Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables

El proyecto de tesis, muestra el diseño, implementación y desarrollo de un algoritmo de aprendizaje profundo que permite realizar detección de caídas en especial en personal mayores que se encuentran viviendo solas, en espacios médicos o en centros de cuidados geriátricos. Se busca que este proyecto...

Full description

Autores:
Saa Beltrán, María Paula
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/50378
Acceso en línea:
http://hdl.handle.net/11634/50378
Palabra clave:
Neural Networks
Falls
Long-Short Term Memory
Deep Learning
Ingeniería Electrónica
Personas Vulnerables
Diseño-Algoritmos
Redes Neuronales
Caídas
Long-Short Term Memory (LSTM)
Aprendizaje Profundo
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_2a57f2a77a3e5927517605f95670379f
oai_identifier_str oai:repository.usta.edu.co:11634/50378
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables
title Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables
spellingShingle Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables
Neural Networks
Falls
Long-Short Term Memory
Deep Learning
Ingeniería Electrónica
Personas Vulnerables
Diseño-Algoritmos
Redes Neuronales
Caídas
Long-Short Term Memory (LSTM)
Aprendizaje Profundo
title_short Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables
title_full Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables
title_fullStr Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables
title_full_unstemmed Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables
title_sort Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables
dc.creator.fl_str_mv Saa Beltrán, María Paula
dc.contributor.advisor.none.fl_str_mv Cruz Capador, Gerson David
Guarnizo Marín, José Guillermo
dc.contributor.author.none.fl_str_mv Saa Beltrán, María Paula
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-3723-7509
https://orcid.org/0000-0002-8401-4949
https://orcid.org/0000-0001-8509-2378
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?hl=es&user=fVo6U9MAAAAJ
https://scholar.google.com/citations?hl=es&user=3JSJ0C4AAAAJ
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001334709
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000855847
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001767650
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Neural Networks
Falls
Long-Short Term Memory
Deep Learning
topic Neural Networks
Falls
Long-Short Term Memory
Deep Learning
Ingeniería Electrónica
Personas Vulnerables
Diseño-Algoritmos
Redes Neuronales
Caídas
Long-Short Term Memory (LSTM)
Aprendizaje Profundo
dc.subject.lemb.spa.fl_str_mv Ingeniería Electrónica
Personas Vulnerables
Diseño-Algoritmos
dc.subject.proposal.spa.fl_str_mv Redes Neuronales
Caídas
Long-Short Term Memory (LSTM)
Aprendizaje Profundo
description El proyecto de tesis, muestra el diseño, implementación y desarrollo de un algoritmo de aprendizaje profundo que permite realizar detección de caídas en especial en personal mayores que se encuentran viviendo solas, en espacios médicos o en centros de cuidados geriátricos. Se busca que este proyecto pueda realizar esta detección, sin la necesidad de emplear dispositivos corporales que pueden generar inconvenientes en los pacientes, razón por la cual se opta por emplear un algoritmo basado en redes neuronales recurrentes de tipo LSTM (Memoria prolongada de corto plazo), que tienen la capacidad de recordar información relevante en secuencias y preservarlo por varios instantes de tiempo. Se realizan las pruebas en ambientes controlados, junto con personas que emulen las caídas y que no cuenten con ningún inconveniente de salud, la evaluación del proyectó se realiza a través de distintas métricas y pruebas en tiempo real.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-04-19T16:31:33Z
dc.date.available.none.fl_str_mv 2023-04-19T16:31:33Z
dc.date.issued.none.fl_str_mv 2023-04-17
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Saa Beltrán, M. P. (2023). Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/50378
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Saa Beltrán, M. P. (2023). Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/50378
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmed Abobakr, Mohammed Hossny, Hala Abdelkader, and Saeid Nahavandi. Rgb-d fall detection via deep residual convolutional lstm networks. In 2018 Digital Image Computing: Techniques and Applications (DICTA), pages 1–7, 2018.
Charu C Aggarwal et al. Neural networks and deep learning. Springer, 10:978–3, 2018.
Xavier Basogain. Redes neuronales artificiales y sus aplicaciones. Dpto. Ingeniería de Sistemas y Automática, Escuela Superior de Ingeniería Bilbao, howpublished=http://ocw.ehu.es/ensenanzas-tecnicas/ redes-neuronales-artificiales-y-sus-aplicaciones/Course_ listing., year=2008.
Valentin Bazarevsky and Google Research Ivan Grishchenko, Research Engineers. On-device, real-time body pose tracking with mediapipe blazepose. https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html, aug 2020.
Avijeet Biswal. Convolutional neural network tutorial. https://www.simplilearn.com/tutorials/deep-learning-tutorial/convolutional-neural-network, jul 2022.
Avijeet Biswal. Recurrent neural network (rnn) tutorial: Types, examples, lstm and more. https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn, aug 2022.
Sebastian Bittrich, Marika Kaden, Christoph Leberecht, Florian Kaiser, Thomas Villmann, and Dirk Labudde. Application of an interpretable classification model on early folding residues during protein folding. BioData mining, 12(1):1–16, 2019.
Harsha Bommana. Introduction to neural networks — part 1. https://medium.com/deep-learning-demystified/introduction-to-neural-networks-part-1-e13f132c6d7e, may 2019.
Kabalan Chaccour, Rony Darazi, Amir Hajjam El Hassani, and Emmanuel Andrès. From fall detection to fall prevention: A generic classification of fall-related systems. IEEE Sensors Journal, 17(3):812–822, 2017.
Madhav Chamle, K. G. Gunale, and K. K. Warhade. Automated unusual event detection in video surveillance. In 2016 International Conference on Inventive Computation Technologies (ICICT), volume 2, pages 1–4, 2016.
Pongsatorn Chutimawattanakul and Pranchalee Samanpiboon. Fall detection for the elderly using yolov4 and lstm. In 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pages 1–5,2022.
Intel Corporation. Open source computer vision. https://docs.opencv.org/4.6.0/, jun 2022.
DANE. Adulto mayor en colombia - características generales. https://www.dane.gov.co/files/investigaciones/genero/presentacion-caracteristicas-generales-adulto-mayor-en-colombia.pdf, jan 2021.
Gobierno de Colombia. Misión de sabios - colombia - 2019. https://minciencias.gov.co/sites/default/files/libro_mision_de_sabios_digital_1_2_0.pdf, dec 2021.
Congreso de la República. Medidas de protección al adulto mayor en colombia. http://www.secretariasenado.gov.co/senado/basedoc/ley_1850_2017.html, jul 2017.
Congreso de la República. ConvenciÓn interamericana sobre la protección de los derechos humanos de las personas mayores. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=141981, sep 2020.
Sonia Patricia de Santillana Hernández, Luis Eduardo Alvarado Moctezuma, Gustavo Rodrigo Medina Beltrán, Gricelda Gómez Ortega, Rosa María Cortés Gonzálezzuela Espinoza, and Rosa María Cortés González. Caídas en el adulto mayor. factores intrínsecos y extrínsecos. Revista Médica del Instituto Mexicano del Seguro Social, 40(6):489–493, 2002.
Riya Dichwalkar, Shreya Oak, Tania Rajabally, and Dhananjay Kalbande. Activity recognition and fall detection in elderly people. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pages 1–6, 2020.
Tran Duc Tan and Nguyen Van Tinh. Reliable fall detection system using an 3-dof accelerometer and cascade posture recognitions. In Signal and Information Processing AssociationAnnual Summit and Conference (APSIPA), 2014 Asia-Pacific, pages 1–6, 2014.
Nashwa El-Bendary, Qing Tan, Frédérique C Pivot, and Anthony Lam. Fall detection and prevention for the elderly: A review of trends and challenges. International Journal on Smart Sensing & Intelligent Systems, 6(3), 2013.
