Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation
La ortiga (Urtica dioica L.) se considera una gran fuente de metabolitos secundarios de interés comercial y la extracción de este tipo de metabolitos es importante para la viabilidad y escalado del proceso. Se han evaluado diferentes alternativas, incluida la extracción Soxhlet y el uso de fluidos s...
- Autores:
-
Aguirre Dúran, Esteban Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/34996
- Acceso en línea:
- http://hdl.handle.net/11634/34996
- Palabra clave:
- ß-carotenes
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
Extraction
Stinging nettle
Cavitation
hydro-cavitation
Urtica dioica L
chlorophyll A
chlorophyll B
ß-carotenes
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_3f2c47cc191c21248bb4f87fc71e6bdd |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/34996 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation |
title |
Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation |
spellingShingle |
Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation ß-carotenes hydro-cavitation Urtica dioica L chlorophyll A chlorophyll B Extraction Stinging nettle Cavitation hydro-cavitation Urtica dioica L chlorophyll A chlorophyll B ß-carotenes |
title_short |
Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation |
title_full |
Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation |
title_fullStr |
Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation |
title_full_unstemmed |
Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation |
title_sort |
Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitation |
dc.creator.fl_str_mv |
Aguirre Dúran, Esteban Felipe |
dc.contributor.advisor.none.fl_str_mv |
Malagón Romero, Dionisio Humberto |
dc.contributor.author.none.fl_str_mv |
Aguirre Dúran, Esteban Felipe |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0003-2890-2180 |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061 |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
ß-carotenes hydro-cavitation Urtica dioica L chlorophyll A chlorophyll B |
topic |
ß-carotenes hydro-cavitation Urtica dioica L chlorophyll A chlorophyll B Extraction Stinging nettle Cavitation hydro-cavitation Urtica dioica L chlorophyll A chlorophyll B ß-carotenes |
dc.subject.lemb.spa.fl_str_mv |
Extraction Stinging nettle Cavitation |
dc.subject.proposal.spa.fl_str_mv |
hydro-cavitation Urtica dioica L chlorophyll A chlorophyll B ß-carotenes |
description |
La ortiga (Urtica dioica L.) se considera una gran fuente de metabolitos secundarios de interés comercial y la extracción de este tipo de metabolitos es importante para la viabilidad y escalado del proceso. Se han evaluado diferentes alternativas, incluida la extracción Soxhlet y el uso de fluidos supercríticos, principalmente a escala de laboratorio. Como enfoque innovador, la hidrocavitación ha surgido como una alternativa eficiente para extraer principios de plantas a bajas temperaturas y tiempos operativos cortos. Este trabajo presenta la extracción experimental de ß-caroteno de ortiga mediante hidrocavitación. Se utilizó etanol como disolvente a diferentes concentraciones (100%, 90%, 80% y 60%) y dos proporciones p / v soluto / disolvente (1:30 y 2:30). Se determinó la concentración de clorofila A, B, clorofilas totales (A + B), carotenos y ß-carotenos. La mejor concentración de ß-carotenos se obtuvo a razón soluto / disolvente 2:30 con etanol al 100% y un tiempo de operación de 2 minutos, correspondiente a 153,975 mg ß-carotenos / kg, con un consumo de energía de 0,7698 kJ / mg ß -caroteno extraído. Los resultados avalan la viabilidad del uso de la hidrocavitación para la obtención rápida y eficiente de extractos de ortiga a escala piloto y abren la posibilidad para el diseño de procesos a escala industrial. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-22T20:03:01Z |
