombia. IV Estudio Nacional de Salud Bucal. [en línea]. Bogota. 2014.
11. Tonetti MS, Jepsen S, Otomo J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017; 44:456–62.
12. Graziani F, Karapetsa D, Alonso B HD. Nonsurgical and surgical treatment of periodontitis: how many options for one disease?. Periodontol 2000. 2017; 75(1):152–88.
13. Martins SH, Novaes AB, Taba M Jr, Palioto DB, Messora MR, Reino DM, et al. Effect of surgical periodontal treatment associated to antimicrobial photodynamic therapy on chronic periodontitis: a randomized controlled clinical trial. J Clin Periodontol. 2017; 44(7):717–728.
14. Ainamo J, Barmes D, Beagrie G, Cutress T, Martin, Sardo J. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN). Int Dent J. 1982;32(3):281–91.
15. Sklan JE, Plassard AJ, Fabbri D, Landman BA. Toward content-based image retrieval with deep convolutional neural networks. Proc SPIE Int Soc Opt Eng [en línea]. 2015.
16. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. [en línea]. Arxiv E-Print. 2017
17. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn NA. Cardiologist-level arrhythmia detection with convolutional neural networks. Nat Med. 2019;25(1):65-69
18. Garcia-Hernandez JJ, Gomez-Flores, Rubio-Loyola J. Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging. Comput Biol Med 20. 2016;68:37–48.
19. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.
20. Kim TS, Obst C, Zehaczek S , Geenen C. Detection of bone loss with different X-ray techniques in periodontal patients. J Periodontol. 2008; ;79(7):1141-1149.
21. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018;45 Suppl 20:S149- S161.
22. Page RC, Eke PI. Case Definitions for use in population-based surveillance of periodontitis. J Periodontol. 2007;78 Suppl 7S:1387-1399.
23. Bashutski JD, Eber RM, Kinney JS, Maitra, S., Braun, T, McCauley, L. The impact of vitamin D status on periodontal surgery outcomes. J Dent Res. 2011;90(8):1007–12.
24. Ramseier CA, Warnakulasuriya S, Needleman IG, et al. Consensus report: 2nd European Workshop on Tobacco Use Prevention and Cessation for Oral Health Professionals. Int Dent J. 2010;60(1):3–6.
25. Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45 Suppl 20:S1-S8.
26. Trombelli L, Farina R, Silva CO, Tatakis DN. Plaque-induced gingivitis: Case definition and diagnostic considerations. J Clin Periodontol. 2018;45 Suppl 20:S44-S67.
27. Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al.Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;89 Suppl 1:S74-S84
28. Murakami S, Mealey BL, Mariotti A, Chapple ILC. Dental plaque-induced gingival conditions.J Clin Periodontol. 2018;45 Suppl 20:S17-S27.
29. Holmstrup P, Plemons J MJ. Non–plaque‐induced gingival diseases. J Periodontol. 2018;89 Suppl 1:S28-S45
30. Papapanou PN, Sanz M et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. J Periodontol. 2018;89 Suppl 1:S173-S182.
31. Friedewald VE, Kornman KS, Beck JD, Genco R, Goldfine A, Libby P, et al. The American Journal of Cardiology and Journal of Periodontology Editors’ Consensus: Periodontitis and Atherosclerotic Cardiovascular Disease. J Periodontol. 2009;80(7):1021-1032.
32. Jepsen S, Caton JG, Albandar JM, Bissada NF, Bouchard P, Cortellini P, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;89 Suppl 1:S237-S248.
33. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J Clin Periodontol. 2018;45 Suppl 20:S171-S189.
34. Herrera D, Retamal‐Valdes B, Alonso B FM. Acute periodontal lesions (periodontal abscesses and necrotizing periodontal diseases) and endo‐periodontal lesions. J Periodontol. 2018;89 Suppl 1:S85-S102.
35. Herrera D, Alonso B, de Arriba L, Santa Cruz I, Serrano C SM. Acute periodontal lesions.Periodontol 2000. 2014;65(1):149-177.
36. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: case definitions and diagnostic considerations. J Periodontol. 2018;89 Suppl 1:S183-S203.
