Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales
Con el fin de fortalecer el desarrollo de procesos biológicos que sustituyan y disminuyan la dependencia a los combustibles fósiles, se ha venido estudiando hace unos años en el concepto de biorefinería, un esquema de aprovechamiento de residuos para la obtención de energía y productos de valor agre...
- Autores:
-
Ochoa Martínez, Carolina
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2019
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/18702
- Acceso en línea:
- http://hdl.handle.net/11634/18702
- Palabra clave:
- Volatile fatty acids
Metabolic pathways
Acidogenesis
Metabolismo
Fermentación
Residuos agrícolas
Aprovechamiento de residuos
Conversión de residuos agrícolas
Ácidos grasos
Ácidos grasos volátiles
Rutas metabólicas
Acidogénesis
- Rights
- openAccess
- License
- Abierto (Texto Completo)
id |
SANTTOMAS2_72a1e06829d12ad7e325ae6144a8c4cf |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/18702 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales |
title |
Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales |
spellingShingle |
Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales Volatile fatty acids Metabolic pathways Acidogenesis Metabolismo Fermentación Residuos agrícolas Aprovechamiento de residuos Conversión de residuos agrícolas Ácidos grasos Ácidos grasos volátiles Rutas metabólicas Acidogénesis |
title_short |
Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales |
title_full |
Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales |
title_fullStr |
Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales |
title_full_unstemmed |
Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales |
title_sort |
Estudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustriales |
dc.creator.fl_str_mv |
Ochoa Martínez, Carolina |
dc.contributor.advisor.spa.fl_str_mv |
Candela Soto, Angélica María Hernández Pardo, Mario Andrés Bayona Ayala, Olga Lucía |
dc.contributor.author.spa.fl_str_mv |
Ochoa Martínez, Carolina |
dc.subject.keyword.spa.fl_str_mv |
Volatile fatty acids Metabolic pathways Acidogenesis |
topic |
Volatile fatty acids Metabolic pathways Acidogenesis Metabolismo Fermentación Residuos agrícolas Aprovechamiento de residuos Conversión de residuos agrícolas Ácidos grasos Ácidos grasos volátiles Rutas metabólicas Acidogénesis |
dc.subject.lemb.spa.fl_str_mv |
Metabolismo Fermentación Residuos agrícolas Aprovechamiento de residuos Conversión de residuos agrícolas Ácidos grasos |
dc.subject.proposal.spa.fl_str_mv |
Ácidos grasos volátiles Rutas metabólicas Acidogénesis |
description |
Con el fin de fortalecer el desarrollo de procesos biológicos que sustituyan y disminuyan la dependencia a los combustibles fósiles, se ha venido estudiando hace unos años en el concepto de biorefinería, un esquema de aprovechamiento de residuos para la obtención de energía y productos de valor agregado. Ante esto, el presente trabajo se centró en el estudio de la fracción liquida de la fermentación oscura de residuos agroindustriales, con el objetivo de tener conocimiento sobre las rutas metabólicas y la bioconversión de productos metabólicos que se puedan aprovechar para considerar la fermentación oscura como proceso principal de una biorefinería. Teniendo en cuenta lo anterior, se caracterizó y cuantifico la fracción liquida del proceso de fermentación oscura a partir de la técnica química de HPLC. Se idéntico el ácido acético, propiónico, butírico y láctico como productos metabólicos. La fermentación tipo lactato se identificó como desviación de la ruta predominante y la fermentación tipo acetato-butirato se identificó como productos mayoritarios en la mayoría de las mezclas. |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-09-16T21:59:50Z |
dc.date.available.spa.fl_str_mv |
2019-09-16T21:59:50Z |
dc.date.issued.spa.fl_str_mv |
2019-09-13 |
dc.type.local.spa.fl_str_mv |
Tesis de maestría |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
http://purl.org/coar/resource_type/c_bdcc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Ochoa Martínez, C. (2019). Estudio de rutas metabólicas en los procesos de fermentación oscura de residuos agroindustriales [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/18702 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Ochoa Martínez, C. (2019). Estudio de rutas metabólicas en los procesos de fermentación oscura de residuos agroindustriales [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/18702 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Akutsu, Y., Lee, D.-Y., Li, Y.-Y., & Noike, T. (2009). Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. International Journal of Hydrogen Energy, 34(13), 5365–5372. https://doi.org/10.1016/j.ijhydene.2009.04.052 Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225, 10–22. https://doi.org/10.1016/j.foodchem.2016.12.093 Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22), 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027 Bettiga, M., Bengtsson, O., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2009). Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microbial Cell Factories, 8(1), 40. https://doi.org/10.1186/1475-2859-8-40 Calt, E. A. (2015). Products Produced from Organic Waste Using Managed Ecosystem Fermentation. Journal of Sustainable Development, 8(3), 43. https://doi.org/10.5539/jsd.v8n3p43 CENICAFÉ. (2011). Composición química del mucílago de café según el tiempo de fermentación y refrigeración. Retrieved August 13, 2019, from https://www.cenicafe.org/es/documents/2.pdf Chaganti, S. R., Kim, D.-H., & Lalman, J. A. (2011). Flux balance analysis of mixed anaerobic microbial communities: Effects of linoleic acid (LA) and pH on biohydrogen production. International Journal of Hydrogen Energy, 36(21), 14141–14152. https://doi.org/10.1016/j.ijhydene.2011.04.161 Charubin, K., Bennett, R. K., Fast, A. G., & Papoutsakis, E. T. (2018). Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metabolic Engineering, 50, 173–191. https://doi.org/10.1016/j.ymben.2018.07.012 Chatellard, L., Trably, E., & Carrère, H. (2016). The type of carbohydrates specifically selects microbial community structures and fermentation patterns. Bioresource Technology, 221, 541–549. https://doi.org/10.1016/j.biortech.2016.09.084 Chen, H., Meng, H., Nie, Z., & Zhang, M. (2013). Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes. Bioresource Technology, 128, 533–538. https://doi.org/10.1016/j.biortech.2012.10.121 Chen, Y., Li, X., Zheng, X., & Wang, D. (2013). Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Research, 47(2), 615–622. https://doi.org/10.1016/j.watres.2012.10.035 Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728–1740. https://doi.org/10.1016/j.jclepro.2016.11.116 Corrales, L. C., Antolinez Romero, D. M., Bohórquez, J. A., & Corredor Vargas, A. M. (2015). Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova, 13, 55–81. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794- Dahiya, S., Sarkar, O., Swamy, Y. V, & Mohan, S. V. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology, 182, 103–113. https://doi.org/10.1016/j.biortech.2015.01.007 DANE. (2019). Anexos estadísticos PIB Producción. Retrieved August 12, 2019, from https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales de Sá, L. R. V., Cammarota, M. C., de Oliveira, T. C., Oliveira, E. M. M., Matos, A., & Ferreira-Leitão, V. S. (2013). Pentoses, hexoses and glycerin as substrates for biohydrogen production: An approach for Brazilian biofuel integration. International Journal of Hydrogen Energy, 38(7), 2986–2997. https://doi.org/10.1016/j.ijhydene.2012.12.103 Escalante, H., Orduz, J., Zapata, H. J., Cardona, M. C., & Duarte, M. (2010). Atlas del potencial energético de la biomasa residual en Colombia 2010. Universidad Industrial de Santander. Fang, H. H. P., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82(1), 87–93. https://doi.org/10.1016/S0960-8524(01)00110-9 Fangkum, A., & Reungsang, A. (2011). Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung. International Journal of Hydrogen Energy, 36(21), 13928–13938. https://doi.org/10.1016/j.ijhydene.2011.03.098 FEDECACAO. (2017). En 2017 Colombia alcanzó nuevo récord en producción de cacao. Retrieved from http://www.fedecacao.com.co/portal/index.php/es/2015-04-23-20-00-33 FEDECAFE. (2014). Area cultivada por departamentos. Retrieved from https://www.federaciondecafeteros.org Fei, Q., Fu, R., Shang, L., Brigham, C. J., & Chang, H. N. (2015). Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess and Biosystems Engineering, 38(4), 691–700. https://doi.org/10.1007/s00449-014-1308-0 Feng, L., Casas, M. E., Ottosen, L. D. M., Møller, H. B., & Bester, K. (2017). Removal of antibiotics during the anaerobic digestion of pig manure. Science of The Total Environment, 603–604, 219–225. https://doi.org/10.1016/j.scitotenv.2017.05.280 Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95. https://doi.org/10.1016/j.apenergy.2015.01.045 González, P. P. (2005). Hidrólisis y acidificación psicrófila de moléculas complejas en sistemas anaerobios. Universidad de Santiago de Compostella. Retrieved from http://www.usc.es/biogrup/sites/default/files/PaolaPoirrier.pdf Guo, X. M., Trably, E., Latrille, E., Carrère, H., & Steyer, J.-P. (2010). Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy, 35(19), 10660–10673. https://doi.org/10.1016/J.IJHYDENE.2010.03.008 Harmsen, P. F. H., Hackmann, M. M., & Bos, H. L. (2014). Green building blocks for bio-based plastics. Biofuels, Bioproducts and Biorefining, 8(3), 306–324. https://doi.org/10.1002/bbb.1468 Hernandez, M., González, A., Suárez, F., Ochoa, C., Candela, A., & Cabeza, I. (2018). Assessment of the Biohydrogen Production Potential of Different Organic Residues In Colombia: Cocoa Waste, Pig Manure and Coffee Mucilage. Chemical Engineering Transactions, 65. https://doi.org/10.3303/CET1865042 Hu, B., & Chen, S. (2007). Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 32(15), 3266–3273. https://doi.org/10.1016/j.ijhydene.2007.03.005 Huang, W., Wang, Z., Zhou, Y., & Ng, W. J. (2015). The role of hydrogenotrophic methanogens in an acidogenic reactor. Chemosphere, 140, 40–46. https://doi.org/10.1016/j.chemosphere.2014.10.047 Hung, C.-H., Chang, Y.-T., & Chang, Y.-J. (2011). Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems – A review. Bioresource Technology, 102(18), 8437–8444. https://doi.org/10.1016/j.biortech.2011.02.084 ICA. (2016). Censo Pecuario Nacional 2016. Retrieved from https://www.ica.gov.co/getdoc/8232c0e5-be97-42bd-b07b-9cdbfb07fcac/censos-2008.aspx ICA. (2017). Censo Pecuario Nacional 2017. Retrieved from https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2017.aspx Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015 Khanal, S. K., Chen, W.-H., Li, L., & Sung, S. (2004). Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131. https://doi.org/10.1016/j.ijhydene.2003.11.002 Kumar, G., Ponnusamy, V. K., Bhosale, R. R., Shobana, S., Yoon, J.-J., Bhatia, S. K., … Kim, S.-H. (2019). A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology, 287, 121427. https://doi.org/10.1016/j.biortech.2019.121427 Li, X., Zhang, W., Ma, L., Lai, S., Zhao, S., Chen, Y., & Liu, Y. (2016). Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge. Bioresource Technology, 220, 523–529. https://doi.org/10.1016/j.biortech.2016.08.066 Liang, S., McDonald, A. G., & Coats, E. R. (2014). Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Management, 34(11), 2022–2027. https://doi.org/10.1016/j.wasman.2014.07.009 Lin, C.-Y., Lay, C.-H., Sen, B., Chu, C.-Y., Kumar, G., Chen, C.-C., & Chang, J.-S. (2012). Fermentative hydrogen production from wastewaters: A review and prognosis. International Journal of Hydrogen Energy, 37(20), 15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072 Liu, C.-G., Xue, C., Lin, Y.-H., & Bai, F.-W. (2013). Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnology Advances, 31(2), 257–265. https://doi.org/10.1016/j.biotechadv.2012.11.005 Liu, L., Zhu, Y., Li, J., Wang, M., Lee, P., Du, G., & Chen, J. (2012). Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives. Critical Reviews in Biotechnology, 32(4), 374–381. https://doi.org/10.3109/07388551.2011.651428 Londoño, S. (2013). Producción de biohidrógeno a través de la fermentación oscura de residuos – Revisión crítica. Retrieved from http://bdigital.unal.edu.co/46306/1/2300438.2013.pdf Mäkinen, A. E., Nissilä, M. E., & Puhakka, J. A. (2012). Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. International Journal of Hydrogen Energy, 37(17), 12234–12240. https://doi.org/10.1016/j.ijhydene.2012.05.158 Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & de Souza Oliveira, R. P. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science & Technology, 30(1), 70–83. https://doi.org/10.1016/j.tifs.2012.11.007 Miller, C., Fosmer, A., Rush, B., McMullin, T., Beacom, D., & Suominen, P. (2011). 3.17 - Industrial Production of Lactic Acid. In M. Moo-Young (Ed.), Comprehensive Biotechnology (Second Edition) (Second Edi, pp. 179–188). Burlington: Academic Press. https://doi.org/10.1016/B978-0-08-088504-9.00177-X Mockaitis, G., Bruant, G., Guiot, S. R., Peixoto, G., Foresti, E., & Zaiat, M. (2020). Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renewable Energy, 145, 1388–1398. https://doi.org/10.1016/j.renene.2019.06.134 Mohan, S. V., Mohanakrishna, G., Goud, R. K., & Sarma, P. N. (2009). Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Bioresource Technology, 100(12), 3061–3068. https://doi.org/10.1016/j.biortech.2008.12.059 Mohan, S. V., Nikhil, G. N., Chiranjeevi, P., Reddy, C. N., Rohit, M. V, Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/j.biortech.2016.03.130 Moset, V., Cerisuelo, A., Sutaryo, S., & Møller, H. B. (2012). Process performance of anaerobic co-digestion of raw and acidified pig slurry. Water Research, 46(16), 5019–5027. https://doi.org/10.1016/j.watres.2012.06.032 Neu, A.-K., Pleissner, D., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I., & Venus, J. (2016). Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production. Bioresource Technology, 211, 398–405. https://doi.org/10.1016/j.biortech.2016.03.122 Oleskowicz-Popiel, P., Kádár, Z., Heiske, S., Klein-Marcuschamer, D., Simmons, B. A., Blanch, H. W., & Schmidt, J. E. (2012). Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming – Evaluation of a concept for a farm-scale biorefinery. Bioresource Technology, 104, 440–446. https://doi.org/10.1016/j.biortech.2011.11.060 Quéméneur, M., Hamelin, J., Benomar, S., Guidici-Orticoni, M.-T., Latrille, E., Steyer, J.-P., & Trably, E. (2011). Changes in hydrogenase genetic diversity and proteomic patterns in mixed-culture dark fermentation of mono-, di- and tri-saccharides. International Journal of Hydrogen Energy, 36(18), 11654–11665. https://doi.org/10.1016/j.ijhydene.2011.06.010 Rasi, S., Veijanen, A., & Rintala, J. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32(8), 1375–1380. https://doi.org/10.1016/j.energy.2006.10.018 Rojas-Sossa, J. P., Murillo-Roos, M., Uribe, L., Uribe-Lorio, L., Marsh, T., Larsen, N., … Liao, W. (2017). Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance. Bioresource Technology, 245, 714–723. https://doi.org/10.1016/j.biortech.2017.08.098 Rubinson, K. A. (2000). Análisis instrumental. Pearson Educación. Retrieved from https://books.google.com.co/books?id=7rHcAAAACAAJ Sawatdeenarunat, C., Nguyen, D., Surendra, K. C., Shrestha, S., Rajendran, K., Oechsner, H., … Khanal, S. K. (2016). Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresource Technology, 215, 304–313. https://doi.org/10.1016/j.biortech.2016.03.074 Shi, E., Li, J., & Zhang, M. (2019). Application of IWA Anaerobic Digestion Model No. 1 to simulate butyric acid, propionic acid, mixed acid, and ethanol type fermentative systems using a variable acidogenic stoichiometric approach. Water Research, 161, 242–250. https://doi.org/10.1016/j.watres.2019.05.094 Singhania, R. R., Patel, A. K., Christophe, G., Fontanille, P., & Larroche, C. (2013). Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresource Technology, 145, 166–174. https://doi.org/10.1016/j.biortech.2012.12.137 SIPG. (2015). Estadísticas hidrocarburos. Retrieved from http://www.sipg.gov.co/sipg/Home/Sectores/tabid/105/language/es-ES/Default.aspx Skoog, D. A., Holler, F. J., Nieman, T. A., & Gómez, M. C. M. (2000). Principios de análisis instrumental. McGraw-Hill. Retrieved from https://books.google.com.co/books?id=ykvOAAAACAAJ Sołowski, G., Shalaby, M. S., Abdallah, H., Shaban, A. M., & Cenian, A. (2018). Production of hydrogen from biomass and its separation using membrane technology. Renewable and Sustainable Energy Reviews, 82, 3152–3167. https://doi.org/10.1016/j.rser.2017.10.027 Suárez-Forero, S. J., Candela-Soto, A. M., Henao-Martínez, J. A., & Bayona-Ayala, O. L. (2019). Evaluación del desempeño del pretratamiento con peróxido de hidrógeno sobre bagazo de caña de azúcar para remoción de lignina . Iteckne . scieloco . Tang, J., Wang, X. C., Hu, Y., Zhang, Y., & Li, Y. (2017). Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Bioresource Technology, 224, 544–552. https://doi.org/10.1016/j.biortech.2016.11.111 Urbaniec, K., & Bakker, R. R. (2015). Biomass residues as raw material for dark hydrogen fermentation – A review. International Journal of Hydrogen Energy, 40(9), 3648–3658. https://doi.org/10.1016/j.ijhydene.2015.01.073 Vital, M., Howe, A. C., & Tiedje, J. M. (2014). Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio, 5(2). https://doi.org/10.1128/mBio.00889-14 Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849–860. https://doi.org/10.1007/s00253-009-2246-7 Yadira, P.-S. B., Sergio, S.-T., Fernando, S. E. L., Sebastian, P. J., & Eapen, D. (2014). Bioethanol Production from Coffee Mucilage. Energy Procedia, 57, 950–956. https://doi.org/10.1016/j.egypro.2014.10.077 Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., & Wang, Y. (2013). Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Management, 33(12), 2653–2658. https://doi.org/10.1016/j.wasman.2013.05.014 Yin, J., Yu, X., Wang, K., & Shen, D. (2016). Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. International Journal of Hydrogen Energy, 41(46), 21713–21720. https://doi.org/10.1016/j.ijhydene.2016.07.094 Yuan, H., & Zhu, N. (2016). Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews, 58, 429–438. https://doi.org/10.1016/j.rser.2015.12.261 Zang, B., Li, S., Michel, F. C., Li, G., Zhang, D., & Li, Y. (2017). Control of dimethyl sulfide and dimethyl disulfide odors during pig manure composting using nitrogen amendment. Bioresource Technology, 224, 419–427. https://doi.org/10.1016/j.biortech.2016.11.023 Zhang, S., Liu, M., Chen, Y., & Pan, Y.-T. (2017). Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration. Bioresource Technology, 224, 349–357. https://doi.org/10.1016/j.biortech.2016.11.096 Zhou, J., Zhang, R., Liu, F., Yong, X., Wu, X., Zheng, T., … Jia, H. (2016). Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresource Technology, 217, 44–49. https://doi.org/10.1016/j.biortech.2016.02.077 Zhou, M., Yan, B., Wong, J. W. C., & Zhang, Y. (2018). Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresource Technology, 248, 68–78. https://doi.org/10.1016/j.biortech.2017.06.121 Zhou, M., Zhou, J., Tan, M., Du, J., Yan, B., Wong, J. W. C., & Zhang, Y. (2017). Enhanced carboxylic acids production by decreasing hydrogen partial pressure during acidogenic fermentation of glucose. Bioresource Technology, 245, 44–51. https://doi.org/10.1016/J.BIORTECH.2017.08.152 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bucaramanga |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Maestría Ciencias y Tecnologías Ambientales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Química Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/18702/4/license.txt https://repository.usta.edu.co/bitstream/11634/18702/1/2019OchoaCarolina.pdf https://repository.usta.edu.co/bitstream/11634/18702/2/2019OchoaCarolina1.pdf https://repository.usta.edu.co/bitstream/11634/18702/3/2019OchoaCarolina2.pdf https://repository.usta.edu.co/bitstream/11634/18702/5/2019OchoaCarolina.pdf.jpg https://repository.usta.edu.co/bitstream/11634/18702/6/2019OchoaCarolina1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/18702/7/2019OchoaCarolina2.pdf.jpg |