dc.date.available.none.fl_str_mv |
2021-07-22T20:03:01Z |
dc.date.issued.none.fl_str_mv |
2021-06-07 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
A. D. E. Felipe, N. Galeano, G. Astrid, and M. Dionisio, “Obtaining nettle extracts ( Urtica dioica L ) by means of hydrocavitation.”retroexcavadoras [Trabajo de Pregrado Ingeniería Mecanica]. Repositorio institucional. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/34996 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
A. D. E. Felipe, N. Galeano, G. Astrid, and M. Dionisio, “Obtaining nettle extracts ( Urtica dioica L ) by means of hydrocavitation.”retroexcavadoras [Trabajo de Pregrado Ingeniería Mecanica]. Repositorio institucional. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/34996 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
D. Viboral, E. Retiro, and E. Santuario, “Medicinal plants used in some townships of municipalities in the high plainish,” vol. 33, no. 95, pp. 219–250, 2011. D. Orcic et al., “Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection,” Food Chem., vol. 143, pp. 48–53, 2014. C. Proestos, I. S. Boziaris, G. J. E. Nychas, and M. Komaitis, “Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity,” Food Chem., vol. 95, no. 4, pp. 664–671, 2006. R. Dhouibi et al., “Screening of pharmacological uses of Urtica dioica and others benefits,” Prog. Biophys. Mol. Biol., vol. 150, pp. 67–77, 2020. S. Otles and B. Yalcin, “Phenolic compounds analysis of root, stalk, and leaves of nettle,” Sci. World J., vol. 2012, 2012. R. Upton, “Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine,” J. Herb. Med., 2013. N. A. Salih, “Effect of nettle (Urtica dioica) extract on gentamicin induced nephrotoxicity in male rabbits,” Asian Pac. J. Trop. Biomed., 2015. Ahmed A. Abdeltawab, “Evaluation of the chemical composition and element analysis of Urtica dioica,” African J. Pharm. Pharmacol., vol. 6, no. 21, pp. 1555–1558, 2012. S. Đurović et al., “Chemical composition of stinging nettle leaves obtained by different analytical approaches,” J. Funct. Foods, vol. 32, pp. 18–26, 2017. S. Polat, “An in vitro evaluation of the effects of Urtica dioica and Fructus Urtica Piluliferae extracts on the crystallization of calcium oxalate,” J. Cryst. Growth, vol. 522, no. April, pp. 92–102, 2019. R. Kargozar, R. Salari, L. Jarahi, M. Yousefi, and S. Azam, “Complementary Therapies in Medicine Urtica dioica in comparison with placebo and acupuncture : A new possibility for menopausal hot flashes : A randomized clinical trial,” Complement. Ther. Med., vol. 44, no. January, pp. 166–173, 2019. B. Mansoori et al., “ScienceDirect Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer,” Biomed. Pharmacother., vol. 93, pp. 95–102, 2017. C. Bourgeois et al., “L’ortie (Urtica dioica L.), une source de produits antioxidants et phytochimiques anti-âge pour des applications en cosmétique,” Comptes Rendus Chim., vol. 19, no. 9, pp. 1090–1100, 2016. M. K. Akalin, S. Karagöz, and M. Akyüz, “Application of response surface methodology to extract yields from stinging nettle under supercritical ethanol conditions,” J. Supercrit. Fluids, 2013. N. Di Virgilio, E. G. Papazoglou, Z. Jankauskiene, S. Di Lonardo, M. Praczyk, and K. Wielgusz, “The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses,” Ind. Crops Prod., 2015. C. C. XU, B. WANG, Y. Q. PU, J. S. TAO, and T. ZHANG, “Advances in extraction and analysis of phenolic compounds from plant materials,” Chin. J. Nat. Med., vol. 15, no. 10, pp. 721–731, 2017. U. J. Vajić et al., “Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology,” Ind. Crops Prod., 2015. T. T. Shonte, K. G. Duodu, and H. L. de Kock, “Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves,” Heliyon, vol. 6, no. 5, 2020. M. Chaijan, K. Srirattanachot, M. Nisoa, L. Z. Cheong, and W. Panpipat, “Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests,” Food Chem., vol. 339, no. September 2020, p. 128157, 2021. M. A. T. Phan, M. Bucknall, and J. Arcot, “Interactive effects of β-carotene and anthocyanins on cellular uptake, antioxidant activity and anti-inflammatory activity in vitro and ex vivo,” J. Funct. Foods, vol. 45, no. February, pp. 129–137, 2018. C. Ba et al., “Effects of environmental stresses on physiochemical stability of β-carotene in zein-carboxymethyl chitosan-tea polyphenols ternary delivery system,” Food Chem., vol. 311, p. 125878, 2020. N. Y. Lee, Y. Kim, Y. S. Kim, J. H. Shin, L. P. Rubin, and Y. Kim, “β-Carotene exerts anti-colon cancer effects by regulating M2 macrophages and activated fibroblasts,” J. Nutr. Biochem., vol. 82, p. 108402, 2020. U. Blume-Peytavi et al., “Cutaneous lycopene and β-carotene levels measured by resonance Raman spectroscopy: High reliability and sensitivity to oral lactolycopene deprivation and supplementation,” Eur. J. Pharm. Biopharm., vol. 73, no. 1, pp. 187–194, 2009. J. V. Freitas, F. S. G. Praça, M. V. L. B. Bentley, and L. R. Gaspar, “Trans-resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV-filters,” Int. J. Pharm., vol. 484, no. 1–2, pp. 131–137, 2015. E. J. Baek, C. V. Garcia, G. H. Shin, and J. T. Kim, “Improvement of thermal and UV-light stability of β-carotene-loaded nanoemulsions by water-soluble chitosan coating,” Int. J. Biol. Macromol., vol. 165, pp. 1156–1163, 2020. H. Phan-thi, P. Durand, M. Prost, E. Prost, and Y. Waché, “Effect of heat-processing on the antioxidant and prooxidant activities of b -carotene from natural and synthetic origins on red blood cells,” Food Chem., vol. 190, pp. 1137–1144, 2016. H. Sovová, M. Sajfrtová, M. Bártlová, and L. Opletal, “Near-critical extraction of pigments and oleoresin from stinging nettle leaves,” J. Supercrit. Fluids, vol. 30, no. 2, pp. 213–224, 2004. R. Li et al., “Combining Ability and Parent-Offspring Correlation of Maize (Zea may L.) Grain β-Carotene Content with a Complete Diallel,” J. Integr. Agric., vol. 12, no. 1, pp. 19–26, 2013. R. F. Martini and M. R. Wolf-Maciel, “A new methodology for mixture characterization and solvent screening for separation process application,” Comput. Chem. Eng., vol. 20, no. SUPPL.1, pp. 219–224, 1996. J. L. Guil-Guerrero, M. M. Rebolloso-Fuentes, and M. E. Torija Isasa, “Fatty acids and carotenoids from Stinging Nettle (Urtica dioica L.),” J. Food Compos. Anal., vol. 16, no. 2, pp. 111–119, 2003. N. B. Ibrahim and Y. Noratiqah, “The microstructure and magnetic properties of yttrium iron garnet film prepared using water-alcohol solvents,” J. Magn. Magn. Mater., vol. 510, no. April, p. 166953, 2020. J. Branisa, K. Jomova, M. Porubska, V. Kollar, M. Simunkova, and M. Valko, “Effect of drying methods on the content of natural pigments and antioxidant capacity in extracts from medicinal plants: A spectroscopic study,” Chem. Pap., vol. 71, no. 10, pp. 1993–2002, 2017. K. KŐszegi, G. Vatai, and E. BÉkÁssy-MolnÁr, “Comparison the soxhlet and supercritical fluid extraction of nettle root (Urtica dioica L.),” Period. Polytech. Chem. Eng., vol. 59, no. 3, pp. 168–173, 2015. A. E. Ince, S. Sahin, and G. Sumnu, “Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle,” J. Food Sci. Technol., vol. 51, no. 10, pp. 2776–2782, 2014. I. Alibas, “Energy Consumption and Colour Characteristics of Nettle Leaves during Microwave, Vacuum and Convective Drying,” Biosyst. Eng., vol. 96, no. 4, pp. 495–502, 2007. I. Nencu, L. M. Popescu, V. Istudor, T. Costea, L. E. D. U. Ţ. U, and C. E. Gîrd, “The selection of thechnological parameters in order to obtain an extract with important antioxidant activity from stinging nettle leaves.,” vol. 65, 2017. M. Sajfrtová, H. Sovová, L. Opletal, and M. Bártlová, “Near-critical extraction of β-sitosterol and scopoletin from stinging nettle roots,” J. Supercrit. Fluids, 2005. W. Chen, Y. Liu, L. Song, M. Sommerfeld, and Q. Hu, “Automated accelerated solvent extraction method for total lipid analysis of microalgae,” Algal Res., vol. 51, no. August, p. 102080, 2020. L. Duan, L. L. Dou, L. Guo, P. Li, and E. H. Liu, “Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products,” ACS Sustain. Chem. Eng., vol. 4, no. 4, pp. 2405–2411, 2016. I. Lee, Y. K. Oh, and J. I. Han, “Design optimization of hydrodynamic cavitation for effectual lipid extraction from wet microalgae,” J. Environ. Chem. Eng., vol. 7, no. 2, p. 102942, 2019. J. Choi et al., “Hybrid reactor based on hydrodynamic cavitation, ozonation, and persulfate oxidation for oxalic acid decomposition during rare-earth extraction processes,” Ultrason. Sonochem., vol. 52, no. August 2018, pp. 326–335, 2019. K. E. Preece, N. Hooshyar, A. J. Krijgsman, P. J. Fryer, and N. J. Zuidam, “Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation,” Innov. Food Sci. Emerg. Technol., vol. 41, pp. 47–55, 2017. M. Talebian, T. Abbasiasl, S. Niazi, and M. Ghorbani, “Direct and indirect thermal applications of hydrodynamic and acoustic cavitation : A review,” vol. 171, no. January, 2020. B. Lixin, Y. Jiuchun, Z. Zhijie, and M. Yuhang, “Cavitation in thin liquid layer : A review,” Ultrason. Sonochem., p. 105092, 2020. V. V. V. Cravotto Giancarlo, Cravotto Christian, “Ultrasound- and Hydrodynamic-Cavitation Assisted Extraction in food Processing,” Elsevier 1.22, pp. 359–366, 2021. V. Saharan, M. Badve, and A. Pandit, Degradation of Reactive Red 120 dye using Hydrodynamic cavitation, vol. 178. 2011. J. Carpenter and V. Kumar, “Study of Cavity dynamics in a Hydrodynamic Cavitation Reactor,” vol. 1, no. 3, pp. 37–43, 2017. S. Đurović et al., “Chemical composition of stinging nettle leaves obtained by different analytical approaches,” J. Funct. Foods, vol. 32, pp. 18–26, 2017. A. Paulauskienė, Ž. Tarasevičienė, and V. Laukagalis, “Influence of harvesting time on the chemical composition of wild stinging nettle (Urtica dioica L.),” Plants, vol. 10, no. 4, 2021. M. Hojnik, M. Škerget, and Ž. Knez, “Isolation of chlorophylls from stinging nettle (Urtica dioica L.),” Sep. Purif. Technol., 2007. E. Food et al., “Scientific Opinion on the re-evaluation of chlorophylls (E 140(i)) as food additives,” EFSA J., vol. 13, no. 5, pp. 1–51, 2015. S. M. Nadakatti, J. H. Kim, and S. A. Stern, “Solubility of light gases in poly ( n-butyl methacrylate ) at elevated pressures,” J. Memb. Sci., vol. 108, pp. 279–291, 1995. S. Zeipiņa, I. Alsiņa, and L. Lepse, “Stinging nettle - the source of biologically active compounds as sustainable daily diet supplement,” Res. Rural Dev., vol. 1, pp. 34–38, 2014. D. Mihaylova et al., “Carotenoids, tocopherols, organic acids, carbohydrate and mineral content in different medicinal plant extracts,” Zeitschrift fur Naturforsch. - Sect. C J. Biosci., vol. 73, no. 11–12, pp. 439–448, 2018. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/34996/7/license.txt https://repository.usta.edu.co/bitstream/11634/34996/1/2021estebanaguirre.pdf https://repository.usta.edu.co/bitstream/11634/34996/2/CARTA%20CRAI%20USTA%20Esteban%20Felipe%20Aguirre.pdf https://repository.usta.edu.co/bitstream/11634/34996/6/Carta_autorizacion_autoarchivo.pdf https://repository.usta.edu.co/bitstream/11634/34996/4/license_rdf https://repository.usta.edu.co/bitstream/11634/34996/8/2021estebanaguirre.pdf.jpg https://repository.usta.edu.co/bitstream/11634/34996/9/CARTA%20CRAI%20USTA%20Esteban%20Felipe%20Aguirre.pdf.jpg https://repository.usta.edu.co/bitstream/11634/34996/10/Carta_autorizacion_autoarchivo.pdf.jpg |
bitstream.checksum.fl_str_mv |
aedeaf396fcd827b537c73d23464fc27 6b6105c2584b19ae897b02a4750b78bd 0ee69a299969db02f1faedd725185ca6 68b4aec44768b2deed0c2c6b81aafe45 217700a34da79ed616c2feb68d4c5e06 860453bcee758577303dab2a5fca3730 66c2d900ef192e3646fd01cb3a31d34c c73784ad580c6c944bf67eb148d9722c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026173342023680 |
spelling |
Malagón Romero, Dionisio HumbertoAguirre Dúran, Esteban Felipehttps://orcid.org/0000-0003-2890-2180https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061Universidad Santo Tomás2021-07-22T20:03:01Z2021-07-22T20:03:01Z2021-06-07A. D. E. Felipe, N. Galeano, G. Astrid, and M. Dionisio, “Obtaining nettle extracts ( Urtica dioica L ) by means of hydrocavitation.”retroexcavadoras [Trabajo de Pregrado Ingeniería Mecanica]. Repositorio institucional.http://hdl.handle.net/11634/34996reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLa ortiga (Urtica dioica L.) se considera una gran fuente de metabolitos secundarios de interés comercial y la extracción de este tipo de metabolitos es importante para la viabilidad y escalado del proceso. Se han evaluado diferentes alternativas, incluida la extracción Soxhlet y el uso de fluidos supercríticos, principalmente a escala de laboratorio. Como enfoque innovador, la hidrocavitación ha surgido como una alternativa eficiente para extraer principios de plantas a bajas temperaturas y tiempos operativos cortos. Este trabajo presenta la extracción experimental de ß-caroteno de ortiga mediante hidrocavitación. Se utilizó etanol como disolvente a diferentes concentraciones (100%, 90%, 80% y 60%) y dos proporciones p / v soluto / disolvente (1:30 y 2:30). Se determinó la concentración de clorofila A, B, clorofilas totales (A + B), carotenos y ß-carotenos. La mejor concentración de ß-carotenos se obtuvo a razón soluto / disolvente 2:30 con etanol al 100% y un tiempo de operación de 2 minutos, correspondiente a 153,975 mg ß-carotenos / kg, con un consumo de energía de 0,7698 kJ / mg ß -caroteno extraído. Los resultados avalan la viabilidad del uso de la hidrocavitación para la obtención rápida y eficiente de extractos de ortiga a escala piloto y abren la posibilidad para el diseño de procesos a escala industrial.Abstract- Stinging nettle (Urtica dioica L.) is considered a great source of secondary metabolites of commercial interest and the extraction of this kind of metabolites is important for the process viability and scale-up. Different alternatives have been evaluated, including Soxhlet extraction and the use of super critic fluids, mainly on laboratory scale. As an innovative approach, hydro-cavitation has emerged as an efficient alternative for extracting principles from plants at low temperatures and short operational times. This work presents the experimental extraction of ß-carotene from Stinging nettle employing hydro-cavitation. Ethanol was used as solvent at different concentrations (100%, 90%, 80% and 60%) and two w/v solute/solvent ratio (1:30 and 2:30). The concentration of chlorophyll A, B, total chlorophylls (A+B), carotenes, and ß-carotenes were determined. The best concentration of ß-carotenes was obtained at 2:30 solute/solvent ratio with ethanol at 100% and an operational time of 2 minutes, corresponding to 153.975 mg ß-carotenes/ kg, with a power consumption of 0.7698 kJ/mg ß-carotene extracted. The results support the viability of the use of hydro-cavitation for the rapid and efficient obtaining of Stinging nettle extracts on a pilot scale and open the possibility for the design of processes on an industrial scale.Ingeniero Mecánicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería MecánicaFacultad de Ingeniería MecánicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Obtaining nettle extracts (Urtica dioica L) by means of hydrocavitationß-caroteneshydro-cavitationUrtica dioica Lchlorophyll Achlorophyll BExtractionStinging nettleCavitationhydro-cavitationUrtica dioica Lchlorophyll Achlorophyll Bß-carotenesTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáD. Viboral, E. Retiro, and E. Santuario, “Medicinal plants used in some townships of municipalities in the high plainish,” vol. 33, no. 95, pp. 219–250, 2011.D. Orcic et al., “Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection,” Food Chem., vol. 143, pp. 48–53, 2014.C. Proestos, I. S. Boziaris, G. J. E. Nychas, and M. Komaitis, “Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity,” Food Chem., vol. 95, no. 4, pp. 664–671, 2006.R. Dhouibi et al., “Screening of pharmacological uses of Urtica dioica and others benefits,” Prog. Biophys. Mol. Biol., vol. 150, pp. 67–77, 2020.S. Otles and B. Yalcin, “Phenolic compounds analysis of root, stalk, and leaves of nettle,” Sci. World J., vol. 2012, 2012.R. Upton, “Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine,” J. Herb. Med., 2013.N. A. Salih, “Effect of nettle (Urtica dioica) extract on gentamicin induced nephrotoxicity in male rabbits,” Asian Pac. J. Trop. Biomed., 2015.Ahmed A. Abdeltawab, “Evaluation of the chemical composition and element analysis of Urtica dioica,” African J. Pharm. Pharmacol., vol. 6, no. 21, pp. 1555–1558, 2012.S. Đurović et al., “Chemical composition of stinging nettle leaves obtained by different analytical approaches,” J. Funct. Foods, vol. 32, pp. 18–26, 2017.S. Polat, “An in vitro evaluation of the effects of Urtica dioica and Fructus Urtica Piluliferae extracts on the crystallization of calcium oxalate,” J. Cryst. Growth, vol. 522, no. April, pp. 92–102, 2019.R. Kargozar, R. Salari, L. Jarahi, M. Yousefi, and S. Azam, “Complementary Therapies in Medicine Urtica dioica in comparison with placebo and acupuncture : A new possibility for menopausal hot flashes : A randomized clinical trial,” Complement. Ther. Med., vol. 44, no. January, pp. 166–173, 2019.B. Mansoori et al., “ScienceDirect Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer,” Biomed. Pharmacother., vol. 93, pp. 95–102, 2017.C. Bourgeois et al., “L’ortie (Urtica dioica L.), une source de produits antioxidants et phytochimiques anti-âge pour des applications en cosmétique,” Comptes Rendus Chim., vol. 19, no. 9, pp. 1090–1100, 2016.M. K. Akalin, S. Karagöz, and M. Akyüz, “Application of response surface methodology to extract yields from stinging nettle under supercritical ethanol conditions,” J. Supercrit. Fluids, 2013.N. Di Virgilio, E. G. Papazoglou, Z. Jankauskiene, S. Di Lonardo, M. Praczyk, and K. Wielgusz, “The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses,” Ind. Crops Prod., 2015.C. C. XU, B. WANG, Y. Q. PU, J. S. TAO, and T. ZHANG, “Advances in extraction and analysis of phenolic compounds from plant materials,” Chin. J. Nat. Med., vol. 15, no. 10, pp. 721–731, 2017.U. J. Vajić et al., “Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology,” Ind. Crops Prod., 2015.T. T. Shonte, K. G. Duodu, and H. L. de Kock, “Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves,” Heliyon, vol. 6, no. 5, 2020.M. Chaijan, K. Srirattanachot, M. Nisoa, L. Z. Cheong, and W. Panpipat, “Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests,” Food Chem., vol. 339, no. September 2020, p. 128157, 2021.M. A. T. Phan, M. Bucknall, and J. Arcot, “Interactive effects of β-carotene and anthocyanins on cellular uptake, antioxidant activity and anti-inflammatory activity in vitro and ex vivo,” J. Funct. Foods, vol. 45, no. February, pp. 129–137, 2018.C. Ba et al., “Effects of environmental stresses on physiochemical stability of β-carotene in zein-carboxymethyl chitosan-tea polyphenols ternary delivery system,” Food Chem., vol. 311, p. 125878, 2020.N. Y. Lee, Y. Kim, Y. S. Kim, J. H. Shin, L. P. Rubin, and Y. Kim, “β-Carotene exerts anti-colon cancer effects by regulating M2 macrophages and activated fibroblasts,” J. Nutr. Biochem., vol. 82, p. 108402, 2020.U. Blume-Peytavi et al., “Cutaneous lycopene and β-carotene levels measured by resonance Raman spectroscopy: High reliability and sensitivity to oral lactolycopene