National Geografic España. Sinapsis, el lenguaje de las neuronas en el cerebro. https://n9.cl/6vjro9, apr 2019.
H Espínola. Caídas en el adulto mayor. Boletín de la pontificia Universidad Católica de Chile, 29:1–5, 2000.
M.M. Fadoul. Python Machine Learning: Machine Learning and Deep Learning from Scratch Illustrated with Python, Scikit-Learn, Keras, Theano and Tensorflow. Independently Published, 2020.
Yaxiang Fan, Martin D. Levine, Gongjian Wen, and Shaohua Qiu. A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing, 260:43–58, 2017.
Aditya Rio Fansdana, Aulia Khamas Heikhmakhtiar, and Satria Mandala. Real-time falling detection system for elderly using cnn. In 2021 International Conference on Data Science and Its Applications (ICoDSA), pages 194–197, 2021.
Shubham Garg, Aman Saxena, and Richa Gupta. Yoga pose classification: a cnn and mediapipe inspired deep learning approach for real-world application. Journal of Ambient Intelligence and Humanized Computing, pages 1–12, 2022.
Sparsh Gupta. The 7 most common machine learning loss functions. https://builtin.com/machine-learning/common-loss-functions, apr 2022.
Khadija Hanifi and M. Elif Karsligil. Elderly fall detection with vital signs monitoring using cw doppler radar. IEEE Sensors Journal, 21(15):16969–16978, 2021.
Md Mahedi Hasan, Md Shamimul Islam, and Sohaib Abdullah. Robust pose-based human fall detection using recurrent neural network. In 2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON), pages 48–51, 2019.
Kyaw Kyaw Htike, Othman O. Khalifa, Huda Adibah Mohd Ramli, and Mohammad A. M. Abushariah. Human activity recognition for video surveillance using sequences of postures. In The Third International Conference on e-Technologies and Networks for Development (ICeND2014), pages 79–82, 2014.
Madoka Inoue, Ryo Taguchi, and Taizo Umezaki. Bed-exit prediction applying neural network combining bed position detection and patient posture estimation. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3208–3211, 2019.
Shruti Jadon. What is an activation function? what are commonly used activation functions? https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning9689331ba092, mar 2018.
Rose A Kenny, Cliodhna Ni Scanaill, and Michael McGrath. Falls prevention in the home: Challenges for new technologies. In Intelligent Technologies for Bridging the Grey Digital Divide, pages 46–64. IGI Global, 2011.
Sangyeon Kim, Gawon Lee, and Jihie Kim. Lightweight real-time fall detection using bi- directional recurrent neural network. In 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems (SCIS-ISIS), pages 1–5, 2020.
Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Selfnormalizing neural networks. Advances in neural information processing systems, 30, 2017.
Xuan-Hien Le, Hung Viet Ho, Giha Lee, and Sungho Jung. Application of long short-term memory (lstm) neural network for flood forecasting. Water, 11(7):1387, 2019.
Xiaogang Li, Tiantian Pang, Weixiang Liu, and Tianfu Wang. Fall detection for elderly person care using convolutional neural networks. In 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pages 1–6, 2017.
Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context, 2014.
Google LLC. Mediapipe pose. https://google.github.io/mediapipe/solutions/pose.html, jun 2020.
Patricio Loncomilla. Deep learning: Redes convolucionales. Recuperado de https://ccc. inaoep. mx/ ̃ pgomez/deep/presentations, 2016.
Steven T Moore, Valentina Dilda, Bandar Hakim, and Hamish G MacDougall. Validation of 24-hour ambulatory gait assessment in parkinson’s disease with simultaneous video observation. Biomedical engineering online, 10(1):1–9, 2011.
Sarah Mroz, Natalie Baddour, Connor McGuirk, Pascale Juneau, Albert Tu, Kevin Cheung, and Edward Lemaire. Comparing the quality of human pose estimation with blazepose or openpose. pages 1–4, 12 2021.
Abdulmajid Murad and Jae-Young Pyun. Deep recurrent neural networks for human activity recognition. Sensors, 17(11):2556, 2017.
Brian Mwandau and Matunda Nyanchama. Investigating Keystroke Dynamics as a Two-Factor Biometric Security. PhD thesis, 06 2018.
Cristobal Olah. Introducción a la memoria a largo corto plazo (lstm). https://colah.github.io/posts/2015-08-Understanding-LSTMs/, aug 2015.
Artem Oppermann. Loss functionsin deep learning. jun 2021.
Jesús Pérez Guerrero. Redes recurrentes. 2020.
M Gestal Pose. Introducción a las redes de neuronas artificiales. Departamento de Tecnologías de la Información y las Comunicaciones. Universidad da Coruña, 2009.
Patryk Radzki. Detection of human body landmarks - mediapipe and openpose comparison. https://www.hearai.pl/post/14-openpose/, apr 2022.
Nicholas Renotte. Action detection for sign language. https://github.com/nicknochnack/ActionDetectionforSignLanguage, jun 2021.
Laura María Álvarez Rodríguez. Síndrome de caídas en el adulto mayor. Revista Médica de Costa Rica y Centroamérica, 72(617):807–810, 2016.
Ravi Kiran Selvam. Adagrad and adadelta optimizers - implementation and testing:-. https://www.sravikiran.com/GSOC18/page2/, jul 2018.
N Senthilkumar, M Manimegalai, S Karpakam, S.R Ashokkumar, and M Premkumar. Human action recognition based on spatial–temporal relational model and lstm-cnn framework. Materials Today: Proceedings, 57:2087–2091, 2022. International Conference on Innovation and Application in Science and Technology.
Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural networks. towards data science, 6(12):310–316, 2017.
Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.
simpl!learn. What is neural network: Overview, applications, and advantages. https://www.simplilearn.com/tutorials/deep-learning-tutorial/what-is-neural-network, jan 2022.
Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint ar Xiv:1912.08957, 2019.
M. Taylor. Make Your Own Neural Network: An In-Depth Visual Introduction for Beginners. Amazon Digital Services LLC - KDP Print US, 2017.
tutorialspoint. Evaluating model performance. https://www.tutorialspoint.com/deep_learning_with_keras/deep_learning_with_keras_evaluating_model_performance.htm#, feb 2022.
Pavan Vadapalli. Biological neural network: Importance, components & comparison. https://www.upgrad.com/blog/biological-neural-network/, feb 2021.
S Yan. Understanding lstm networks. Online). Accessed on August, 11, 2015.
Xiaokang Zhou, Wei Liang, Kevin I-Kai Wang, Hao Wang, Laurence T. Yang, and Qun Jin. Deep-learning-enhanced human activity recognition for internet of healthcare things. IEEE Internet of Things Journal, 7(7):6429–6438, 2020.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/50378/1/2023mariapaulasaabeltran.pdf
https://repository.usta.edu.co/bitstream/11634/50378/2/Carta_autorizacion_autoarchivo_autor_2023.pdf
https://repository.usta.edu.co/bitstream/11634/50378/3/CARTA%20APROBACI%c3%93N%20FACULTAD%20MPSB.pdf
https://repository.usta.edu.co/bitstream/11634/50378/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/50378/5/license.txt
https://repository.usta.edu.co/bitstream/11634/50378/6/2023mariapaulasaabeltran.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/50378/7/Carta_autorizacion_autoarchivo_autor_2023.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/50378/8/CARTA%20APROBACI%c3%93N%20FACULTAD%20MPSB.pdf.jpg
bitstream.checksum.fl_str_mv 6c4c987834b0f7f99143184961bce11e
1dd02556f32a6808b3ad187527e7fafa
6d6ffb5d15e2013fff395ed53ee844e2
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
c42c05e7e3b36eac39641558f1537589
8aa1decf1e5daee4f49db6a339c97a07
4125c4567b70e3680560c314ec3249ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026295284072448
spelling Cruz Capador, Gerson DavidGuarnizo Marín, José GuillermoSaa Beltrán, María Paulahttps://orcid.org/0000-0002-3723-7509https://orcid.org/0000-0002-8401-4949https://orcid.org/0000-0001-8509-2378https://scholar.google.com/citations?hl=es&user=fVo6U9MAAAAJhttps://scholar.google.com/citations?hl=es&user=3JSJ0C4AAAAJhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001334709https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000855847https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001767650Universidad Santo Tomás2023-04-19T16:31:33Z2023-04-19T16:31:33Z2023-04-17Saa Beltrán, M. P. (2023). Aprendizaje Profundo para la Detección de Caídas en Personas Vulnerables. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.http://hdl.handle.net/11634/50378reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl proyecto de tesis, muestra el diseño, implementación y desarrollo de un algoritmo de aprendizaje profundo que permite realizar detección de caídas en especial en personal mayores que se encuentran viviendo solas, en espacios médicos o en centros de cuidados geriátricos. Se busca que este proyecto pueda realizar esta detección, sin la necesidad de emplear dispositivos corporales que pueden generar inconvenientes en los pacientes, razón por la cual se opta por emplear un algoritmo basado en redes neuronales recurrentes de tipo LSTM (Memoria prolongada de corto plazo), que tienen la capacidad de recordar información relevante en secuencias y preservarlo por varios instantes de tiempo. Se realizan las pruebas en ambientes controlados, junto con personas que emulen las caídas y que no cuenten con ningún inconveniente de salud, la evaluación del proyectó se realiza a través de distintas métricas y pruebas en tiempo real.The undergraduate project shows the design, implementation and development of a deep learning algorithm that allows fall detection, especially in older people who are living alone, in medical centres or in geriatric care centres. It is sought that this project can carry out this detection, without the need to use body devices that can generate inconveniences in patients, that is why it is chosen to use an algorithm based on recurrent neural networks of the LSTM type (Long short-term memory), that have the ability to remember relevant information in sequences and preserve it for several instants of time. The tests are carried out in controlled environments, with people who emulate the falls and do not have any health issues, the evaluation of the project is carried out through different metrics and tests in real time.Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aprendizaje Profundo para la Detección de Caídas en Personas VulnerablesNeural NetworksFallsLong-Short Term MemoryDeep LearningIngeniería ElectrónicaPersonas VulnerablesDiseño-AlgoritmosRedes NeuronalesCaídasLong-Short Term Memory (LSTM)Aprendizaje ProfundoTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAhmed Abobakr, Mohammed Hossny, Hala Abdelkader, and Saeid Nahavandi. Rgb-d fall detection via deep residual convolutional lstm networks. In 2018 Digital Image Computing: Techniques and Applications (DICTA), pages 1–7, 2018.Charu C Aggarwal et al. Neural networks and deep learning. Springer, 10:978–3, 2018.Xavier Basogain. Redes neuronales artificiales y sus aplicaciones. Dpto. Ingeniería de Sistemas y Automática, Escuela Superior de Ingeniería Bilbao, howpublished=http://ocw.ehu.es/ensenanzas-tecnicas/ redes-neuronales-artificiales-y-sus-aplicaciones/Course_ listing., year=2008.Valentin Bazarevsky and Google Research Ivan Grishchenko, Research Engineers. On-device, real-time body pose tracking with mediapipe blazepose. https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html, aug 2020.Avijeet Biswal. Convolutional neural network tutorial. https://www.simplilearn.com/tutorials/deep-learning-tutorial/convolutional-neural-network, jul 2022.Avijeet Biswal. Recurrent neural network (rnn) tutorial: Types, examples, lstm and more. https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn, aug 2022.Sebastian Bittrich, Marika Kaden, Christoph Leberecht, Florian Kaiser, Thomas Villmann, and Dirk Labudde. Application of an interpretable classification model on early folding residues during protein folding. BioData mining, 12(1):1–16, 2019.Harsha Bommana. Introduction to neural networks — part 1. https://medium.com/deep-learning-demystified/introduction-to-neural-networks-part-1-e13f132c6d7e, may 2019.Kabalan Chaccour, Rony Darazi, Amir Hajjam El Hassani, and Emmanuel Andrès. From fall detection to fall prevention: A generic classification of fall-related systems. IEEE Sensors Journal, 17(3):812–822, 2017.Madhav Chamle, K. G. Gunale, and K. K. Warhade. Automated unusual event detection in video surveillance. In 2016 International Conference on Inventive Computation Technologies (ICICT), volume 2, pages 1–4, 2016.Pongsatorn Chutimawattanakul and Pranchalee Samanpiboon. Fall detection for the elderly using yolov4 and lstm. In 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pages 1–5,2022.Intel Corporation. Open source computer vision. https://docs.opencv.org/4.6.0/, jun 2022.DANE. Adulto mayor en colombia - características generales. https://www.dane.gov.co/files/investigaciones/genero/presentacion-caracteristicas-generales-adulto-mayor-en-colombia.pdf, jan 2021.Gobierno de Colombia. Misión de sabios - colombia - 2019. https://minciencias.gov.co/sites/default/files/libro_mision_de_sabios_digital_1_2_0.pdf, dec 2021.Congreso de la República. Medidas de protección al adulto mayor en colombia. http://www.secretariasenado.gov.co/senado/basedoc/ley_1850_2017.html, jul 2017.Congreso de la República. ConvenciÓn interamericana sobre la protección de los derechos humanos de las personas mayores. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=141981, sep 2020.Sonia Patricia de Santillana Hernández, Luis Eduardo Alvarado Moctezuma, Gustavo Rodrigo Medina Beltrán, Gricelda Gómez Ortega, Rosa María Cortés Gonzálezzuela Espinoza, and Rosa María Cortés González. Caídas en el adulto mayor. factores intrínsecos y extrínsecos. Revista Médica del Instituto Mexicano del Seguro Social, 40(6):489–493, 2002.Riya Dichwalkar, Shreya Oak, Tania Rajabally, and Dhananjay Kalbande. Activity recognition and fall detection in elderly people. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pages 1–6, 2020.Tran Duc Tan and Nguyen Van Tinh. Reliable fall detection system using an 3-dof accelerometer and cascade posture recognitions. In Signal and Information Processing AssociationAnnual Summit and Conference (APSIPA), 2014 Asia-Pacific, pages 1–6, 2014.Nashwa El-Bendary, Qing Tan, Frédérique C Pivot, and Anthony Lam. Fall detection and prevention for the elderly: A review of trends and challenges. International Journal on Smart Sensing & Intelligent Systems, 6(3), 2013.National Geografic España. Sinapsis, el lenguaje de las neuronas en el cerebro. https://n9.cl/6vjro9, apr 2019.H Espínola. Caídas en el adulto mayor. Boletín de la pontificia Universidad Católica de Chile, 29:1–5, 2000.M.M. Fadoul. Python Machine Learning: Machine Learning and Deep Learning from Scratch Illustrated with Python, Scikit-Learn, Keras, Theano and Tensorflow. Independently Published, 2020.Yaxiang Fan, Martin D. Levine, Gongjian Wen, and Shaohua Qiu. A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing, 260:43–58, 2017.Aditya Rio Fansdana, Aulia Khamas Heikhmakhtiar, and Satria Mandala. Real-time falling detection system for elderly using cnn. In 2021 International Conference on Data Science and Its Applications (ICoDSA), pages 194–197, 2021.Shubham Garg, Aman Saxena, and Richa Gupta. Yoga pose classification: a cnn and mediapipe inspired deep learning approach for real-world application. Journal of Ambient Intelligence and Humanized Computing, pages 1–12, 2022.Sparsh Gupta. The 7 most common machine learning loss functions. https://builtin.com/machine-learning/common-loss-functions, apr 2022.Khadija Hanifi and M. Elif Karsligil. Elderly fall detection with vital signs monitoring using cw doppler radar. IEEE Sensors Journal, 21(15):16969–16978, 2021.Md Mahedi Hasan, Md Shamimul Islam, and Sohaib Abdullah. Robust pose-based human fall detection using recurrent neural network. In 2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON), pages 48–51, 2019.Kyaw Kyaw Htike, Othman O. Khalifa, Huda Adibah Mohd Ramli, and Mohammad A. M. Abushariah. Human activity recognition for video surveillance using sequences of postures. In The Third International Conference on e-Technologies and Networks for Development (ICeND2014), pages 79–82, 2014.Madoka Inoue, Ryo Taguchi, and Taizo Umezaki. Bed-exit prediction applying neural network combining bed position detection and patient posture estimation. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3208–3211, 2019.Shruti Jadon. What is an activation function? what are commonly used activation functions? https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning9689331ba092, mar 2018.Rose A Kenny, Cliodhna Ni Scanaill, and Michael McGrath. Falls prevention in the home: Challenges for new technologies. In Intelligent Technologies for Bridging the Grey Digital Divide, pages 46–64. IGI Global, 2011.Sangyeon Kim, Gawon Lee, and Jihie Kim. Lightweight real-time fall detection using bi- directional recurrent neural network. In 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems (SCIS-ISIS), pages 1–5, 2020.Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Selfnormalizing neural networks. Advances in neural information processing systems, 30, 2017.Xuan-Hien Le, Hung Viet Ho, Giha Lee, and Sungho Jung. Application of long short-term memory (lstm) neural network for flood forecasting. Water, 11(7):1387, 2019.Xiaogang Li, Tiantian Pang, Weixiang Liu, and Tianfu Wang. Fall detection for elderly person care using convolutional neural networks. In 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pages 1–6, 2017.Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context, 2014.Google LLC. Mediapipe pose. https://google.github.io/mediapipe/solutions/pose.html, jun 2020.Patricio Loncomilla. Deep learning: Redes convolucionales. Recuperado de https://ccc. inaoep. mx/ ̃ pgomez/deep/presentations, 2016.Steven T Moore, Valentina Dilda, Bandar Hakim, and Hamish G MacDougall. Validation of 24-hour ambulatory gait assessment in parkinson’s disease with simultaneous video observation. Biomedical engineering online, 10(1):1–9, 2011.Sarah Mroz, Natalie Baddour, Connor McGuirk, Pascale Juneau, Albert Tu, Kevin Cheung, and Edward Lemaire. Comparing the quality of human pose estimation with blazepose or openpose. pages 1–4, 12 2021.Abdulmajid Murad and Jae-Young Pyun. Deep recurrent neural networks for human activity recognition. Sensors, 17(11):2556, 2017.Brian Mwandau and Matunda Nyanchama. Investigating Keystroke Dynamics as a Two-Factor Biometric Security. PhD thesis, 06 2018.Cristobal Olah. Introducción a la memoria a largo corto plazo (lstm). https://colah.github.io/posts/2015-08-Understanding-LSTMs/, aug 2015.Artem Oppermann. Loss functionsin deep learning. jun 2021.Jesús Pérez Guerrero. Redes recurrentes. 2020.M Gestal Pose. Introducción a las redes de neuronas artificiales. Departamento de Tecnologías de la Información y las Comunicaciones. Universidad da Coruña, 2009.Patryk Radzki. Detection of human body landmarks - mediapipe and openpose comparison. https://www.hearai.pl/post/14-openpose/, apr 2022.Nicholas Renotte. Action detection for sign language. https://github.com/nicknochnack/ActionDetectionforSignLanguage, jun 2021.Laura María Álvarez Rodríguez. Síndrome de caídas en el adulto mayor. Revista Médica de Costa Rica y Centroamérica, 72(617):807–810, 2016.Ravi Kiran Selvam. Adagrad and adadelta optimizers - implementation and testing:-. https://www.sravikiran.com/GSOC18/page2/, jul 2018.N Senthilkumar, M Manimegalai, S Karpakam, S.R Ashokkumar, and M Premkumar. Human action recognition based on spatial–temporal relational model and lstm-cnn framework. Materials Today: Proceedings, 57:2087–2091, 2022. International Conference on Innovation and Application in Science and Technology.Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural networks. towards data science, 6(12):310–316, 2017.Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.simpl!learn. What is neural network: Overview, applications, and advantages. https://www.simplilearn.com/tutorials/deep-learning-tutorial/what-is-neural-network, jan 2022.Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint ar Xiv:1912.08957, 2019.M. Taylor. Make Your Own Neural Network: An In-Depth Visual Introduction for Beginners. Amazon Digital Services LLC - KDP Print US, 2017.tutorialspoint. Evaluating model performance. https://www.tutorialspoint.com/deep_learning_with_keras/deep_learning_with_keras_evaluating_model_performance.htm#, feb 2022.Pavan Vadapalli. Biological neural network: Importance, components & comparison. https://www.upgrad.com/blog/biological-neural-network/, feb 2021.S Yan. Understanding lstm networks. Online). Accessed on August, 11, 2015.Xiaokang Zhou, Wei Liang, Kevin I-Kai Wang, Hao Wang, Laurence T. Yang, and Qun Jin. Deep-learning-enhanced human activity recognition for internet of healthcare things. IEEE Internet of Things Journal, 7(7):6429–6438, 2020.ORIGINAL2023mariapaulasaabeltran.pdf2023mariapaulasaabeltran.pdfTrabajo de Gradoapplication/pdf5616140https://repository.usta.edu.co/bitstream/11634/50378/1/2023mariapaulasaabeltran.pdf6c4c987834b0f7f99143184961bce11eMD51open accessCarta_autorizacion_autoarchivo_autor_2023.pdfCarta_autorizacion_autoarchivo_autor_2023.pdfCarta Derechos de Autorapplication/pdf913803https://repository.usta.edu.co/bitstream/11634/50378/2/Carta_autorizacion_autoarchivo_autor_2023.pdf1dd02556f32a6808b3ad187527e7fafaMD52metadata only accessCARTA APROBACIÓN FACULTAD MPSB.pdfCARTA APROBACIÓN FACULTAD MPSB.pdfCara de Aprobación de la Facultadapplication/pdf388508https://repository.usta.edu.co/bitstream/11634/50378/3/CARTA%20APROBACI%c3%93N%20FACULTAD%20MPSB.pdf6d6ffb5d15e2013fff395ed53ee844e2MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/50378/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/50378/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2023mariapaulasaabeltran.pdf.jpg2023mariapaulasaabeltran.pdf.jpgIM Thumbnailimage/jpeg5141https://repository.usta.edu.co/bitstream/11634/50378/6/2023mariapaulasaabeltran.pdf.jpgc42c05e7e3b36eac39641558f1537589MD56open accessCarta_autorizacion_autoarchivo_autor_2023.pdf.jpgCarta_autorizacion_autoarchivo_autor_2023.pdf.jpgIM Thumbnailimage/jpeg7606https://repository.usta.edu.co/bitstream/11634/50378/7/Carta_autorizacion_autoarchivo_autor_2023.pdf.jpg8aa1decf1e5daee4f49db6a339c97a07MD57open accessCARTA APROBACIÓN FACULTAD MPSB.pdf.jpgCARTA APROBACIÓN FACULTAD MPSB.pdf.jpgIM Thumbnailimage/jpeg6951https://repository.usta.edu.co/bitstream/11634/50378/8/CARTA%20APROBACI%c3%93N%20FACULTAD%20MPSB.pdf.jpg4125c4567b70e3680560c314ec3249ceMD58open access11634/50378oai:repository.usta.edu.co:11634/503782023-05-09 09:09:39.263open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K