37. Herrera D, Roldan S, Sanz M. The periodontal abscess: a review. J Clin Periodontol.2000;27(6):377-386
38. Meng HX. Periodontal abscess. Ann Periodontol. 1999;4(1):79-83.
39. Gill Y SC. Orofacial odontogenic infections: review of microbiology and current treatment. Oral Surg Oral Med Oral Pathol. 1990;70(2):155-158.
40. Karolyi M. Beobachtungen über pyorrhea alveolaris. Osterr Ung Viertel Jahresschr Für Zahnheilkd. 1901;17:279.
41. Stillman P. What is traumatic occlusion and how can it be diagnosed and corrected. J Am Dent Assoc. 1925;12:1330–1338.
42. American Academy of Periodontology. Glossary of periodontal terms. [en línea]. 2001 [accesado 5 May 2020]. Disponible en https://www.perio.org
43. Fan J, Caton JG. Occlusal trauma and excessive occlusal forces: Narrative review, case definitions, and diagnostic considerations. J Clin Periodontol. 2018 Jun;45:S199–206.
44. Ercoli C, Caton JG. Dental prostheses and tooth-related factors. J Clin Periodontol. 2018;45 Suppl 20:S207-S218.
45. Tonetti MS, Eickholz P, Loos BG, Papapanou P, Van Der U., Armitage G. Principles in prevention of periodontal diseases. J Clin Periodontol. 2015;42:S5–S11.
46. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJL MW. Global burden of severe periodontitis in 1990–2010: A systematic review and meta‐regression. J Dent Res. 2014;93:1045– 1053
47. Periodontología SA. Resumen y traducción de los documentos de Consenso. 2019.
48. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018 Jun;45:S149–61.
49. Kornman KS, Papapanou PN. Clinical application of the new classification of periodontal diseases: Ground rules, clarifications and “gray zones.” J Periodontol. 2020;91(3):352-360.
50. Corbet EF. Radiographs in periodontal disease diagnosis and management. Aust Dent J.2009;54 Suppl 1:S27-S43.
51. Pepelassi EA, Tsiklakis K, Diamanti-Kipioti . Radiographic detection and assessment of the periodontal endosseous defects. J Clin Periodontol. 2000;27(4):224-230.
52. Jeffcoat MK, Wang IC, Reddy MS. Radiographic diagnosis in periodontics. Periodontol 2000.1995;7:54-68.
53. Ravi V, Lipee P, Rao CVN, Lakshmikanthan L. Direct digital radiography versus conventional radiography - assessment of visibility of file length placed in the root canal: An in vitro study. J Pharm Bioallied Sci. 2012; 4 Suppl:S285-S289.
54. Vázquez J., Errecaborde M, Estévez A, Osende N, Ramírez MJ., Carvajal E. Utilización de la técnica radiográfica de Fitzgerald como método de diagnóstico en implantología oral y periodoncia. Av Odontoestomatol [en linea]. 2009 [accesado 5 May 2020] ; 25( 4 ): 203-208.
55. Murdick R. Sistemas de información administrativa. 2ª ed. Mexico: Prentice Hall. 1989.
56. Institute for Telecommunication Sciences. Federal Standard 1037C. MIL-STD-188. Institute for Telecommunication Sciences; 1999.
57. Longatt F. Introducción a los sistemas de información: Fundamentos. Universidad Politécnica de la fuerza armada. 2007.
58. Gerón A. Hands-on Machine learning with sakit-learn and TensorFlow. O'Reilly Media. 2017.
59. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep Learning for the Radiographic Detection of Apical Lesions. J Endod. 2019;45(7):917-922.e5.
60. Lin PL, Huang PY, Huang PW. Automatic methods for alveolar bone loss degree measurement in periodontitis periapical radiographs. Comput Methods Programs Biomed. 2017; 148:1–11.
61. Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep Learning in Mammography. Invest Radiol. 2017;52(7):434-440.
62. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-118
63. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal Fundus Photographs. JAMA. 2016;316(22):2402-2410.
64. Lee J-H, Kim D-H, Jeong S-N, Choi S-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106-111
65. Lee J-H, Kim D, Jeong S-N, Choi S-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114-123.
66. Lin PL, Huang PW, Huang PY, Hsu HC. Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H- value of fractional Brownian motion model. Comput Methods Programs Biomed. 2015;121(3):117-126
67. Greenstein G. Current interpretations of periodontal probing evaluations: diagnostic and therapeutic implications. Compend Contin Educ Dent. 2005;26(6):381-399.