deprivation and supplementation,” Eur. J. Pharm. Biopharm., vol. 73, no. 1, pp. 187–194, 2009.J. V. Freitas, F. S. G. Praça, M. V. L. B. Bentley, and L. R. Gaspar, “Trans-resveratrol and beta-carotene from sunscreens penetrate viable skin layers and reduce cutaneous penetration of UV-filters,” Int. J. Pharm., vol. 484, no. 1–2, pp. 131–137, 2015.E. J. Baek, C. V. Garcia, G. H. Shin, and J. T. Kim, “Improvement of thermal and UV-light stability of β-carotene-loaded nanoemulsions by water-soluble chitosan coating,” Int. J. Biol. Macromol., vol. 165, pp. 1156–1163, 2020.H. Phan-thi, P. Durand, M. Prost, E. Prost, and Y. Waché, “Effect of heat-processing on the antioxidant and prooxidant activities of b -carotene from natural and synthetic origins on red blood cells,” Food Chem., vol. 190, pp. 1137–1144, 2016.H. Sovová, M. Sajfrtová, M. Bártlová, and L. Opletal, “Near-critical extraction of pigments and oleoresin from stinging nettle leaves,” J. Supercrit. Fluids, vol. 30, no. 2, pp. 213–224, 2004.R. Li et al., “Combining Ability and Parent-Offspring Correlation of Maize (Zea may L.) Grain β-Carotene Content with a Complete Diallel,” J. Integr. Agric., vol. 12, no. 1, pp. 19–26, 2013.R. F. Martini and M. R. Wolf-Maciel, “A new methodology for mixture characterization and solvent screening for separation process application,” Comput. Chem. Eng., vol. 20, no. SUPPL.1, pp. 219–224, 1996.J. L. Guil-Guerrero, M. M. Rebolloso-Fuentes, and M. E. Torija Isasa, “Fatty acids and carotenoids from Stinging Nettle (Urtica dioica L.),” J. Food Compos. Anal., vol. 16, no. 2, pp. 111–119, 2003.N. B. Ibrahim and Y. Noratiqah, “The microstructure and magnetic properties of yttrium iron garnet film prepared using water-alcohol solvents,” J. Magn. Magn. Mater., vol. 510, no. April, p. 166953, 2020.J. Branisa, K. Jomova, M. Porubska, V. Kollar, M. Simunkova, and M. Valko, “Effect of drying methods on the content of natural pigments and antioxidant capacity in extracts from medicinal plants: A spectroscopic study,” Chem. Pap., vol. 71, no. 10, pp. 1993–2002, 2017.K. KŐszegi, G. Vatai, and E. BÉkÁssy-MolnÁr, “Comparison the soxhlet and supercritical fluid extraction of nettle root (Urtica dioica L.),” Period. Polytech. Chem. Eng., vol. 59, no. 3, pp. 168–173, 2015.A. E. Ince, S. Sahin, and G. Sumnu, “Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle,” J. Food Sci. Technol., vol. 51, no. 10, pp. 2776–2782, 2014.I. Alibas, “Energy Consumption and Colour Characteristics of Nettle Leaves during Microwave, Vacuum and Convective Drying,” Biosyst. Eng., vol. 96, no. 4, pp. 495–502, 2007.I. Nencu, L. M. Popescu, V. Istudor, T. Costea, L. E. D. U. Ţ. U, and C. E. Gîrd, “The selection of thechnological parameters in order to obtain an extract with important antioxidant activity from stinging nettle leaves.,” vol. 65, 2017.M. Sajfrtová, H. Sovová, L. Opletal, and M. Bártlová, “Near-critical extraction of β-sitosterol and scopoletin from stinging nettle roots,” J. Supercrit. Fluids, 2005.W. Chen, Y. Liu, L. Song, M. Sommerfeld, and Q. Hu, “Automated accelerated solvent extraction method for total lipid analysis of microalgae,” Algal Res., vol. 51, no. August, p. 102080, 2020.L. Duan, L. L. Dou, L. Guo, P. Li, and E. H. Liu, “Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products,” ACS Sustain. Chem. Eng., vol. 4, no. 4, pp. 2405–2411, 2016.I. Lee, Y. K. Oh, and J. I. Han, “Design optimization of hydrodynamic cavitation for effectual lipid extraction from wet microalgae,” J. Environ. Chem. Eng., vol. 7, no. 2, p. 102942, 2019.J. Choi et al., “Hybrid reactor based on hydrodynamic cavitation, ozonation, and persulfate oxidation for oxalic acid decomposition during rare-earth extraction processes,” Ultrason. Sonochem., vol. 52, no. August 2018, pp. 326–335, 2019.K. E. Preece, N. Hooshyar, A. J. Krijgsman, P. J. Fryer, and N. J. Zuidam, “Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation,” Innov. Food Sci. Emerg. Technol., vol. 41, pp. 47–55, 2017.M. Talebian, T. Abbasiasl, S. Niazi, and M. Ghorbani, “Direct and indirect thermal applications of hydrodynamic and acoustic cavitation : A review,” vol. 171, no. January, 2020.B. Lixin, Y. Jiuchun, Z. Zhijie, and M. Yuhang, “Cavitation in thin liquid layer : A review,” Ultrason. Sonochem., p. 105092, 2020.V. V. V. Cravotto Giancarlo, Cravotto Christian, “Ultrasound- and Hydrodynamic-Cavitation Assisted Extraction in food Processing,” Elsevier 1.22, pp. 359–366, 2021.V. Saharan, M. Badve, and A. Pandit, Degradation of Reactive Red 120 dye using Hydrodynamic cavitation, vol. 178. 2011.J. Carpenter and V. Kumar, “Study of Cavity dynamics in a Hydrodynamic Cavitation Reactor,” vol. 1, no. 3, pp. 37–43, 2017.S. Đurović et al., “Chemical composition of stinging nettle leaves obtained by different analytical approaches,” J. Funct. Foods, vol. 32, pp. 18–26, 2017.A. Paulauskienė, Ž. Tarasevičienė, and V. Laukagalis, “Influence of harvesting time on the chemical composition of wild stinging nettle (Urtica dioica L.),” Plants, vol. 10, no. 4, 2021.M. Hojnik, M. Škerget, and Ž. Knez, “Isolation of chlorophylls from stinging nettle (Urtica dioica L.),” Sep. Purif. Technol., 2007.E. Food et al., “Scientific Opinion on the re-evaluation of chlorophylls (E 140(i)) as food additives,” EFSA J., vol. 13, no. 5, pp. 1–51, 2015.S. M. Nadakatti, J. H. Kim, and S. A. Stern, “Solubility of light gases in poly ( n-butyl methacrylate ) at elevated pressures,” J. Memb. Sci., vol. 108, pp. 279–291, 1995.S. Zeipiņa, I. Alsiņa, and L. Lepse, “Stinging nettle - the source of biologically active compounds as sustainable daily diet supplement,” Res. Rural Dev., vol. 1, pp. 34–38, 2014.D. Mihaylova et al., “Carotenoids, tocopherols, organic acids, carbohydrate and mineral content in different medicinal plant extracts,” Zeitschrift fur Naturforsch. - Sect. C J. Biosci., vol. 73, no. 11–12, pp. 439–448, 2018.LICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/34996/7/license.txtaedeaf396fcd827b537c73d23464fc27MD57open accessORIGINAL2021estebanaguirre.pdf2021estebanaguirre.pdfTrabajo de gradoapplication/pdf332584https://repository.usta.edu.co/bitstream/11634/34996/1/2021estebanaguirre.pdf6b6105c2584b19ae897b02a4750b78bdMD51open accessCARTA CRAI USTA Esteban Felipe Aguirre.pdfCARTA CRAI USTA Esteban Felipe Aguirre.pdfCarta facultadapplication/pdf125623https://repository.usta.edu.co/bitstream/11634/34996/2/CARTA%20CRAI%20USTA%20Esteban%20Felipe%20Aguirre.pdf0ee69a299969db02f1faedd725185ca6MD52metadata only accessCarta_autorizacion_autoarchivo.pdfCarta_autorizacion_autoarchivo.pdfCarta autorizacion auto archivoapplication/pdf285710https://repository.usta.edu.co/bitstream/11634/34996/6/Carta_autorizacion_autoarchivo.pdf68b4aec44768b2deed0c2c6b81aafe45MD56metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/34996/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessTHUMBNAIL2021estebanaguirre.pdf.jpg2021estebanaguirre.pdf.jpgIM Thumbnailimage/jpeg9210https://repository.usta.edu.co/bitstream/11634/34996/8/2021estebanaguirre.pdf.jpg860453bcee758577303dab2a5fca3730MD58open accessCARTA CRAI USTA Esteban Felipe Aguirre.pdf.jpgCARTA CRAI USTA Esteban Felipe Aguirre.pdf.jpgIM Thumbnailimage/jpeg6725https://repository.usta.edu.co/bitstream/11634/34996/9/CARTA%20CRAI%20USTA%20Esteban%20Felipe%20Aguirre.pdf.jpg66c2d900ef192e3646fd01cb3a31d34cMD59open accessCarta_autorizacion_autoarchivo.pdf.jpgCarta_autorizacion_autoarchivo.pdf.jpgIM Thumbnailimage/jpeg6777https://repository.usta.edu.co/bitstream/11634/34996/10/Carta_autorizacion_autoarchivo.pdf.jpgc73784ad580c6c944bf67eb148d9722cMD510open access11634/34996oai:repository.usta.edu.co:11634/349962022-10-10 16:04:45.981open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |