Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation

La ortiga (Urtica dioica L.) se considera una gran fuente de metabolitos secundarios de interés comercial y la extracción de este tipo de metabolitos es importante para la viabilidad y escalado del proceso. Se han evaluado diferentes alternativas, incluida la extracción Soxhlet y el uso de fluidos s...

Full description

Autores:
Aguirre Dúran, Esteban Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/34996
Acceso en línea:
http://hdl.handle.net/11634/34996
Palabra clave:
ß-carotenes
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
Extraction
Stinging nettle
Cavitation
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
ß-carotenes
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_3f2c47cc191c21248bb4f87fc71e6bdd
oai_identifier_str oai:repository.usta.edu.co:11634/34996
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
title Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
spellingShingle Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
ß-carotenes
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
Extraction
Stinging nettle
Cavitation
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
ß-carotenes
title_short Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
title_full Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
title_fullStr Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
title_full_unstemmed Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
title_sort Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
dc.creator.fl_str_mv Aguirre Dúran, Esteban Felipe
dc.contributor.advisor.none.fl_str_mv Malagón Romero, Dionisio Humberto
dc.contributor.author.none.fl_str_mv Aguirre Dúran, Esteban Felipe
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0003-2890-2180
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es
dc.contributor.cvlac.spa.fl_str_mv http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv ß-carotenes
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
topic ß-carotenes
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
Extraction
Stinging nettle
Cavitation
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
ß-carotenes
dc.subject.lemb.spa.fl_str_mv Extraction
Stinging nettle
Cavitation
dc.subject.proposal.spa.fl_str_mv hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
ß-carotenes
description La ortiga (Urtica dioica L.) se considera una gran fuente de metabolitos secundarios de interés comercial y la extracción de este tipo de metabolitos es importante para la viabilidad y escalado del proceso. Se han evaluado diferentes alternativas, incluida la extracción Soxhlet y el uso de fluidos supercríticos, principalmente a escala de laboratorio. Como enfoque innovador, la hidrocavitación ha surgido como una alternativa eficiente para extraer principios de plantas a bajas temperaturas y tiempos operativos cortos. Este trabajo presenta la extracción experimental de ß-caroteno de ortiga mediante hidrocavitación. Se utilizó etanol como disolvente a diferentes concentraciones (100%, 90%, 80% y 60%) y dos proporciones p / v soluto / disolvente (1:30 y 2:30). Se determinó la concentración de clorofila A, B, clorofilas totales (A + B), carotenos y ß-carotenos. La mejor concentración de ß-carotenos se obtuvo a razón soluto / disolvente 2:30 con etanol al 100% y un tiempo de operación de 2 minutos, correspondiente a 153,975 mg ß-carotenos / kg, con un consumo de energía de 0,7698 kJ / mg ß -caroteno extraído. Los resultados avalan la viabilidad del uso de la hidrocavitación para la obtención rápida y eficiente de extractos de ortiga a escala piloto y abren la posibilidad para el diseño de procesos a escala industrial.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-22T20:03:01Z
dc.date.available.none.fl_str_mv 2021-07-22T20:03:01Z
dc.date.issued.none.fl_str_mv 2021-06-07
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv A. D. E. Felipe, N. Galeano, G. Astrid, and M. Dionisio, “Obtaining nettle extracts ( Urtica dioica L ) by means of hydrocavitation.”retroexcavadoras [Trabajo de Pregrado Ingeniería Mecanica]. Repositorio institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/34996
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv A. D. E. Felipe, N. Galeano, G. Astrid, and M. Dionisio, “Obtaining nettle extracts ( Urtica dioica L ) by means of hydrocavitation.”retroexcavadoras [Trabajo de Pregrado Ingeniería Mecanica]. Repositorio institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/34996
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv D. Viboral, E. Retiro, and E. Santuario, “Medicinal plants used in some townships of municipalities in the high plainish,” vol. 33, no. 95, pp. 219–250, 2011.
D. Orcic et al., “Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection,” Food Chem., vol. 143, pp. 48–53, 2014.
C. Proestos, I. S. Boziaris, G. J. E. Nychas, and M. Komaitis, “Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity,” Food Chem., vol. 95, no. 4, pp. 664–671, 2006.
R. Dhouibi et al., “Screening of pharmacological uses of Urtica dioica and others benefits,” Prog. Biophys. Mol. Biol., vol. 150, pp. 67–77, 2020.
S. Otles and B. Yalcin, “Phenolic compounds analysis of root, stalk, and leaves of nettle,” Sci. World J., vol. 2012, 2012.
R. Upton, “Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine,” J. Herb. Med., 2013.
N. A. Salih, “Effect of nettle (Urtica dioica) extract on gentamicin induced nephrotoxicity in male rabbits,” Asian Pac. J. Trop. Biomed., 2015.
Ahmed A. Abdeltawab, “Evaluation of the chemical composition and element analysis of Urtica dioica,” African J. Pharm. Pharmacol., vol. 6, no. 21, pp. 1555–1558, 2012.
S. Đurović et al., “Chemical composition of stinging nettle leaves obtained by different analytical approaches,” J. Funct. Foods, vol. 32, pp. 18–26, 2017.
S. Polat, “An in vitro evaluation of the effects of Urtica dioica and Fructus Urtica Piluliferae extracts on the crystallization of calcium oxalate,” J. Cryst. Growth, vol. 522, no. April, pp. 92–102, 2019.
R. Kargozar, R. Salari, L. Jarahi, M. Yousefi, and S. Azam, “Complementary Therapies in Medicine Urtica dioica in comparison with placebo and acupuncture : A new possibility for menopausal hot flashes : A randomized clinical trial,” Complement. Ther. Med., vol. 44, no. January, pp. 166–173, 2019.
B. Mansoori et al., “ScienceDirect Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer,” Biomed. Pharmacother., vol. 93, pp. 95–102, 2017.
C. Bourgeois et al., “L’ortie (Urtica dioica L.), une source de produits antioxidants et phytochimiques anti-âge pour des applications en cosmétique,” Comptes Rendus Chim., vol. 19, no. 9, pp. 1090–1100, 2016.
M. K. Akalin, S. Karagöz, and M. Akyüz, “Application of response surface methodology to extract yields from stinging nettle under supercritical ethanol conditions,” J. Supercrit. Fluids, 2013.
N. Di Virgilio, E. G. Papazoglou, Z. Jankauskiene, S. Di Lonardo, M. Praczyk, and K. Wielgusz, “The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses,” Ind. Crops Prod., 2015.
C. C. XU, B. WANG, Y. Q. PU, J. S. TAO, and T. ZHANG, “Advances in extraction and analysis of phenolic compounds from plant materials,” Chin. J. Nat. Med., vol. 15, no. 10, pp. 721–731, 2017.
U. J. Vajić et al., “Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology,” Ind. Crops Prod., 2015.
T. T. Shonte, K. G. Duodu, and H. L. de Kock, “Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves,” Heliyon, vol. 6, no. 5, 2020.
M. Chaijan, K. Srirattanachot, M. Nisoa, L. Z. Cheong, and W. Panpipat, “Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests,” Food Chem., vol. 339, no. September 2020, p. 128157, 2021.
M. A. T. Phan, M. Bucknall, and J. Arcot, “Interactive effects of β-carotene and anthocyanins on cellular uptake, antioxidant activity and anti-inflammatory activity in vitro and ex vivo,” J. Funct. Foods, vol. 45, no. February, pp. 129–137, 2018.
C. Ba et al., “Effects of environmental stresses on physiochemical stability of β-carotene in zein-carboxymethyl chitosan-tea polyphenols ternary delivery system,” Food Chem., vol. 311, p. 125878, 2020.
N. Y. Lee, Y. Kim, Y. S. Kim, J. H. Shin, L. P. Rubin, and Y. Kim, “β-Carotene exerts anti-colon cancer effects by regulating M2 macrophages and activated fibroblasts,” J. Nutr. Biochem., vol. 82, p. 108402, 2020.
U. Blume-Peytavi et al., “Cutaneous lycopene and β-carotene levels measured by resonance Raman spectroscopy: High reliability and sensitivity to oral lactolycopene deprivation and supplementation,” Eur. J. Pharm. Biopharm., vol. 73, no. 1, pp. 187–194, 2009.
J. V. Freitas, F. S. G. Praça, M. V. L. B. Bentley, and L. R. Gaspar, “Trans-resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV-filters,” Int. J. Pharm., vol. 484, no. 1–2, pp. 131–137, 2015.
E. J. Baek, C. V. Garcia, G. H. Shin, and J. T. Kim, “Improvement of thermal and UV-light stability of β-carotene-loaded nanoemulsions by water-soluble chitosan coating,” Int. J. Biol. Macromol., vol. 165, pp. 1156–1163, 2020.
H. Phan-thi, P. Durand, M. Prost, E. Prost, and Y. Waché, “Effect of heat-processing on the antioxidant and prooxidant activities of b -carotene from natural and synthetic origins on red blood cells,” Food Chem., vol. 190, pp. 1137–1144, 2016.
H. Sovová, M. Sajfrtová, M. Bártlová, and L. Opletal, “Near-critical extraction of pigments and oleoresin from stinging nettle leaves,” J. Supercrit. Fluids, vol. 30, no. 2, pp. 213–224, 2004.
R. Li et al., “Combining Ability and Parent-Offspring Correlation of Maize (Zea may L.) Grain β-Carotene Content with a Complete Diallel,” J. Integr. Agric., vol. 12, no. 1, pp. 19–26, 2013.
R. F. Martini and M. R. Wolf-Maciel, “A new methodology for mixture characterization and solvent screening for separation process application,” Comput. Chem. Eng., vol. 20, no. SUPPL.1, pp. 219–224, 1996.
J. L. Guil-Guerrero, M. M. Rebolloso-Fuentes, and M. E. Torija Isasa, “Fatty acids and carotenoids from Stinging Nettle (Urtica dioica L.),” J. Food Compos. Anal., vol. 16, no. 2, pp. 111–119, 2003.
N. B. Ibrahim and Y. Noratiqah, “The microstructure and magnetic properties of yttrium iron garnet film prepared using water-alcohol solvents,” J. Magn. Magn. Mater., vol. 510, no. April, p. 166953, 2020.
J. Branisa, K. Jomova, M. Porubska, V. Kollar, M. Simunkova, and M. Valko, “Effect of drying methods on the content of natural pigments and antioxidant capacity in extracts from medicinal plants: A spectroscopic study,” Chem. Pap., vol. 71, no. 10, pp. 1993–2002, 2017.
K. KŐszegi, G. Vatai, and E. BÉkÁssy-MolnÁr, “Comparison the soxhlet and supercritical fluid extraction of nettle root (Urtica dioica L.),” Period. Polytech. Chem. Eng., vol. 59, no. 3, pp. 168–173, 2015.
A. E. Ince, S. Sahin, and G. Sumnu, “Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle,” J. Food Sci. Technol., vol. 51, no. 10, pp. 2776–2782, 2014.
I. Alibas, “Energy Consumption and Colour Characteristics of Nettle Leaves during Microwave, Vacuum and Convective Drying,” Biosyst. Eng., vol. 96, no. 4, pp. 495–502, 2007.
I. Nencu, L. M. Popescu, V. Istudor, T. Costea, L. E. D. U. Ţ. U, and C. E. Gîrd, “The selection of thechnological parameters in order to obtain an extract with important antioxidant activity from stinging nettle leaves.,” vol. 65, 2017.
M. Sajfrtová, H. Sovová, L. Opletal, and M. Bártlová, “Near-critical extraction of β-sitosterol and scopoletin from stinging nettle roots,” J. Supercrit. Fluids, 2005.
W. Chen, Y. Liu, L. Song, M. Sommerfeld, and Q. Hu, “Automated accelerated solvent extraction method for total lipid analysis of microalgae,” Algal Res., vol. 51, no. August, p. 102080, 2020.
L. Duan, L. L. Dou, L. Guo, P. Li, and E. H. Liu, “Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products,” ACS Sustain. Chem. Eng., vol. 4, no. 4, pp. 2405–2411, 2016.
I. Lee, Y. K. Oh, and J. I. Han, “Design optimization of hydrodynamic cavitation for effectual lipid extraction from wet microalgae,” J. Environ. Chem. Eng., vol. 7, no. 2, p. 102942, 2019.
J. Choi et al., “Hybrid reactor based on hydrodynamic cavitation, ozonation, and persulfate oxidation for oxalic acid decomposition during rare-earth extraction processes,” Ultrason. Sonochem., vol. 52, no. August 2018, pp. 326–335, 2019.
K. E. Preece, N. Hooshyar, A. J. Krijgsman, P. J. Fryer, and N. J. Zuidam, “Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation,” Innov. Food Sci. Emerg. Technol., vol. 41, pp. 47–55, 2017.
M. Talebian, T. Abbasiasl, S. Niazi, and M. Ghorbani, “Direct and indirect thermal applications of hydrodynamic and acoustic cavitation : A review,” vol. 171, no. January, 2020.
B. Lixin, Y. Jiuchun, Z. Zhijie, and M. Yuhang, “Cavitation in thin liquid layer : A review,” Ultrason. Sonochem., p. 105092, 2020.
V. V. V. Cravotto Giancarlo, Cravotto Christian, “Ultrasound- and Hydrodynamic-Cavitation Assisted Extraction in food Processing,” Elsevier 1.22, pp. 359–366, 2021.
V. Saharan, M. Badve, and A. Pandit, Degradation of Reactive Red 120 dye using Hydrodynamic cavitation, vol. 178. 2011.
J. Carpenter and V. Kumar, “Study of Cavity dynamics in a Hydrodynamic Cavitation Reactor,” vol. 1, no. 3, pp. 37–43, 2017.
S. Đurović et al., “Chemical composition of stinging nettle leaves obtained by different analytical approaches,” J. Funct. Foods, vol. 32, pp. 18–26, 2017.
A. Paulauskienė, Ž. Tarasevičienė, and V. Laukagalis, “Influence of harvesting time on the chemical composition of wild stinging nettle (Urtica dioica L.),” Plants, vol. 10, no. 4, 2021.
M. Hojnik, M. Škerget, and Ž. Knez, “Isolation of chlorophylls from stinging nettle (Urtica dioica L.),” Sep. Purif. Technol., 2007.
E. Food et al., “Scientific Opinion on the re-evaluation of chlorophylls (E 140(i)) as food additives,” EFSA J., vol. 13, no. 5, pp. 1–51, 2015.
S. M. Nadakatti, J. H. Kim, and S. A. Stern, “Solubility of light gases in poly ( n-butyl methacrylate ) at elevated pressures,” J. Memb. Sci., vol. 108, pp. 279–291, 1995.
S. Zeipiņa, I. Alsiņa, and L. Lepse, “Stinging nettle - the source of biologically active compounds as sustainable daily diet supplement,” Res. Rural Dev., vol. 1, pp. 34–38, 2014.
D. Mihaylova et al., “Carotenoids, tocopherols, organic acids, carbohydrate and mineral content in different medicinal plant extracts,” Zeitschrift fur Naturforsch. - Sect. C J. Biosci., vol. 73, no. 11–12, pp. 439–448, 2018.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/34996/7/license.txt
https://repository.usta.edu.co/bitstream/11634/34996/1/2021estebanaguirre.pdf
https://repository.usta.edu.co/bitstream/11634/34996/2/CARTA%20CRAI%20USTA%20Esteban%20Felipe%20Aguirre.pdf
https://repository.usta.edu.co/bitstream/11634/34996/6/Carta_autorizacion_autoarchivo.pdf
https://repository.usta.edu.co/bitstream/11634/34996/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/34996/8/2021estebanaguirre.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/34996/9/CARTA%20CRAI%20USTA%20Esteban%20Felipe%20Aguirre.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/34996/10/Carta_autorizacion_autoarchivo.pdf.jpg
bitstream.checksum.fl_str_mv aedeaf396fcd827b537c73d23464fc27
6b6105c2584b19ae897b02a4750b78bd
0ee69a299969db02f1faedd725185ca6
68b4aec44768b2deed0c2c6b81aafe45
217700a34da79ed616c2feb68d4c5e06
860453bcee758577303dab2a5fca3730
66c2d900ef192e3646fd01cb3a31d34c
c73784ad580c6c944bf67eb148d9722c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026173342023680
spelling Malagón Romero, Dionisio HumbertoAguirre Dúran, Esteban Felipehttps://orcid.org/0000-0003-2890-2180https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061Universidad Santo Tomás2021-07-22T20:03:01Z2021-07-22T20:03:01Z2021-06-07A. D. E. Felipe, N. Galeano, G. Astrid, and M. Dionisio, “Obtaining nettle extracts ( Urtica dioica L ) by means of hydrocavitation.”retroexcavadoras [Trabajo de Pregrado Ingeniería Mecanica]. Repositorio institucional.http://hdl.handle.net/11634/34996reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLa ortiga (Urtica dioica L.) se considera una gran fuente de metabolitos secundarios de interés comercial y la extracción de este tipo de metabolitos es importante para la viabilidad y escalado del proceso. Se han evaluado diferentes alternativas, incluida la extracción Soxhlet y el uso de fluidos supercríticos, principalmente a escala de laboratorio. Como enfoque innovador, la hidrocavitación ha surgido como una alternativa eficiente para extraer principios de plantas a bajas temperaturas y tiempos operativos cortos. Este trabajo presenta la extracción experimental de ß-caroteno de ortiga mediante hidrocavitación. Se utilizó etanol como disolvente a diferentes concentraciones (100%, 90%, 80% y 60%) y dos proporciones p / v soluto / disolvente (1:30 y 2:30). Se determinó la concentración de clorofila A, B, clorofilas totales (A + B), carotenos y ß-carotenos. La mejor concentración de ß-carotenos se obtuvo a razón soluto / disolvente 2:30 con etanol al 100% y un tiempo de operación de 2 minutos, correspondiente a 153,975 mg ß-carotenos / kg, con un consumo de energía de 0,7698 kJ / mg ß -caroteno extraído. Los resultados avalan la viabilidad del uso de la hidrocavitación para la obtención rápida y eficiente de extractos de ortiga a escala piloto y abren la posibilidad para el diseño de procesos a escala industrial.Abstract- Stinging nettle (Urtica dioica L.) is considered a great source of secondary metabolites of commercial interest and the extraction of this kind of metabolites is important for the process viability and scale-up. Different alternatives have been evaluated, including Soxhlet extraction and the use of super critic fluids, mainly on laboratory scale. As an innovative approach, hydro-cavitation has emerged as an efficient alternative for extracting principles from plants at low temperatures and short operational times. This work presents the experimental extraction of ß-carotene from Stinging nettle employing hydro-cavitation. Ethanol was used as solvent at different concentrations (100%, 90%, 80% and 60%) and two w/v solute/solvent ratio (1:30 and 2:30). The concentration of chlorophyll A, B, total chlorophylls (A+B), carotenes, and ß-carotenes were determined. The best concentration of ß-carotenes was obtained at 2:30 solute/solvent ratio with ethanol at 100% and an operational time of 2 minutes, corresponding to 153.975 mg ß-carotenes/ kg, with a power consumption of 0.7698 kJ/mg ß-carotene extracted. The results support the viability of the use of hydro-cavitation for the rapid and efficient obtaining of Stinging nettle extracts on a pilot scale and open the possibility for the design of processes on an industrial scale.Ingeniero Mecánicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería MecánicaFacultad de Ingeniería MecánicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitationß-caroteneshydro-cavitationUrtica dioica Lchlorophyll Achlorophyll BExtractionStinging nettleCavitationhydro-cavitationUrtica dioica Lchlorophyll Achlorophyll Bß-carotenesTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáD. Viboral, E. Retiro, and E. Santuario, “Medicinal plants used in some townships of municipalities in the high plainish,” vol. 33, no. 95, pp. 219–250, 2011.D. Orcic et al., “Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection,” Food Chem., vol. 143, pp. 48–53, 2014.C. Proestos, I. S. Boziaris, G. J. E. Nychas, and M. Komaitis, “Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity,” Food Chem., vol. 95, no. 4, pp. 664–671, 2006.R. Dhouibi et al., “Screening of pharmacological uses of Urtica dioica and others benefits,” Prog. Biophys. Mol. Biol., vol. 150, pp. 67–77, 2020.S. Otles and B. Yalcin, “Phenolic compounds analysis of root, stalk, and leaves of nettle,” Sci. World J., vol. 2012, 2012.R. Upton, “Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine,” J. Herb. Med., 2013.N. A. Salih, “Effect of nettle (Urtica dioica) extract on gentamicin induced nephrotoxicity in male rabbits,” Asian Pac. J. Trop. Biomed., 2015.Ahmed A. Abdeltawab, “Evaluation of the chemical composition and element analysis of Urtica dioica,” African J. Pharm. Pharmacol., vol. 6, no. 21, pp. 1555–1558, 2012.S. Đurović et al., “Chemical composition of stinging nettle leaves obtained by different analytical approaches,” J. Funct. Foods, vol. 32, pp. 18–26, 2017.S. Polat, “An in vitro evaluation of the effects of Urtica dioica and Fructus Urtica Piluliferae extracts on the crystallization of calcium oxalate,” J. Cryst. Growth, vol. 522, no. April, pp. 92–102, 2019.R. Kargozar, R. Salari, L. Jarahi, M. Yousefi, and S. Azam, “Complementary Therapies in Medicine Urtica dioica in comparison with placebo and acupuncture : A new possibility for menopausal hot flashes : A randomized clinical trial,” Complement. Ther. Med., vol. 44, no. January, pp. 166–173, 2019.B. Mansoori et al., “ScienceDirect Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer,” Biomed. Pharmacother., vol. 93, pp. 95–102, 2017.C. Bourgeois et al., “L’ortie (Urtica dioica L.), une source de produits antioxidants et phytochimiques anti-âge pour des applications en cosmétique,” Comptes Rendus Chim., vol. 19, no. 9, pp. 1090–1100, 2016.M. K. Akalin, S. Karagöz, and M. Akyüz, “Application of response surface methodology to extract yields from stinging nettle under supercritical ethanol conditions,” J. Supercrit. Fluids, 2013.N. Di Virgilio, E. G. Papazoglou, Z. Jankauskiene, S. Di Lonardo, M. Praczyk, and K. Wielgusz, “The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses,” Ind. Crops Prod., 2015.C. C. XU, B. WANG, Y. Q. PU, J. S. TAO, and T. ZHANG, “Advances in extraction and analysis of phenolic compounds from plant materials,” Chin. J. Nat. Med., vol. 15, no. 10, pp. 721–731, 2017.U. J. Vajić et al., “Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology,” Ind. Crops Prod., 2015.T. T. Shonte, K. G. Duodu, and H. L. de Kock, “Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves,” Heliyon, vol. 6, no. 5, 2020.M. Chaijan, K. Srirattanachot, M. Nisoa, L. Z. Cheong, and W. Panpipat, “Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests,” Food Chem., vol. 339, no. September 2020, p. 128157, 2021.M. A. T. Phan, M. Bucknall, and J. Arcot, “Interactive effects of β-carotene and anthocyanins on cellular uptake, antioxidant activity and anti-inflammatory activity in vitro and ex vivo,” J. Funct. Foods, vol. 45, no. February, pp. 129–137, 2018.C. Ba et al., “Effects of environmental stresses on physiochemical stability of β-carotene in zein-carboxymethyl chitosan-tea polyphenols ternary delivery system,” Food Chem., vol. 311, p. 125878, 2020.N. Y. Lee, Y. Kim, Y. S. Kim, J. H. Shin, L. P. Rubin, and Y. Kim, “β-Carotene exerts anti-colon cancer effects by regulating M2 macrophages and activated fibroblasts,” J. Nutr. Biochem., vol. 82, p. 108402, 2020.U. Blume-Peytavi et al., “Cutaneous lycopene and β-carotene levels measured by resonance Raman spectroscopy: High reliability and sensitivity to oral lactolycopene deprivation and supplementation,” Eur. J. Pharm. Biopharm., vol. 73, no. 1, pp. 187–194, 2009.J. V. Freitas, F. S. G. Praça, M. V. L. B. Bentley, and L. R. Gaspar, “Trans-resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV-filters,” Int. J. Pharm., vol. 484, no. 1–2, pp. 131–137, 2015.E. J. Baek, C. V. Garcia, G. H. Shin, and J. T. Kim, “Improvement of thermal and UV-light stability of β-carotene-loaded nanoemulsions by water-soluble chitosan coating,” Int. J. Biol. Macromol., vol. 165, pp. 1156–1163, 2020.H. Phan-thi, P. Durand, M. Prost, E. Prost, and Y. Waché, “Effect of heat-processing on the antioxidant and prooxidant activities of b -carotene from natural and synthetic origins on red blood cells,” Food Chem., vol. 190, pp. 1137–1144, 2016.H. Sovová, M. Sajfrtová, M. Bártlová, and L. Opletal, “Near-critical extraction of pigments and oleoresin from stinging nettle leaves,” J. Supercrit. Fluids, vol. 30, no. 2, pp. 213–224, 2004.R. Li et al., “Combining Ability and Parent-Offspring Correlation of Maize (Zea may L.) Grain β-Carotene Content with a Complete Diallel,” J. Integr. Agric., vol. 12, no. 1, pp. 19–26, 2013.R. F. Martini and M. R. Wolf-Maciel, “A new methodology for mixture characterization and solvent screening for separation process application,” Comput. Chem. Eng., vol. 20, no. SUPPL.1, pp. 219–224, 1996.J. L. Guil-Guerrero, M. M. Rebolloso-Fuentes, and M. E. Torija Isasa, “Fatty acids and carotenoids from Stinging Nettle (Urtica dioica L.),” J. Food Compos. Anal., vol. 16, no. 2, pp. 111–119, 2003.N. B. Ibrahim and Y. Noratiqah, “The microstructure and magnetic properties of yttrium iron garnet film prepared using water-alcohol solvents,” J. Magn. Magn. Mater., vol. 510, no. April, p. 166953, 2020.J. Branisa, K. Jomova, M. Porubska, V. Kollar, M. Simunkova, and M. Valko, “Effect of drying methods on the content of natural pigments and antioxidant capacity in extracts from medicinal plants: A spectroscopic study,” Chem. Pap., vol. 71, no. 10, pp. 1993–2002, 2017.K. KŐszegi, G. Vatai, and E. BÉkÁssy-MolnÁr, “Comparison the soxhlet and supercritical fluid extraction of nettle root (Urtica dioica L.),” Period. Polytech. Chem. Eng., vol. 59, no. 3, pp. 168–173, 2015.A. E. Ince, S. Sahin, and G. Sumnu, “Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle,” J. Food Sci. Technol., vol. 51, no. 10, pp. 2776–2782, 2014.I. Alibas, “Energy Consumption and Colour Characteristics of Nettle Leaves during Microwave, Vacuum and Convective Drying,” Biosyst. Eng., vol. 96, no. 4, pp. 495–502, 2007.I. Nencu, L. M. Popescu, V. Istudor, T. Costea, L. E. D. U. Ţ. U, and C. E. Gîrd, “The selection of thechnological parameters in order to obtain an extract with important antioxidant activity from stinging nettle leaves.,” vol. 65, 2017.M. Sajfrtová, H. Sovová, L. Opletal, and M. Bártlová, “Near-critical extraction of β-sitosterol and scopoletin from stinging nettle roots,” J. Supercrit. Fluids, 2005.W. Chen, Y. Liu, L. Song, M. Sommerfeld, and Q. Hu, “Automated accelerated solvent extraction method for total lipid analysis of microalgae,” Algal Res., vol. 51, no. August, p. 102080, 2020.L. Duan, L. L. Dou, L. Guo, P. Li, and E. H. Liu, “Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products,” ACS Sustain. Chem. Eng., vol. 4, no. 4, pp. 2405–2411, 2016.I. Lee, Y. K. Oh, and J. I. Han, “Design optimization of hydrodynamic cavitation for effectual lipid extraction from wet microalgae,” J. Environ. Chem. Eng., vol. 7, no. 2, p. 102942, 2019.J. Choi et al., “Hybrid reactor based on hydrodynamic cavitation, ozonation, and persulfate oxidation for oxalic acid decomposition during rare-earth extraction processes,” Ultrason. Sonochem., vol. 52, no. August 2018, pp. 326–335, 2019.K. E. Preece, N. Hooshyar, A. J. Krijgsman, P. J. Fryer, and N. J. Zuidam, “Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation,” Innov. Food Sci. Emerg. Technol., vol. 41, pp. 47–55, 2017.M. Talebian, T. Abbasiasl, S. Niazi, and M. Ghorbani, “Direct and indirect thermal applications of hydrodynamic and acoustic cavitation : A review,” vol. 171, no. January, 2020.B. Lixin, Y. Jiuchun, Z. Zhijie, and M. Yuhang, “Cavitation in thin liquid layer : A review,” Ultrason. Sonochem., p. 105092, 2020.V. V. V. Cravotto Giancarlo, Cravotto Christian, “Ultrasound- and Hydrodynamic-Cavitation Assisted Extraction in food Processing,” Elsevier 1.22, pp. 359–366, 2021.V. Saharan, M. Badve, and A. Pandit, Degradation of Reactive Red 120 dye using Hydrodynamic cavitation, vol. 178. 2011.J. Carpenter and V. Kumar, “Study of Cavity dynamics in a Hydrodynamic Cavitation Reactor,” vol. 1, no. 3, pp. 37–43, 2017.S. Đurović et al., “Chemical composition of stinging nettle leaves obtained by different analytical approaches,” J. Funct. Foods, vol. 32, pp. 18–26, 2017.A. Paulauskienė, Ž. Tarasevičienė, and V. Laukagalis, “Influence of harvesting time on the chemical composition of wild stinging nettle (Urtica dioica L.),” Plants, vol. 10, no. 4, 2021.M. Hojnik, M. Škerget, and Ž. Knez, “Isolation of chlorophylls from stinging nettle (Urtica dioica L.),” Sep. Purif. Technol., 2007.E. Food et al., “Scientific Opinion on the re-evaluation of chlorophylls (E 140(i)) as food additives,” EFSA J., vol. 13, no. 5, pp. 1–51, 2015.S. M. Nadakatti, J. H. Kim, and S. A. Stern, “Solubility of light gases in poly ( n-butyl methacrylate ) at elevated pressures,” J. Memb. Sci., vol. 108, pp. 279–291, 1995.S. Zeipiņa, I. Alsiņa, and L. Lepse, “Stinging nettle - the source of biologically active compounds as sustainable daily diet supplement,” Res. Rural Dev., vol. 1, pp. 34–38, 2014.D. Mihaylova et al., “Carotenoids, tocopherols, organic acids, carbohydrate and mineral content in different medicinal plant extracts,” Zeitschrift fur Naturforsch. - Sect. C J. Biosci., vol. 73, no. 11–12, pp. 439–448, 2018.LICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/34996/7/license.txtaedeaf396fcd827b537c73d23464fc27MD57open accessORIGINAL2021estebanaguirre.pdf2021estebanaguirre.pdfTrabajo de gradoapplication/pdf332584https://repository.usta.edu.co/bitstream/11634/34996/1/2021estebanaguirre.pdf6b6105c2584b19ae897b02a4750b78bdMD51open accessCARTA CRAI USTA Esteban Felipe Aguirre.pdfCARTA CRAI USTA Esteban Felipe Aguirre.pdfCarta facultadapplication/pdf125623https://repository.usta.edu.co/bitstream/11634/34996/2/CARTA%20CRAI%20USTA%20Esteban%20Felipe%20Aguirre.pdf0ee69a299969db02f1faedd725185ca6MD52metadata only accessCarta_autorizacion_autoarchivo.pdfCarta_autorizacion_autoarchivo.pdfCarta autorizacion auto archivoapplication/pdf285710https://repository.usta.edu.co/bitstream/11634/34996/6/Carta_autorizacion_autoarchivo.pdf68b4aec44768b2deed0c2c6b81aafe45MD56metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/34996/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessTHUMBNAIL2021estebanaguirre.pdf.jpg2021estebanaguirre.pdf.jpgIM Thumbnailimage/jpeg9210https://repository.usta.edu.co/bitstream/11634/34996/8/2021estebanaguirre.pdf.jpg860453bcee758577303dab2a5fca3730MD58open accessCARTA CRAI USTA Esteban Felipe Aguirre.pdf.jpgCARTA CRAI USTA Esteban Felipe Aguirre.pdf.jpgIM Thumbnailimage/jpeg6725https://repository.usta.edu.co/bitstream/11634/34996/9/CARTA%20CRAI%20USTA%20Esteban%20Felipe%20Aguirre.pdf.jpg66c2d900ef192e3646fd01cb3a31d34cMD59open accessCarta_autorizacion_autoarchivo.pdf.jpgCarta_autorizacion_autoarchivo.pdf.jpgIM Thumbnailimage/jpeg6777https://repository.usta.edu.co/bitstream/11634/34996/10/Carta_autorizacion_autoarchivo.pdf.jpgc73784ad580c6c944bf67eb148d9722cMD510open access11634/34996oai:repository.usta.edu.co:11634/349962022-10-10 16:04:45.981open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K