68. Aberin S, Goma J. Detecting periodontal disease using convolutional neural networks. En: IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM); Baguio City. 2018; p.1-6.
69. Jeffcoat MK, Page R RM et al. Use of digital radiography to demonstrate the potential of naproxen as an adjunct in the treatment of rapidly progressive periodontitis. Periodontal Res. 1991;26(5):415-421.
70. Hausmann E, Dunford R, Wikesjö U, Christersson L, McHenry K. Progression of untreated periodontitis as assessed by subtraction radiography. J Periodontal Res. 1986;21(6):716-721.
71. Ash M, Lebedeff I. Anatomia anatomía dental, fisiología y oclusión de Wheeler. 6a ed. México, Nueva Editorial Interamericana, 1986.
72. Zhang K, Wu J, Chen H, Lyu P. An effective teeth recognition method using label tree with cascade network structure. Comput Med Imaging Graph. 2018; 68:61-70.
73. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9(1):3840.
74. Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry.Imaging Sci Dent. 2019;49(1):1-7.
75. Rams TE, Listgarten MA, Slots J. Utility of radiographic crestal lamina dura for predicting periodontitis disease-activity. J Clin Periodontol. 1994;21(9):571-576.
76. Hugoson A, Jordan T. Frequency distribution of individuals aged 20–70 years according to severity of periodontal disease. Community Dent Oral Epidemiol. 1982;10(4):187-192
77. Orozco TM. Diagnostico Radiológico Periodontal. Manual de prácticas de periodoncia. 2006.
78. Herbert T. Shillingburg, Jr, Sumiya Hobo, Lowell D. Whitsett, Richard Jacobi SEB. Fundamentos Esenciales en Prótesis Fija. 3a ed. Quitenssense; 2000.
dc.rights.*.fl_str_mv Atribución-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Especialización Periodoncia
dc.publisher.faculty.spa.fl_str_mv Facultad de Odontología
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/29327/15/2020GalvisLaura%20.pdf
https://repository.usta.edu.co/bitstream/11634/29327/14/2020GalvisLaura1.pdf
https://repository.usta.edu.co/bitstream/11634/29327/13/2020GalvisLaura2.pdf
https://repository.usta.edu.co/bitstream/11634/29327/7/2020GalvisLaura3.pdf
https://repository.usta.edu.co/bitstream/11634/29327/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/29327/17/2020GalvisLaura%20.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/29327/18/2020GalvisLaura1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/29327/19/2020GalvisLaura2.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/29327/20/2020GalvisLaura3.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/29327/16/license.txt
bitstream.checksum.fl_str_mv 5a5763d1b7c18b436dfed72c88a2e89e
90e7253b9804af21501fb0878c8d7d05
9dc58552f52044e60fa20fbaa7dfb872
ee8c621ab9dbdd7e92dfd3aab6b97708
dab767be7a093b539031785b3bf95490
da4983c7fb992cfc8eb99ad9d844ba06
e23917c59a6ef00524c463b4f6bb0a96
d047b2833d9fc22dd410e92ebe657ff7
4bf2191033e90b2f22603b7e21f6cc6d
aedeaf396fcd827b537c73d23464fc27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026120481210368
spelling Plata González, Julio CésarGalvis Zambrano, Laura MelissaAmaris Brujes, Liz DayanaGaleano Torres, Luis Alberto2020-08-31T19:01:04Z2020-08-31T19:01:04Z2020-07-02Galvis Zambrano, L. M., Amaris Brujes, L. D. y Galeano Torres, L. A. (2020). Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos [Tesis de especialización]. Universidad Santo Tomás, Bucaramanga, Colombiahttp://hdl.handle.net/11634/29327reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl diagnóstico de la periodontitis genera diversidad de criterios que puede llevar a que la decisión del clínico sea subjetiva. El Deep learning como aprendizaje automático es una herramienta computarizada que permiten el manejo de la información en forma veraz rápida y oportuna, además de contar con un alto grado de confiabilidad y precisión, aportando nuevas perspectivas para el diagnóstico, pronostico y la planificación del tratamiento. Desarrollar un sistema para la interpretación radiográfica periapical digitalizada como apoyo al diagnóstico periodontal basado en Deep Learning: Fase I Criterios e insumos radiográficos. La población de estudio conformada por una totalidad de 727 imágenes diagnósticas digitalizadas (radiografías periapicales) almacenadas en centro radiológico de la USTA en los años 2019-2020. Criterios de exclusión: Imágenes radiográficas periapicales elongadas, espacios alveolares que albergan implantes. 727 imágenes extraídas, correspondieron a 72 sujetos, 45 mujeres (62 %) y 27 hombres (38%), El promedio de dientes aportados por persona fue de 24,5 ± 4,4 dientes, de otro lado, la media de pérdida dental fue de 7,3± 3,3 dientes. Las métricas obtenidas son similares a otros estudios, encontramos así, que los insumos generados en la Fase I son correctos para el uso en la Fase II, es decir, para dar continuidad, para lo cual solo se tienen las observaciones generadas en el balance poblacional (en términos de distribución por sexo) y en el tamaño de la muestra (en términos imágenes radiográficas). Este sistema de red neuronal está desarrollado para identificar dientes en su fase inicial y será de gran ayuda al clínico, pudiendo procesar gran número de imágenes con los criterios específicos apoyando en el diagnóstico de manera eficiente.The diagnosis of periodontitis generates a variety of criteria that can lead to the clinician's decision being subjective. Deep learning as machine learning is a computerized tool that allows the information to be handled truthfully, quickly and in a timely manner, in addition to having a high degree of reliability and precision, providing new perspectives for diagnosis, prognosis and treatment planning. To develop a system for digitized periapical radiographic interpretation to support periodontal diagnosis based on Deep Learning: Phase I Radiographic criteria and supplies. The study population made up of a total of 727 digitized diagnostic images (periapical radiographs) stored in the USTA radiological center in the years 2019-2020. Exclusion criteria: Elongated periapical radiographic images, alveolar spaces that house implants. 727 images extracted corresponded to 72 subjects, 45 women (62%) and 27 men (38%). The average number of teeth contributed per person was 24.5 ± 4.4 teeth, on the other hand, the mean of dental loss was 7.3 ± 3.3 teeth. The metrics obtained are similar to other studies, thus we found that the inputs generated in Phase I are correct for use in Phase II, that is, to give continuity, for which only the observations generated in the population balance (in terms of sex distribution) and in the sample size (in terms of radiographic images). This neural network system is developed to identify teeth in their initial phase and will be of great help to the clinician, being able to process many images with specific criteria, supporting the diagnosis efficiently.Especialización Periodonciahttp://www.ustabuca.edu.co/ustabmanga/presentacionEspecializaciónapplication/pdfspaUniversidad Santo TomásEspecialización PeriodonciaFacultad de OdontologíaAtribución-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficosBone lossPeriapical radiographyDeep LearningClínica dentalPeriodonciaTecnología dentalRadiodiagnósticoPeriodontitisOdontología - Toma de decisionesPérdida óseaRadiografía periapicalDeep LearningTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Especializaciónhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA Bucaramanga1. Hirohata N, Aizawa S. Periodontitis y trastornos sistémicos. Rev Asoc Méd Univ Nihon. 2014; 73:211-218.2. Laine ML, Moustakis V, Koumakis L, Potamias LB. Modelado de susceptibilidad a periodontitis. J Dent Res. 2013; 92:45–50.3. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018; 89 Suppl 1:S173-S182.4. Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol [en línea]. 2013. [accesado 5 May 2020]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23762091/5. Park WJ, Park JB. History and application of artificial neural networks in dentistry. Eur J Dent.2018; 12(4):594-601.6. Albus JS. Outline for a theory of intelligence. IEEE Trans Sys Man Cybern. 1991; 21(3):473– 509.7. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep [en línea]. 2016.8. Suzuki K. Overview of deep learning in medical imaging. adiol Phys Technol. 2017; 10(3):257– 73.9. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. OMS. Oral diseases: a global public health challenge. Lancet [en línea]. 2019.10. Ministerio de Salud y Protección Social de Colombia. IV Estudio Nacional de Salud Bucal. [en línea]. Bogota. 2014.11. Tonetti MS, Jepsen S, Otomo J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017; 44:456–62.12. Graziani F, Karapetsa D, Alonso B HD. Nonsurgical and surgical treatment of periodontitis: how many options for one disease?. Periodontol 2000. 2017; 75(1):152–88.13. Martins SH, Novaes AB, Taba M Jr, Palioto DB, Messora MR, Reino DM, et al. Effect of surgical periodontal treatment associated to antimicrobial photodynamic therapy on chronic periodontitis: a randomized controlled clinical trial. J Clin Periodontol. 2017; 44(7):717–728.14. Ainamo J, Barmes D, Beagrie G, Cutress T, Martin, Sardo J. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN). Int Dent J. 1982;32(3):281–91.15. Sklan JE, Plassard AJ, Fabbri D, Landman BA. Toward content-based image retrieval with deep convolutional neural networks. Proc SPIE Int Soc Opt Eng [en línea]. 2015.16. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. [en línea]. Arxiv E-Print. 201717. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn NA. Cardiologist-level arrhythmia detection with convolutional neural networks. Nat Med. 2019;25(1):65-6918. Garcia-Hernandez JJ, Gomez-Flores, Rubio-Loyola J. Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging. Comput Biol Med 20. 2016;68:37–48.19. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.20. Kim TS, Obst C, Zehaczek S , Geenen C. Detection of bone loss with different X-ray techniques in periodontal patients. J Periodontol. 2008; ;79(7):1141-1149.21. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018;45 Suppl 20:S149- S161.22. Page RC, Eke PI. Case Definitions for use in population-based surveillance of periodontitis. J Periodontol. 2007;78 Suppl 7S:1387-1399.23. Bashutski JD, Eber RM, Kinney JS, Maitra, S., Braun, T, McCauley, L. The impact of vitamin D status on periodontal surgery outcomes. J Dent Res. 2011;90(8):1007–12.24. Ramseier CA, Warnakulasuriya S, Needleman IG, et al. Consensus report: 2nd European Workshop on Tobacco Use Prevention and Cessation for Oral Health Professionals. Int Dent J. 2010;60(1):3–6.25. Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45 Suppl 20:S1-S8.26. Trombelli L, Farina R, Silva CO, Tatakis DN. Plaque-induced gingivitis: Case definition and diagnostic considerations. J Clin Periodontol. 2018;45 Suppl 20:S44-S67.27. Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al.Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;89 Suppl 1:S74-S8428. Murakami S, Mealey BL, Mariotti A, Chapple ILC. Dental plaque-induced gingival conditions.J Clin Periodontol. 2018;45 Suppl 20:S17-S27.29. Holmstrup P, Plemons J MJ. Non–plaque‐induced gingival diseases. J Periodontol. 2018;89 Suppl 1:S28-S4530. Papapanou PN, Sanz M et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. J Periodontol. 2018;89 Suppl 1:S173-S182.31. Friedewald VE, Kornman KS, Beck JD, Genco R, Goldfine A, Libby P, et al. The American Journal of Cardiology and Journal of Periodontology Editors’ Consensus: Periodontitis and Atherosclerotic Cardiovascular Disease. J Periodontol. 2009;80(7):1021-1032.32. Jepsen S, Caton JG, Albandar JM, Bissada NF, Bouchard P, Cortellini P, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;89 Suppl 1:S237-S248.33. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J Clin Periodontol. 2018;45 Suppl 20:S171-S189.34. Herrera D, Retamal‐Valdes B, Alonso B FM. Acute periodontal lesions (periodontal abscesses and necrotizing periodontal diseases) and endo‐periodontal lesions. J Periodontol. 2018;89 Suppl 1:S85-S102.35. Herrera D, Alonso B, de Arriba L, Santa Cruz I, Serrano C SM. Acute periodontal lesions.Periodontol 2000. 2014;65(1):149-177.36. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: case definitions and diagnostic considerations. J Periodontol. 2018;89 Suppl 1:S183-S203.37. Herrera D, Roldan S, Sanz M. The periodontal abscess: a review. J Clin Periodontol.2000;27(6):377-38638. Meng HX. Periodontal abscess. Ann Periodontol. 1999;4(1):79-83.39. Gill Y SC. Orofacial odontogenic infections: review of microbiology and current treatment. Oral Surg Oral Med Oral Pathol. 1990;70(2):155-158.40. Karolyi M. Beobachtungen über pyorrhea alveolaris. Osterr Ung Viertel Jahresschr Für Zahnheilkd. 1901;17:279.41. Stillman P. What is traumatic occlusion and how can it be diagnosed and corrected. J Am Dent Assoc. 1925;12:1330–1338.42. American Academy of Periodontology. Glossary of periodontal terms. [en línea]. 2001 [accesado 5 May 2020]. Disponible en https://www.perio.org43. Fan J, Caton JG. Occlusal trauma and excessive occlusal forces: Narrative review, case definitions, and diagnostic considerations. J Clin Periodontol. 2018 Jun;45:S199–206.44. Ercoli C, Caton JG. Dental prostheses and tooth-related factors. J Clin Periodontol. 2018;45 Suppl 20:S207-S218.45. Tonetti MS, Eickholz P, Loos BG, Papapanou P, Van Der U., Armitage G. Principles in prevention of periodontal diseases. J Clin Periodontol. 2015;42:S5–S11.46. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJL MW. Global burden of severe periodontitis in 1990–2010: A systematic review and meta‐regression. J Dent Res. 2014;93:1045– 105347. Periodontología SA. Resumen y traducción de los documentos de Consenso. 2019.48. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018 Jun;45:S149–61.49. Kornman KS, Papapanou PN. Clinical application of the new classification of periodontal diseases: Ground rules, clarifications and “gray zones.” J Periodontol. 2020;91(3):352-360.50. Corbet EF. Radiographs in periodontal disease diagnosis and management. Aust Dent J.2009;54 Suppl 1:S27-S43.51. Pepelassi EA, Tsiklakis K, Diamanti-Kipioti . Radiographic detection and assessment of the periodontal endosseous defects. J Clin Periodontol. 2000;27(4):224-230.52. Jeffcoat MK, Wang IC, Reddy MS. Radiographic diagnosis in periodontics. Periodontol 2000.1995;7:54-68.53. Ravi V, Lipee P, Rao CVN, Lakshmikanthan L. Direct digital radiography versus conventional radiography - assessment of visibility of file length placed in the root canal: An in vitro study. J Pharm Bioallied Sci. 2012; 4 Suppl:S285-S289.54. Vázquez J., Errecaborde M, Estévez A, Osende N, Ramírez MJ., Carvajal E. Utilización de la técnica radiográfica de Fitzgerald como método de diagnóstico en implantología oral y periodoncia. Av Odontoestomatol [en linea]. 2009 [accesado 5 May 2020] ; 25( 4 ): 203-208.55. Murdick R. Sistemas de información administrativa. 2ª ed. Mexico: Prentice Hall. 1989.56. Institute for Telecommunication Sciences. Federal Standard 1037C. MIL-STD-188. Institute for Telecommunication Sciences; 1999.57. Longatt F. Introducción a los sistemas de información: Fundamentos. Universidad Politécnica de la fuerza armada. 2007.58. Gerón A. Hands-on Machine learning with sakit-learn and TensorFlow. O'Reilly Media. 2017.59. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep Learning for the Radiographic Detection of Apical Lesions. J Endod. 2019;45(7):917-922.e5.60. Lin PL, Huang PY, Huang PW. Automatic methods for alveolar bone loss degree measurement in periodontitis periapical radiographs. Comput Methods Programs Biomed. 2017; 148:1–11.61. Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep Learning in Mammography. Invest Radiol. 2017;52(7):434-440.62. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-11863. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal Fundus Photographs. JAMA. 2016;316(22):2402-2410.64. Lee J-H, Kim D-H, Jeong S-N, Choi S-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106-11165. Lee J-H, Kim D, Jeong S-N, Choi S-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114-123.66. Lin PL, Huang PW, Huang PY, Hsu HC. Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H- value of fractional Brownian motion model. Comput Methods Programs Biomed. 2015;121(3):117-12667. Greenstein G. Current interpretations of periodontal probing evaluations: diagnostic and therapeutic implications. Compend Contin Educ Dent. 2005;26(6):381-399.68. Aberin S, Goma J. Detecting periodontal disease using convolutional neural networks. En: IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM); Baguio City. 2018; p.1-6.69. Jeffcoat MK, Page R RM et al. Use of digital radiography to demonstrate the potential of naproxen as an adjunct in the treatment of rapidly progressive periodontitis. Periodontal Res. 1991;26(5):415-421.70. Hausmann E, Dunford R, Wikesjö U, Christersson L, McHenry K. Progression of untreated periodontitis as assessed by subtraction radiography. J Periodontal Res. 1986;21(6):716-721.71. Ash M, Lebedeff I. Anatomia anatomía dental, fisiología y oclusión de Wheeler. 6a ed. México, Nueva Editorial Interamericana, 1986.72. Zhang K, Wu J, Chen H, Lyu P. An effective teeth recognition method using label tree with cascade network structure. Comput Med Imaging Graph. 2018; 68:61-70.73. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9(1):3840.74. Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry.Imaging Sci Dent. 2019;49(1):1-7.75. Rams TE, Listgarten MA, Slots J. Utility of radiographic crestal lamina dura for predicting periodontitis disease-activity. J Clin Periodontol. 1994;21(9):571-576.76. Hugoson A, Jordan T. Frequency distribution of individuals aged 20–70 years according to severity of periodontal disease. Community Dent Oral Epidemiol. 1982;10(4):187-19277. Orozco TM. Diagnostico Radiológico Periodontal. Manual de prácticas de periodoncia. 2006.78. Herbert T. Shillingburg, Jr, Sumiya Hobo, Lowell D. Whitsett, Richard Jacobi SEB. Fundamentos Esenciales en Prótesis Fija. 3a ed. Quitenssense; 2000.ORIGINAL2020GalvisLaura .pdf2020GalvisLaura .pdfTrabajo de gradoapplication/pdf1006302https://repository.usta.edu.co/bitstream/11634/29327/15/2020GalvisLaura%20.pdf5a5763d1b7c18b436dfed72c88a2e89eMD515open access2020GalvisLaura1.pdf2020GalvisLaura1.pdfCarta de aprobaciónapplication/pdf184326https://repository.usta.edu.co/bitstream/11634/29327/14/2020GalvisLaura1.pdf90e7253b9804af21501fb0878c8d7d05MD514metadata only access2020GalvisLaura2.pdf2020GalvisLaura2.pdfAutorización de publicaciónapplication/pdf229601https://repository.usta.edu.co/bitstream/11634/29327/13/2020GalvisLaura2.pdf9dc58552f52044e60fa20fbaa7dfb872MD513metadata only access2020GalvisLaura3.pdf2020GalvisLaura3.pdfApéndicesapplication/pdf317027https://repository.usta.edu.co/bitstream/11634/29327/7/2020GalvisLaura3.pdfee8c621ab9dbdd7e92dfd3aab6b97708MD57open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.usta.edu.co/bitstream/11634/29327/4/license_rdfdab767be7a093b539031785b3bf95490MD54open accessTHUMBNAIL2020GalvisLaura .pdf.jpg2020GalvisLaura .pdf.jpgGenerated Thumbnailimage/jpeg3465https://repository.usta.edu.co/bitstream/11634/29327/17/2020GalvisLaura%20.pdf.jpgda4983c7fb992cfc8eb99ad9d844ba06MD517open access2020GalvisLaura1.pdf.jpg2020GalvisLaura1.pdf.jpgGenerated Thumbnailimage/jpeg4471https://repository.usta.edu.co/bitstream/11634/29327/18/2020GalvisLaura1.pdf.jpge23917c59a6ef00524c463b4f6bb0a96MD518open access2020GalvisLaura2.pdf.jpg2020GalvisLaura2.pdf.jpgGenerated Thumbnailimage/jpeg5209https://repository.usta.edu.co/bitstream/11634/29327/19/2020GalvisLaura2.pdf.jpgd047b2833d9fc22dd410e92ebe657ff7MD519open access2020GalvisLaura3.pdf.jpg2020GalvisLaura3.pdf.jpgGenerated Thumbnailimage/jpeg3669https://repository.usta.edu.co/bitstream/11634/29327/20/2020GalvisLaura3.pdf.jpg4bf2191033e90b2f22603b7e21f6cc6dMD520open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/29327/16/license.txtaedeaf396fcd827b537c73d23464fc27MD516open access11634/29327oai:repository.usta.edu.co:11634/293272022-10-10 15:08:09.295open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K