bitstream.checksum.fl_str_mv |
f6b8c5608fa6b2f649b2d63e10c5fa73 d04cdc8c248ec36dde2169250e7dc48f ea47dcc8838b0b8a424c7e147025c7fd bce15b3c05a994058f5146e8f3192f79 422f3ae4032a615346c851812897d3d6 cae976ad35436992b85b546533299466 adc0a20c6e654b3f0afd25b7723274d0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026250431234048 |
spelling |
Candela Soto, Angélica MaríaHernández Pardo, Mario AndrésBayona Ayala, Olga LucíaOchoa Martínez, Carolina2019-09-16T21:59:50Z2019-09-16T21:59:50Z2019-09-13Ochoa Martínez, C. (2019). Estudio de rutas metabólicas en los procesos de fermentación oscura de residuos agroindustriales [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombiahttp://hdl.handle.net/11634/18702reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coCon el fin de fortalecer el desarrollo de procesos biológicos que sustituyan y disminuyan la dependencia a los combustibles fósiles, se ha venido estudiando hace unos años en el concepto de biorefinería, un esquema de aprovechamiento de residuos para la obtención de energía y productos de valor agregado. Ante esto, el presente trabajo se centró en el estudio de la fracción liquida de la fermentación oscura de residuos agroindustriales, con el objetivo de tener conocimiento sobre las rutas metabólicas y la bioconversión de productos metabólicos que se puedan aprovechar para considerar la fermentación oscura como proceso principal de una biorefinería. Teniendo en cuenta lo anterior, se caracterizó y cuantifico la fracción liquida del proceso de fermentación oscura a partir de la técnica química de HPLC. Se idéntico el ácido acético, propiónico, butírico y láctico como productos metabólicos. La fermentación tipo lactato se identificó como desviación de la ruta predominante y la fermentación tipo acetato-butirato se identificó como productos mayoritarios en la mayoría de las mezclas.In order to strengthen the development of biological processes that substitute and reduce dependence on fossil fuels, the concept of biorefinery has been studied a few years ago. A scheme to use waste to obtain energy and value-added products. Given this, the present work focused on the study of the liquid fraction of the dark fermentation of agroindustry residues, with the objective of having knowledge about the metabolic routes and the bioconversion of metabolic products that can be used to consider dark fermentation as a process main of a biorefinery. Taking into account the above, the liquid fraction of the dark fermentation process was characterized and quantified from the chemical HPLC technique. Acetic, propionic, butyric and lactic acid were identified as metabolic products. Lactate-type fermentation was identified as a deviation from the predominant route and acetate-butyrate-type fermentation was identified as major products in most mixtures.Magister en Ciencias y Tecnologías Ambientaleshttp://www.ustabuca.edu.co/ustabmanga/presentacionMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ciencias y Tecnologías AmbientalesFacultad de Química AmbientalEstudio de rutas metabólicas de los procesos de fermentación oscura de residuos agroindustrialesVolatile fatty acidsMetabolic pathwaysAcidogenesisMetabolismoFermentaciónResiduos agrícolasAprovechamiento de residuosConversión de residuos agrícolasÁcidos grasosÁcidos grasos volátilesRutas metabólicasAcidogénesisTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisAbierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CRAI-USTA BucaramangaAkutsu, Y., Lee, D.-Y., Li, Y.-Y., & Noike, T. (2009). Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. International Journal of Hydrogen Energy, 34(13), 5365–5372. https://doi.org/10.1016/j.ijhydene.2009.04.052Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225, 10–22. https://doi.org/10.1016/j.foodchem.2016.12.093Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22), 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027Bettiga, M., Bengtsson, O., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2009). Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microbial Cell Factories, 8(1), 40. https://doi.org/10.1186/1475-2859-8-40Calt, E. A. (2015). Products Produced from Organic Waste Using Managed Ecosystem Fermentation. Journal of Sustainable Development, 8(3), 43. https://doi.org/10.5539/jsd.v8n3p43CENICAFÉ. (2011). Composición química del mucílago de café según el tiempo de fermentación y refrigeración. Retrieved August 13, 2019, from https://www.cenicafe.org/es/documents/2.pdfChaganti, S. R., Kim, D.-H., & Lalman, J. A. (2011). Flux balance analysis of mixed anaerobic microbial communities: Effects of linoleic acid (LA) and pH on biohydrogen production. International Journal of Hydrogen Energy, 36(21), 14141–14152. https://doi.org/10.1016/j.ijhydene.2011.04.161Charubin, K., Bennett, R. K., Fast, A. G., & Papoutsakis, E. T. (2018). Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metabolic Engineering, 50, 173–191. https://doi.org/10.1016/j.ymben.2018.07.012Chatellard, L., Trably, E., & Carrère, H. (2016). The type of carbohydrates specifically selects microbial community structures and fermentation patterns. Bioresource Technology, 221, 541–549. https://doi.org/10.1016/j.biortech.2016.09.084Chen, H., Meng, H., Nie, Z., & Zhang, M. (2013). Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes. Bioresource Technology, 128, 533–538. https://doi.org/10.1016/j.biortech.2012.10.121Chen, Y., Li, X., Zheng, X., & Wang, D. (2013). Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Research, 47(2), 615–622. https://doi.org/10.1016/j.watres.2012.10.035Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728–1740. https://doi.org/10.1016/j.jclepro.2016.11.116Corrales, L. C., Antolinez Romero, D. M., Bohórquez, J. A., & Corredor Vargas, A. M. (2015). Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova, 13, 55–81. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-Dahiya, S., Sarkar, O., Swamy, Y. V, & Mohan, S. V. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology, 182, 103–113. https://doi.org/10.1016/j.biortech.2015.01.007DANE. (2019). Anexos estadísticos PIB Producción. Retrieved August 12, 2019, from https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestralesde Sá, L. R. V., Cammarota, M. C., de Oliveira, T. C., Oliveira, E. M. M., Matos, A., & Ferreira-Leitão, V. S. (2013). Pentoses, hexoses and glycerin as substrates for biohydrogen production: An approach for Brazilian biofuel integration. International Journal of Hydrogen Energy, 38(7), 2986–2997. https://doi.org/10.1016/j.ijhydene.2012.12.103Escalante, H., Orduz, J., Zapata, H. J., Cardona, M. C., & Duarte, M. (2010). Atlas del potencial energético de la biomasa residual en Colombia 2010. Universidad Industrial de Santander.Fang, H. H. P., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82(1), 87–93. https://doi.org/10.1016/S0960-8524(01)00110-9Fangkum, A., & Reungsang, A. (2011). Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung. International Journal of Hydrogen Energy, 36(21), 13928–13938. https://doi.org/10.1016/j.ijhydene.2011.03.098FEDECACAO. (2017). En 2017 Colombia alcanzó nuevo récord en producción de cacao. Retrieved from http://www.fedecacao.com.co/portal/index.php/es/2015-04-23-20-00-33 FEDECAFE. (2014). Area cultivada por departamentos. Retrieved from https://www.federaciondecafeteros.orgFei, Q., Fu, R., Shang, L., Brigham, C. J., & Chang, H. N. (2015). Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess and Biosystems Engineering, 38(4), 691–700. https://doi.org/10.1007/s00449-014-1308-0Feng, L., Casas, M. E., Ottosen, L. D. M., Møller, H. B., & Bester, K. (2017). Removal of antibiotics during the anaerobic digestion of pig manure. Science of The Total Environment, 603–604, 219–225. https://doi.org/10.1016/j.scitotenv.2017.05.280Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95. https://doi.org/10.1016/j.apenergy.2015.01.045González, P. P. (2005). Hidrólisis y acidificación psicrófila de moléculas complejas en sistemas anaerobios. Universidad de Santiago de Compostella. Retrieved from http://www.usc.es/biogrup/sites/default/files/PaolaPoirrier.pdfGuo, X. M., Trably, E., Latrille, E., Carrère, H., & Steyer, J.-P. (2010). Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy, 35(19), 10660–10673. https://doi.org/10.1016/J.IJHYDENE.2010.03.008Harmsen, P. F. H., Hackmann, M. M., & Bos, H. L. (2014). Green building blocks for bio-based plastics. Biofuels, Bioproducts and Biorefining, 8(3), 306–324. https://doi.org/10.1002/bbb.1468Hernandez, M., González, A., Suárez, F., Ochoa, C., Candela, A., & Cabeza, I. (2018). Assessment of the Biohydrogen Production Potential of Different Organic Residues In Colombia: Cocoa Waste, Pig Manure and Coffee Mucilage. Chemical Engineering Transactions, 65. https://doi.org/10.3303/CET1865042Hu, B., & Chen, S. (2007). Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 32(15), 3266–3273. https://doi.org/10.1016/j.ijhydene.2007.03.005Huang, W., Wang, Z., Zhou, Y., & Ng, W. J. (2015). The role of hydrogenotrophic methanogens in an acidogenic reactor. Chemosphere, 140, 40–46. https://doi.org/10.1016/j.chemosphere.2014.10.047Hung, C.-H., Chang, Y.-T., & Chang, Y.-J. (2011). Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems – A review. Bioresource Technology, 102(18), 8437–8444. https://doi.org/10.1016/j.biortech.2011.02.084ICA. (2016). Censo Pecuario Nacional 2016. Retrieved from https://www.ica.gov.co/getdoc/8232c0e5-be97-42bd-b07b-9cdbfb07fcac/censos-2008.aspxICA. (2017). Censo Pecuario Nacional 2017. Retrieved from https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2017.aspxKapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015Khanal, S. K., Chen, W.-H., Li, L., & Sung, S. (2004). Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131. https://doi.org/10.1016/j.ijhydene.2003.11.002Kumar, G., Ponnusamy, V. K., Bhosale, R. R., Shobana, S., Yoon, J.-J., Bhatia, S. K., … Kim, S.-H. (2019). A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresource Technology, 287, 121427. https://doi.org/10.1016/j.biortech.2019.121427Li, X., Zhang, W., Ma, L., Lai, S., Zhao, S., Chen, Y., & Liu, Y. (2016). Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge. Bioresource Technology, 220, 523–529. https://doi.org/10.1016/j.biortech.2016.08.066Liang, S., McDonald, A. G., & Coats, E. R. (2014). Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Management, 34(11), 2022–2027. https://doi.org/10.1016/j.wasman.2014.07.009Lin, C.-Y., Lay, C.-H., Sen, B., Chu, C.-Y., Kumar, G., Chen, C.-C., & Chang, J.-S. (2012). Fermentative hydrogen production from wastewaters: A review and prognosis. International Journal of Hydrogen Energy, 37(20), 15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072Liu, C.-G., Xue, C., Lin, Y.-H., & Bai, F.-W. (2013). Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnology Advances, 31(2), 257–265. https://doi.org/10.1016/j.biotechadv.2012.11.005Liu, L., Zhu, Y., Li, J., Wang, M., Lee, P., Du, G., & Chen, J. (2012). Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives. Critical Reviews in Biotechnology, 32(4), 374–381. https://doi.org/10.3109/07388551.2011.651428Londoño, S. (2013). Producción de biohidrógeno a través de la fermentación oscura de residuos – Revisión crítica. Retrieved from http://bdigital.unal.edu.co/46306/1/2300438.2013.pdfMäkinen, A. E., Nissilä, M. E., & Puhakka, J. A. (2012). Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. International Journal of Hydrogen Energy, 37(17), 12234–12240. https://doi.org/10.1016/j.ijhydene.2012.05.158Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & de Souza Oliveira, R. P. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science & Technology, 30(1), 70–83. https://doi.org/10.1016/j.tifs.2012.11.007Miller, C., Fosmer, A., Rush, B., McMullin, T., Beacom, D., & Suominen, P. (2011). 3.17 - Industrial Production of Lactic Acid. In M. Moo-Young (Ed.), Comprehensive Biotechnology (Second Edition) (Second Edi, pp. 179–188). Burlington: Academic Press. https://doi.org/10.1016/B978-0-08-088504-9.00177-XMockaitis, G., Bruant, G., Guiot, S. R., Peixoto, G., Foresti, E., & Zaiat, M. (2020). Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renewable Energy, 145, 1388–1398. https://doi.org/10.1016/j.renene.2019.06.134Mohan, S. V., Mohanakrishna, G., Goud, R. K., & Sarma, P. N. (2009). Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Bioresource Technology, 100(12), 3061–3068. https://doi.org/10.1016/j.biortech.2008.12.059Mohan, S. V., Nikhil, G. N., Chiranjeevi, P., Reddy, C. N., Rohit, M. V, Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/j.biortech.2016.03.130Moset, V., Cerisuelo, A., Sutaryo, S., & Møller, H. B. (2012). Process performance of anaerobic co-digestion of raw and acidified pig slurry. Water Research, 46(16), 5019–5027. https://doi.org/10.1016/j.watres.2012.06.032Neu, A.-K., Pleissner, D., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I., & Venus, J. (2016). Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production. Bioresource Technology, 211, 398–405. https://doi.org/10.1016/j.biortech.2016.03.122Oleskowicz-Popiel, P., Kádár, Z., Heiske, S., Klein-Marcuschamer, D., Simmons, B. A., Blanch, H. W., & Schmidt, J. E. (2012). Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming – Evaluation of a concept for a farm-scale biorefinery. Bioresource Technology, 104, 440–446. https://doi.org/10.1016/j.biortech.2011.11.060Quéméneur, M., Hamelin, J., Benomar, S., Guidici-Orticoni, M.-T., Latrille, E., Steyer, J.-P., & Trably, E. (2011). Changes in hydrogenase genetic diversity and proteomic patterns in mixed-culture dark fermentation of mono-, di- and tri-saccharides. International Journal of Hydrogen Energy, 36(18), 11654–11665. https://doi.org/10.1016/j.ijhydene.2011.06.010Rasi, S., Veijanen, A., & Rintala, J. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32(8), 1375–1380. https://doi.org/10.1016/j.energy.2006.10.018Rojas-Sossa, J. P., Murillo-Roos, M., Uribe, L., Uribe-Lorio, L., Marsh, T., Larsen, N., … Liao, W. (2017). Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance. Bioresource Technology, 245, 714–723. https://doi.org/10.1016/j.biortech.2017.08.098Rubinson, K. A. (2000). Análisis instrumental. Pearson Educación. Retrieved from https://books.google.com.co/books?id=7rHcAAAACAAJSawatdeenarunat, C., Nguyen, D., Surendra, K. C., Shrestha, S., Rajendran, K., Oechsner, H., … Khanal, S. K. (2016). Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresource Technology, 215, 304–313. https://doi.org/10.1016/j.biortech.2016.03.074Shi, E., Li, J., & Zhang, M. (2019). Application of IWA Anaerobic Digestion Model No. 1 to simulate butyric acid, propionic acid, mixed acid, and ethanol type fermentative systems using a variable acidogenic stoichiometric approach. Water Research, 161, 242–250. https://doi.org/10.1016/j.watres.2019.05.094Singhania, R. R., Patel, A. K., Christophe, G., Fontanille, P., & Larroche, C. (2013). Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresource Technology, 145, 166–174. https://doi.org/10.1016/j.biortech.2012.12.137SIPG. (2015). Estadísticas hidrocarburos. Retrieved from http://www.sipg.gov.co/sipg/Home/Sectores/tabid/105/language/es-ES/Default.aspxSkoog, D. A., Holler, F. J., Nieman, T. A., & Gómez, M. C. M. (2000). Principios de análisis instrumental. McGraw-Hill. Retrieved from https://books.google.com.co/books?id=ykvOAAAACAAJSołowski, G., Shalaby, M. S., Abdallah, H., Shaban, A. M., & Cenian, A. (2018). Production of hydrogen from biomass and its separation using membrane technology. Renewable and Sustainable Energy Reviews, 82, 3152–3167. https://doi.org/10.1016/j.rser.2017.10.027Suárez-Forero, S. J., Candela-Soto, A. M., Henao-Martínez, J. A., & Bayona-Ayala, O. L. (2019). Evaluación del desempeño del pretratamiento con peróxido de hidrógeno sobre bagazo de caña de azúcar para remoción de lignina . Iteckne . scieloco .Tang, J., Wang, X. C., Hu, Y., Zhang, Y., & Li, Y. (2017). Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Bioresource Technology, 224, 544–552. https://doi.org/10.1016/j.biortech.2016.11.111Urbaniec, K., & Bakker, R. R. (2015). Biomass residues as raw material for dark hydrogen fermentation – A review. International Journal of Hydrogen Energy, 40(9), 3648–3658. https://doi.org/10.1016/j.ijhydene.2015.01.073Vital, M., Howe, A. C., & Tiedje, J. M. (2014). Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio, 5(2). https://doi.org/10.1128/mBio.00889-14Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849–860. https://doi.org/10.1007/s00253-009-2246-7Yadira, P.-S. B., Sergio, S.-T., Fernando, S. E. L., Sebastian, P. J., & Eapen, D. (2014). Bioethanol Production from Coffee Mucilage. Energy Procedia, 57, 950–956. https://doi.org/10.1016/j.egypro.2014.10.077Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., & Wang, Y. (2013). Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Management, 33(12), 2653–2658. https://doi.org/10.1016/j.wasman.2013.05.014Yin, J., Yu, X., Wang, K., & Shen, D. (2016). Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. International Journal of Hydrogen Energy, 41(46), 21713–21720. https://doi.org/10.1016/j.ijhydene.2016.07.094Yuan, H., & Zhu, N. (2016). Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews, 58, 429–438. https://doi.org/10.1016/j.rser.2015.12.261Zang, B., Li, S., Michel, F. C., Li, G., Zhang, D., & Li, Y. (2017). Control of dimethyl sulfide and dimethyl disulfide odors during pig manure composting using nitrogen amendment. Bioresource Technology, 224, 419–427. https://doi.org/10.1016/j.biortech.2016.11.023Zhang, S., Liu, M., Chen, Y., & Pan, Y.-T. (2017). Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration. Bioresource Technology, 224, 349–357. https://doi.org/10.1016/j.biortech.2016.11.096Zhou, J., Zhang, R., Liu, F., Yong, X., Wu, X., Zheng, T., … Jia, H. (2016). Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresource Technology, 217, 44–49. https://doi.org/10.1016/j.biortech.2016.02.077Zhou, M., Yan, B., Wong, J. W. C., & Zhang, Y. (2018). Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresource Technology, 248, 68–78. https://doi.org/10.1016/j.biortech.2017.06.121Zhou, M., Zhou, J., Tan, M., Du, J., Yan, B., Wong, J. W. C., & Zhang, Y. (2017). Enhanced carboxylic acids production by decreasing hydrogen partial pressure during acidogenic fermentation of glucose. Bioresource Technology, 245, 44–51. https://doi.org/10.1016/J.BIORTECH.2017.08.152LICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/18702/4/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD54open accessORIGINAL2019OchoaCarolina.pdf2019OchoaCarolina.pdfTrabajo de gradoapplication/pdf2086765https://repository.usta.edu.co/bitstream/11634/18702/1/2019OchoaCarolina.pdfd04cdc8c248ec36dde2169250e7dc48fMD51metadata only access2019OchoaCarolina1.pdf2019OchoaCarolina1.pdfAprobación Facultadapplication/pdf143898https://repository.usta.edu.co/bitstream/11634/18702/2/2019OchoaCarolina1.pdfea47dcc8838b0b8a424c7e147025c7fdMD52metadata only access2019OchoaCarolina2.pdf2019OchoaCarolina2.pdfAcuerdo de Confidencialidadapplication/pdf407995https://repository.usta.edu.co/bitstream/11634/18702/3/2019OchoaCarolina2.pdfbce15b3c05a994058f5146e8f3192f79MD53metadata only accessTHUMBNAIL2019OchoaCarolina.pdf.jpg2019OchoaCarolina.pdf.jpgIM Thumbnailimage/jpeg5378https://repository.usta.edu.co/bitstream/11634/18702/5/2019OchoaCarolina.pdf.jpg422f3ae4032a615346c851812897d3d6MD55open access2019OchoaCarolina1.pdf.jpg2019OchoaCarolina1.pdf.jpgIM Thumbnailimage/jpeg7681https://repository.usta.edu.co/bitstream/11634/18702/6/2019OchoaCarolina1.pdf.jpgcae976ad35436992b85b546533299466MD56open access2019OchoaCarolina2.pdf.jpg2019OchoaCarolina2.pdf.jpgIM Thumbnailimage/jpeg10457https://repository.usta.edu.co/bitstream/11634/18702/7/2019OchoaCarolina2.pdf.jpgadc0a20c6e654b3f0afd25b7723274d0MD57open access11634/18702oai:repository.usta.edu.co:11634/187022022-10-10 17:00:55.78metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |