Implementación de un sistema de posicionamiento en interiores para robots móviles

Este proyecto tiene como finalidad seleccionar una tecnología adecuada para la implementación de un sistema de posicionamiento en interiores. Para esto, se realizó una revisión del estado del arte, donde se destacaron las tecnologías Wi-Fi, Bluetooth de baja energía y ultrasonido. Luego, se hicieron...

Full description

Autores:
Forero Gallego, Stefhannya Maria Josse
Torres Laguado, Juan Sebastian
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/33179
Acceso en línea:
http://hdl.handle.net/11634/33179
Palabra clave:
Coplanar
Fading
Diffraction
Measurement error
Accuracy
Line of sight
Precision
Multipath propagation
Reflection
Refraction
Veracity
Indoor positioning systems
Radio waves
Wireless personal area networks (WPAN) -- Bluetooth
Sistemas de posicionamiento en interiores
Tecnología Wi-Fi
Redes inalámbricas de área personal (WPAN) -- Bluetooth
Ondas de radio
Coplanar
Desvanecimiento
Difracción
Error de medida
Exactitud
Línea de visión
Precisión
Propagación multitrayecto
Reflexión
Refracción
Veracidad
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_20e3fd0361fbbf7d66d09dd7229400a4
oai_identifier_str oai:repository.usta.edu.co:11634/33179
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Implementación de un sistema de posicionamiento en interiores para robots móviles
title Implementación de un sistema de posicionamiento en interiores para robots móviles
spellingShingle Implementación de un sistema de posicionamiento en interiores para robots móviles
Coplanar
Fading
Diffraction
Measurement error
Accuracy
Line of sight
Precision
Multipath propagation
Reflection
Refraction
Veracity
Indoor positioning systems
Radio waves
Wireless personal area networks (WPAN) -- Bluetooth
Sistemas de posicionamiento en interiores
Tecnología Wi-Fi
Redes inalámbricas de área personal (WPAN) -- Bluetooth
Ondas de radio
Coplanar
Desvanecimiento
Difracción
Error de medida
Exactitud
Línea de visión
Precisión
Propagación multitrayecto
Reflexión
Refracción
Veracidad
title_short Implementación de un sistema de posicionamiento en interiores para robots móviles
title_full Implementación de un sistema de posicionamiento en interiores para robots móviles
title_fullStr Implementación de un sistema de posicionamiento en interiores para robots móviles
title_full_unstemmed Implementación de un sistema de posicionamiento en interiores para robots móviles
title_sort Implementación de un sistema de posicionamiento en interiores para robots móviles
dc.creator.fl_str_mv Forero Gallego, Stefhannya Maria Josse
Torres Laguado, Juan Sebastian
dc.contributor.advisor.spa.fl_str_mv Camacho Poveda, Edgar Camilo
Gelvez Lizarazo, Oscar Mauricio
dc.contributor.author.spa.fl_str_mv Forero Gallego, Stefhannya Maria Josse
Torres Laguado, Juan Sebastian
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-6084-2512
https://orcid.org/0000-0001-6858-5293
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=tJG988kAAAAJ&hl=es
https://scholar.google.es/citations?user=NWM0F0AAAAAJ&hl=es
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001342623
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomas
Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Coplanar
Fading
Diffraction
Measurement error
Accuracy
Line of sight
Precision
Multipath propagation
Reflection
Refraction
Veracity
Indoor positioning systems
Radio waves
Wireless personal area networks (WPAN) -- Bluetooth
topic Coplanar
Fading
Diffraction
Measurement error
Accuracy
Line of sight
Precision
Multipath propagation
Reflection
Refraction
Veracity
Indoor positioning systems
Radio waves
Wireless personal area networks (WPAN) -- Bluetooth
Sistemas de posicionamiento en interiores
Tecnología Wi-Fi
Redes inalámbricas de área personal (WPAN) -- Bluetooth
Ondas de radio
Coplanar
Desvanecimiento
Difracción
Error de medida
Exactitud
Línea de visión
Precisión
Propagación multitrayecto
Reflexión
Refracción
Veracidad
dc.subject.lemb.spa.fl_str_mv Sistemas de posicionamiento en interiores
Tecnología Wi-Fi
Redes inalámbricas de área personal (WPAN) -- Bluetooth
Ondas de radio
dc.subject.proposal.spa.fl_str_mv Coplanar
Desvanecimiento
Difracción
Error de medida
Exactitud
Línea de visión
Precisión
Propagación multitrayecto
Reflexión
Refracción
Veracidad
description Este proyecto tiene como finalidad seleccionar una tecnología adecuada para la implementación de un sistema de posicionamiento en interiores. Para esto, se realizó una revisión del estado del arte, donde se destacaron las tecnologías Wi-Fi, Bluetooth de baja energía y ultrasonido. Luego, se hicieron investigaciones más detalladas de dichos trabajos, para deducir cuál sería las más apropiada, teniendo en cuenta pruebas y resultados finales. De esta manera, se seleccionó el ultrasonido principalmente por lograr errores en el orden de centímetros y además, por su facilidad en la captura y procesamiento de la señal. Adicionalmente, se eligieron las ondas de radio para que sean tomadas como referencia, para la estimación de la distancia relativa entre nodos. Para el hardware del sistema, se implementaron seis nodos, un nodo emisor para que envíe una señal de ultrasonido y una de radiofrecuencia, cuatro nodos receptores para que reciban ambas señales, calculen la diferencia de tiempo entre estas dos, después estimen su respectiva distancia y la envíen a un nodo final. Este nodo final, se compone de un computador y el módulo Xbee coordinador, este nodo recibe las cuatro distancias correspondientes y posteriormente estima la posición final del nodo móvil en tercera dimensión. Para obtener la posición relativa respecto al sistema fue necesario utilizar la técnica de posicionamiento por linealización con trilateración esférica. Se debe mencionar, que en este caso se presentaron singularidades en los nodos del sistema, por ser nodos que se encuentran en el mismo plano. Estas singularidades fueron resueltas al aplicar la descomposición de valor singular en el sistema de ecuaciones.
publishDate 2021
dc.date.accessioned.spa.fl_str_mv 2021-03-25T14:36:17Z
dc.date.available.spa.fl_str_mv 2021-03-25T14:36:17Z
dc.date.issued.spa.fl_str_mv 2021-03-24
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Forero Gallego, S. M. J. & Torres Laguado, J. S. (2021). Implementación de un sistema de posicionamiento en interiores para robots móviles. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/33179
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Forero Gallego, S. M. J. & Torres Laguado, J. S. (2021). Implementación de un sistema de posicionamiento en interiores para robots móviles. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/33179
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv J. Haverinen, The Rise of Indoor Positioning, 2016. [Online]. Available: http://www.indooratlas.com/wp-content/uploads/2016/09/A-2016-Global-Research-Report-On-The-Indoor-Positioning-Market.pdf
D. Capriglione, D. Casinelli and L. Ferrigno, Use of frequency diversity to improve the performance of RSSI-based distance measurements,2015 IEEE International Workshop on Measurements Networking (M\N), Coimbra, 2015, pp. 1-6, doi: 10.1109/IWMN.2015.7322973.
Baturone Ollero Anibal and Gonzalez Jimenez Javier; Estimación De La Posición De Un Robot Móvil. 1996.
F. Seco Granja et al, Localización personal en entornos interiores con tecnología RFID, vol. 10, (3), pp. 313-324, 2013. Available: https://www.openaire.eu/search/publication?articleId=dedup_wf_001::ec4f8c5 40c163506a5bfcd719b9b51d7. DOI: 10.1016/j.riai.2013.05.004.
R. F. Brena et al, Evolution of Indoor Positioning Technologies: A Survey, Journal of Sensors, 2017. Available: https://www.hindawi.com/journals/js/2017/2630413. DOI: 10.1155/2017/2630413.
W. Sakpere, M. Adeyeye-Oshin and N. B.W.Mlitwa, View of A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies, South African Computer Journal, 2017. [Online]. Available: https://sacj.cs.uct.ac.za/index.php/sacj/article/download/452/249.
G. Deak, K. Curran and J. Condell, A survey of active and passive indoor localisation systems, Computer Communications, vol. 35, (16), pp. 1939-1954, 2012. Available: https://www.sciencedirect.com/science/article/pii/S014036641200196X. DOI:10.1016/j.comcom.2012.06.004.
Z. Farid, R. Nordin and M. Ismail, Recent Advances in Wireless Indoor Localization Techniques and System, Journal of Computer Networks and Communications, 2013. [Online]. Available: https://www.hindawi.com/journals/jcnc/2013/185138/. DOI: 10.1155/2013/185138.
Y. Wang, Q. Yang, G. Zhang and P. Zhang, Indoor positioning system using Euclidean distance correction algorithm with bluetooth low energy beacon, 2016 International Conference on Internet of Things and Applications (IOTA), Pune, 2016, pp. 243-247, doi: 10.1109/IOTA.2016.7562730.
Z. Cao, R. Chen, G. Guo and Y. Pan, iBaby: A low cost BLE pseudolite based indoor baby care system, 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, 2018, pp. 1-6, doi: 10.1109/UPINLBS.2018.8559887.
S. Memon, M. M. Memon, F. K. Shaikh and S. Laghari, Smart indoor positioning using BLE technology, 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS), Salmabad, 2017, pp. 1-5, doi: 10.1109/ICETAS.2017.8277872.
A. Corbacho Salas, Indoor Positioning System based on Bluetooth Low Energy, UPC, Escuela Técnica Superior de ingeniería de Telecomunicaciones de Barcelona, 2014.
Chai, Song & An, Renbo & Du, Zhengzhong. An Indoor Positioning Algorithm using Bluetooth Low Energy RSSI. 2016, 10.2991/amsee-16.2016.72.
S. Holm, Ultrasound positioning based on time-of-flight and signal strength, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-6, doi: 10.1109/IPIN.2012.6418728.
H. Zou, Ming Jin, H. Jiang, L. Xie and C. Spanos, WinIPS: WiFi-based non-intrusive IPS for online radio map construction, 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, 2016, pp. 1081-1082, doi: 10.1109/INFCOMW.2016.7562263.
P. Bolliger, Robust Indoor Positioning through Adaptive Collaborative Labeling of Location Fingerprints, ETH Zurich, 2011. [Online]. Available: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/72799/eth-5267-02.pdf.
J. Xiao, K. Wu, Y. Yi and L. M. Ni, FIFS: Fine-Grained Indoor Fingerprinting System, 2012 21st International Conference on Computer Communications and Networks (ICCCN), Munich, 2012, pp. 1-7, doi: 10.1109/ICCCN.2012.6289200
Nguyen Dinh-Van, F. Nashashibi, Nguyen Thanh-Huong and E. Castelli, Indoor Intelligent Vehicle localization using WiFi received signal strength indicator, 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, 2017, pp. 33-36, doi: 10.1109/ICMIM.2017.7918849.
Nissanka Bodhi Priyantha,The Cricket Indoor Location System. 2005.
Medina, Carlos et al. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy. Sensors (Basel, Switzerland) vol. 13,3. 2013, doi:10.3390/s130303501
M. Addlesee et al., Implementing a sentient computing system, in Computer, vol. 34, no. 8, pp. 50-56, Aug. 2001, doi: 10.1109/2.940013.
J. Eckert, F. Dressler and R. German, Real-time indoor localization support for four-rotor flying robots using sensor nodes, 2009 IEEE International Workshop on Robotic and Sensors Environments, Lecco, 2009, pp. 23-28, doi: 10.1109/ROSE.2009.5355994.
S. Holm, Ultrasound positioning based on time-of-flight and signal strength, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-6, doi: 10.1109/IPIN.2012.6418728.
S. Latif, R. Tariq, W. Haq and U. Hashmi, INDOOR POSITIONING SYSTEM using ultrasonics, Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, 2012, pp. 440-444, doi: 10.1109/IBCAST.2012.6177596.
Sistema de localización en tiempo real WhereNet, Zebra Technologies. [Online]. Available: https://www.zebra.com/la/es/products/location-technologies/wherenet.html.
J. Liu, S. Chen, M. Chen, Q. Xiao and L. Chen, Pose Sensing With a Single RFID Tag, in IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2023-2036, Oct. 2020, doi: 10.1109/TNET.2020.3007830.
A. Harter and A. Hopper, A distributed location system for the active office, IEEE Network, vol. 8, (1), pp. 62-70, 1994. DOI: 10.1109/65.260080.
Firefly by Cybernet Systems Corporation. [Online]. Available: https://www.cybernet.com/interactive/firefly/.
E. Bernardes, S. Viollet and T. Raharijaona, A Three-Photo-Detector Optical Sensor Accurately Localizes a Mobile Robot Indoors by Using Two Infrared Light-Emitting Diodes, in IEEE Access, vol. 8, pp. 87490-87503, 2020, doi: 10.1109/ACCESS.2020.2992996.
Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, Steven Shafer, EasyLiving: Technologies for intelligent environments, September. 2000.
Y. Gu, A. Lo and I. Niemegeers, A survey of indoor positioning systems for wireless personal networks, in IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 13-32, First Quarter 2009, doi: 10.1109/SURV.2009.090103.
Rohta, J., Perumal, B., Narayanan, S., Tharkur, P. and B, R. User Localization In An Indoor Environment Using Fuzzy Hybrid Of Particle Swarm Optimization And Gravitational Search Algorithm With Neural Networks. 2014. VIT University.
Adege, A., Lin, H., Tarekegn, G., Munaye, Y. and Yen, L. An Indoor And Outdoor Positioning Using A Hybrid Of Support Vector Machine And Deep Neural Network Algorithms. 2018 .National Taipei University of Technology.
P. Mohaghegh, D. Pravica, J. S. Botero-Valencia, A. Boegli and Y. Perriard, Application of a Low Frequency, Low Power Radio Frequency Positioning System for Real Time Indoor Positioning, 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 2020, pp. 406-410, doi: 10.23919/ICEMS50442.2020.9291201.
Z. Chen, M. I. AlHajri, M. Wu, N. T. Ali and R. M. Shubair, A Novel Real-Time Deep Learning Approach for Indoor Localization Based on RF Environment Identification, in IEEE Sensors Letters, vol. 4, no. 6, pp. 1-4, June 2020, Art no. 7002504, doi: 10.1109/LSENS.2020.2991145.
H. Liu et al, Survey of wireless indoor positioning techniques and systems, IEEE Trans Syst Man Cybern Pt C Appl Rev, vol. 37, (6), pp. 1067-1080, 2007. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-36248934122doi=10.1109\%2fTSMCC.2007.905750partnerID=40;md5=24 54644b18133a464502dfc82efbb147. DOI: 10.1109/TSMCC.2007.905750.
Ogata Katsuhiko, Modern Control Engineering, Fifth Edition. Editorial Pearson.
Data Fusion For Improved TOA/TDOA Position Determination in Wireless Systems, VTechWorks, 2000. [Online]. Available: https://vtechworks.lib.vt.edu/bitstream/handle/10919/34723/Master4.pdf?sequen ce=1&isAllowed=y.
R. Kaune, Accuracy studies for TDOA and TOA localization, 2012 15th International Conference on Information Fusion, Singapore, 2012, pp. 408-415.
F. Zafari, A. Gkelias and K. K. Leung, A Survey of Indoor Localization Systems and Technologies, in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568-2599, thirdquarter 2019, doi: 10.1109/COMST.2019.2911558.
C. Yang and H. Shao,WiFi-based indoor positioning, IEEE Communications Magazine, vol. 53, (3), pp. 150-157, 2015. DOI: 10.1109/MCOM.2015.7060497.
F. Abdelhafeid and R. Penno, AoA Estimation Using an Array of Diversely Polarized Microstrip Antenna, NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, 2018, pp. 611-617, doi: 10.1109/NAECON.2018.8556805.
G. Cullen, K. Curran, J. Santos, G. Maguire and D. Bourne, CAPTURE Cooperatively applied positioning techniques utilizing range extensions, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, 2014, pp. 340-346, doi: 10.1109/IPIN.2014.7275501.
Kaibi Zhang, Yangchuan Zhang and Subo Wan, Research of RSSI indoor ranging algorithm based on Gaussian - Kalman linear filtering, 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016, pp. 1628-1632, doi: 10.1109/IMCEC.2016.7867493.
A. F. G. Ferreira et al, Localization and Positioning Systems for Emergency Responders: A Survey, IEEE Communications Surveys Tutorials, vol. 19, (4), pp. 2836-2870, 2017. DOI: 10.1109/COMST.2017.2703620
E. García Polo, Técnicas de Localización en Redes Inalámbricas de Sensores, Departamento de Sistemas Informáticos (DSI). [Online]. Available:http://www.dsi.uclm.es/personal/EvaMariaGarcia/docs/2008-Curso%20Verano.pdf
A. Noertjahyana, I. A. Wijayanto and J. Andjarwirawan, Development of Mobile Indoor Positioning System Application Using Android and Bluetooth Low Energy with Trilateration Method, 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), Denpasar, 2017, pp. 185-189, doi: 10.1109/ICSIIT.2017.64.
E. Tudanca Capón, Estudio de un sistema de posicionamiento 3D de drones, 2019. [Online]. Available: http://hdl.handle.net/10017/39107.
N. Alsindi, Z. Chaloupka and J. Aweya, Entropy-based location fingerprinting for WLAN systems, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-7, doi: 10.1109/IPIN.2012.6418895.
Radio Versions Bluetooth Technology Website, Bluetooth Technology Website. [Online]. Available: https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/.
M. Ji, J. Kim, J. Jeon and Y. Cho, Analysis of positioning accuracy corresponding to the number of BLE beacons in indoor positioning system, 2015 17th International Conference on Advanced Communication Technology (ICACT), Seoul, 2015, pp. 92-95, doi: 10.1109/ICACT.2015.7224764.
H. Torii, S. Ibi and S. Sampei, Indoor Positioning and Tracking by Multi-Point Observations of BLE Beacon Signal, 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, 2018, pp. 1-5, doi: 10.1109/WPNC.2018.8555808.
S. Subedi, G. Kwon, Seokjoo Shin, Suk-seung Hwang and Jae-Young Pyun, Beacon based indoor positioning system using weighted centroid localization approach, 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, 2016, pp. 1016-1019, doi: 10.1109/ICUFN.2016.7536951.
Ross, John. Book of Wireless : A Painless Guide to Wi-Fi and Broadband Wireless, No Starch Press, Incorporated, 2008. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/bibliotecausta-ebooks/detail.action?docID=1137524.
H. X. Jian and W. Hao, WIFI Indoor Location Optimization Method Based on Position Fingerprint Algorithm, 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA), Changsha, 2017, pp. 585-588, doi: 10.1109/ICSGEA.2017.123.
F. Davila, L. Barros, J. Reynolds, A. Lewis and I. Mogollón, El ultrasonido: desde el murciélago hasta la cardiología no invasivaUltrasound: from bats to non-invasive cardiology, sciencedirect, 2016, doi: 10.1016/j.rccar.2016.05.010
ultrasonido Diccionario de la lengua española, Diccionario de la lengua española - Edición del Tricentenario. [Online]. Available: https://dle.rae.es/ultrasonido?m=30_2.
Resonancia en columnas de aire, Universidad Católica del Norte. [Online]. Available: http://www.fisica.ucn.cl/wp-content/uploads/2017/09/GL6-RESONANCIA-EN-COLUMNAS-DE-AIRE.pdf.
A. Vargas, L. Amescua-Guerra, M. Bernal and C. Pineda, Principios físicos básicos del ultrasonido, sonoanatomía del sistema musculoesquelético y artefactos ecográficos, 2008. [Online]. Available: https://www.medigraphic.com/pdfs/ortope/or-2008/or086e.pdf.
J. Sáez Cardador, Medidor de distancia por ultrasonidos, Universidad Carlos III de Madrid, 2006. [Online]. Available: http://hdl.handle.net/10016/9052.
PIC12F509 Data Sheet. 2004. [Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/view/105920/MICROCHIP/PIC12F5-09.html
433 MHz RF Receiver Module, Components101, 2018. [Online]. Available: https://components101.com/433-mhz-rf-receiver-module.
ARM Cortex M3 STM32F103C8T6, microcontrollerelectronics. [Online]. Available: https://microcontrollerelectronics.com/arm-cortex-m3-stm32f103c8t6/
Tarjeta de Desarrollo STM32F103C8T6 ARM Cortex-M3 STM32, electronilab. [Online]. Available: https://electronilab.co/tienda/tarjeta-de-desarollo-stm32f103c8t6-arm-cortex-m3-stm32/.
¿Qué es XBee? XBee.cl - Comunicación Inalámbrica para Tus Proyectos, DIGI. [Online]. Available: https://xbee.cl/que-es-xbee/.
DIGI XBee, mouser. [Online]. Available: https://www.mouser.es/new/digi-international/digi-xbee-s2c-rf-modules/
C. Rimoldi and L. Mundo, ENSAYO NO DESTRUCTIVO POR MÉTODO DE ULTRASONIDO. [Online]. Available: http://www.aero.ing.unlp.edu.ar/catedras/archivos/Apunte%20Ultrasonido%202012.pdf
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/33179/1/2021stefhannyaforero.pdf
https://repository.usta.edu.co/bitstream/11634/33179/2/CartaAutorizacion2021ForeroStefhannyaTorresJuan%20.pdf
https://repository.usta.edu.co/bitstream/11634/33179/3/Carta_aprobacion_Biblioteca.%20Torres%20Laguado%20y%20Forero%20Gallego.pdf
https://repository.usta.edu.co/bitstream/11634/33179/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/33179/5/license.txt
https://repository.usta.edu.co/bitstream/11634/33179/6/2021stefhannyaforero.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/33179/7/CartaAutorizacion2021ForeroStefhannyaTorresJuan%20.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/33179/8/Carta_aprobacion_Biblioteca.%20Torres%20Laguado%20y%20Forero%20Gallego.pdf.jpg
bitstream.checksum.fl_str_mv 9212b461fdfb0a3a0ccdabaa71cd6368
199475191d68a94c70736f12323c0f61
2471ff9bb1caf5d6618cc00d9fe255a8
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
3886256874604f45431bdb3098924da4
da5e1312a0a9df5d7b1bb605f270d727
1cb0f13080bbdd79c49a9b8b41774112
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026312147271680
spelling Camacho Poveda, Edgar CamiloGelvez Lizarazo, Oscar MauricioForero Gallego, Stefhannya Maria JosseTorres Laguado, Juan Sebastianhttps://orcid.org/0000-0002-6084-2512https://orcid.org/0000-0001-6858-5293https://scholar.google.es/citations?user=tJG988kAAAAJ&hl=eshttps://scholar.google.es/citations?user=NWM0F0AAAAAJ&hl=eshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001630084http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001342623Universidad Santo TomasUniversidad Santo Tomás2021-03-25T14:36:17Z2021-03-25T14:36:17Z2021-03-24Forero Gallego, S. M. J. & Torres Laguado, J. S. (2021). Implementación de un sistema de posicionamiento en interiores para robots móviles. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.http://hdl.handle.net/11634/33179reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEste proyecto tiene como finalidad seleccionar una tecnología adecuada para la implementación de un sistema de posicionamiento en interiores. Para esto, se realizó una revisión del estado del arte, donde se destacaron las tecnologías Wi-Fi, Bluetooth de baja energía y ultrasonido. Luego, se hicieron investigaciones más detalladas de dichos trabajos, para deducir cuál sería las más apropiada, teniendo en cuenta pruebas y resultados finales. De esta manera, se seleccionó el ultrasonido principalmente por lograr errores en el orden de centímetros y además, por su facilidad en la captura y procesamiento de la señal. Adicionalmente, se eligieron las ondas de radio para que sean tomadas como referencia, para la estimación de la distancia relativa entre nodos. Para el hardware del sistema, se implementaron seis nodos, un nodo emisor para que envíe una señal de ultrasonido y una de radiofrecuencia, cuatro nodos receptores para que reciban ambas señales, calculen la diferencia de tiempo entre estas dos, después estimen su respectiva distancia y la envíen a un nodo final. Este nodo final, se compone de un computador y el módulo Xbee coordinador, este nodo recibe las cuatro distancias correspondientes y posteriormente estima la posición final del nodo móvil en tercera dimensión. Para obtener la posición relativa respecto al sistema fue necesario utilizar la técnica de posicionamiento por linealización con trilateración esférica. Se debe mencionar, que en este caso se presentaron singularidades en los nodos del sistema, por ser nodos que se encuentran en el mismo plano. Estas singularidades fueron resueltas al aplicar la descomposición de valor singular en el sistema de ecuaciones.The purpose of this project is to select a suitable technology for the implementation of an indoor positioning system. For this, a review of the state of the art was carried out, where Wi-Fi, Bluetooth low energy and ultrasound technologies were highlighted. Later, more detailed investigations of these works were made, to deduce which would be the most appropriate, taking into account tests and final results. In this way, ultrasound was selected mainly for achieving errors in the order of centimeters and also for its ease in capturing and processing the signal. Additionally, radio waves were chosen to be taken as a reference, for estimating the relative distance between nodes. For the hardware of the system, six nodes were implemented, a transmitter node to send an ultrasound signal and a radio frequency signal, four receiver nodes to receive both signals, calculate the time difference between these two, then estimate their respective distance and send it to an end node. This final node is made up of a computer and the coordinating Xbee module. This node receives the four corresponding distances and subsequently estimates the final position of the mobile node in third dimension. To obtain the relative position with respect to the system, it was necessary to use the linearization positioning technique with spherical trilateration. It should be mentioned that in this case there were singularities in the nodes of the system, because they are nodes that are in the same plane. These singularities were solved by applying the singular value decomposition in the system of equations.Ingeniero Electronicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Implementación de un sistema de posicionamiento en interiores para robots móvilesCoplanarFadingDiffractionMeasurement errorAccuracyLine of sightPrecisionMultipath propagationReflectionRefractionVeracityIndoor positioning systemsRadio wavesWireless personal area networks (WPAN) -- BluetoothSistemas de posicionamiento en interioresTecnología Wi-FiRedes inalámbricas de área personal (WPAN) -- BluetoothOndas de radioCoplanarDesvanecimientoDifracciónError de medidaExactitudLínea de visiónPrecisiónPropagación multitrayectoReflexiónRefracciónVeracidadTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáJ. Haverinen, The Rise of Indoor Positioning, 2016. [Online]. Available: http://www.indooratlas.com/wp-content/uploads/2016/09/A-2016-Global-Research-Report-On-The-Indoor-Positioning-Market.pdfD. Capriglione, D. Casinelli and L. Ferrigno, Use of frequency diversity to improve the performance of RSSI-based distance measurements,2015 IEEE International Workshop on Measurements Networking (M\N), Coimbra, 2015, pp. 1-6, doi: 10.1109/IWMN.2015.7322973.Baturone Ollero Anibal and Gonzalez Jimenez Javier; Estimación De La Posición De Un Robot Móvil. 1996.F. Seco Granja et al, Localización personal en entornos interiores con tecnología RFID, vol. 10, (3), pp. 313-324, 2013. Available: https://www.openaire.eu/search/publication?articleId=dedup_wf_001::ec4f8c5 40c163506a5bfcd719b9b51d7. DOI: 10.1016/j.riai.2013.05.004.R. F. Brena et al, Evolution of Indoor Positioning Technologies: A Survey, Journal of Sensors, 2017. Available: https://www.hindawi.com/journals/js/2017/2630413. DOI: 10.1155/2017/2630413.W. Sakpere, M. Adeyeye-Oshin and N. B.W.Mlitwa, View of A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies, South African Computer Journal, 2017. [Online]. Available: https://sacj.cs.uct.ac.za/index.php/sacj/article/download/452/249.G. Deak, K. Curran and J. Condell, A survey of active and passive indoor localisation systems, Computer Communications, vol. 35, (16), pp. 1939-1954, 2012. Available: https://www.sciencedirect.com/science/article/pii/S014036641200196X. DOI:10.1016/j.comcom.2012.06.004.Z. Farid, R. Nordin and M. Ismail, Recent Advances in Wireless Indoor Localization Techniques and System, Journal of Computer Networks and Communications, 2013. [Online]. Available: https://www.hindawi.com/journals/jcnc/2013/185138/. DOI: 10.1155/2013/185138.Y. Wang, Q. Yang, G. Zhang and P. Zhang, Indoor positioning system using Euclidean distance correction algorithm with bluetooth low energy beacon, 2016 International Conference on Internet of Things and Applications (IOTA), Pune, 2016, pp. 243-247, doi: 10.1109/IOTA.2016.7562730.Z. Cao, R. Chen, G. Guo and Y. Pan, iBaby: A low cost BLE pseudolite based indoor baby care system, 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, 2018, pp. 1-6, doi: 10.1109/UPINLBS.2018.8559887.S. Memon, M. M. Memon, F. K. Shaikh and S. Laghari, Smart indoor positioning using BLE technology, 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS), Salmabad, 2017, pp. 1-5, doi: 10.1109/ICETAS.2017.8277872.A. Corbacho Salas, Indoor Positioning System based on Bluetooth Low Energy, UPC, Escuela Técnica Superior de ingeniería de Telecomunicaciones de Barcelona, 2014.Chai, Song & An, Renbo & Du, Zhengzhong. An Indoor Positioning Algorithm using Bluetooth Low Energy RSSI. 2016, 10.2991/amsee-16.2016.72.S. Holm, Ultrasound positioning based on time-of-flight and signal strength, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-6, doi: 10.1109/IPIN.2012.6418728.H. Zou, Ming Jin, H. Jiang, L. Xie and C. Spanos, WinIPS: WiFi-based non-intrusive IPS for online radio map construction, 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, 2016, pp. 1081-1082, doi: 10.1109/INFCOMW.2016.7562263.P. Bolliger, Robust Indoor Positioning through Adaptive Collaborative Labeling of Location Fingerprints, ETH Zurich, 2011. [Online]. Available: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/72799/eth-5267-02.pdf.J. Xiao, K. Wu, Y. Yi and L. M. Ni, FIFS: Fine-Grained Indoor Fingerprinting System, 2012 21st International Conference on Computer Communications and Networks (ICCCN), Munich, 2012, pp. 1-7, doi: 10.1109/ICCCN.2012.6289200Nguyen Dinh-Van, F. Nashashibi, Nguyen Thanh-Huong and E. Castelli, Indoor Intelligent Vehicle localization using WiFi received signal strength indicator, 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, 2017, pp. 33-36, doi: 10.1109/ICMIM.2017.7918849.Nissanka Bodhi Priyantha,The Cricket Indoor Location System. 2005.Medina, Carlos et al. Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy. Sensors (Basel, Switzerland) vol. 13,3. 2013, doi:10.3390/s130303501M. Addlesee et al., Implementing a sentient computing system, in Computer, vol. 34, no. 8, pp. 50-56, Aug. 2001, doi: 10.1109/2.940013.J. Eckert, F. Dressler and R. German, Real-time indoor localization support for four-rotor flying robots using sensor nodes, 2009 IEEE International Workshop on Robotic and Sensors Environments, Lecco, 2009, pp. 23-28, doi: 10.1109/ROSE.2009.5355994.S. Holm, Ultrasound positioning based on time-of-flight and signal strength, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-6, doi: 10.1109/IPIN.2012.6418728.S. Latif, R. Tariq, W. Haq and U. Hashmi, INDOOR POSITIONING SYSTEM using ultrasonics, Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, 2012, pp. 440-444, doi: 10.1109/IBCAST.2012.6177596.Sistema de localización en tiempo real WhereNet, Zebra Technologies. [Online]. Available: https://www.zebra.com/la/es/products/location-technologies/wherenet.html.J. Liu, S. Chen, M. Chen, Q. Xiao and L. Chen, Pose Sensing With a Single RFID Tag, in IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2023-2036, Oct. 2020, doi: 10.1109/TNET.2020.3007830.A. Harter and A. Hopper, A distributed location system for the active office, IEEE Network, vol. 8, (1), pp. 62-70, 1994. DOI: 10.1109/65.260080.Firefly by Cybernet Systems Corporation. [Online]. Available: https://www.cybernet.com/interactive/firefly/.E. Bernardes, S. Viollet and T. Raharijaona, A Three-Photo-Detector Optical Sensor Accurately Localizes a Mobile Robot Indoors by Using Two Infrared Light-Emitting Diodes, in IEEE Access, vol. 8, pp. 87490-87503, 2020, doi: 10.1109/ACCESS.2020.2992996.Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, Steven Shafer, EasyLiving: Technologies for intelligent environments, September. 2000.Y. Gu, A. Lo and I. Niemegeers, A survey of indoor positioning systems for wireless personal networks, in IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 13-32, First Quarter 2009, doi: 10.1109/SURV.2009.090103.Rohta, J., Perumal, B., Narayanan, S., Tharkur, P. and B, R. User Localization In An Indoor Environment Using Fuzzy Hybrid Of Particle Swarm Optimization And Gravitational Search Algorithm With Neural Networks. 2014. VIT University.Adege, A., Lin, H., Tarekegn, G., Munaye, Y. and Yen, L. An Indoor And Outdoor Positioning Using A Hybrid Of Support Vector Machine And Deep Neural Network Algorithms. 2018 .National Taipei University of Technology.P. Mohaghegh, D. Pravica, J. S. Botero-Valencia, A. Boegli and Y. Perriard, Application of a Low Frequency, Low Power Radio Frequency Positioning System for Real Time Indoor Positioning, 2020 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan, 2020, pp. 406-410, doi: 10.23919/ICEMS50442.2020.9291201.Z. Chen, M. I. AlHajri, M. Wu, N. T. Ali and R. M. Shubair, A Novel Real-Time Deep Learning Approach for Indoor Localization Based on RF Environment Identification, in IEEE Sensors Letters, vol. 4, no. 6, pp. 1-4, June 2020, Art no. 7002504, doi: 10.1109/LSENS.2020.2991145.H. Liu et al, Survey of wireless indoor positioning techniques and systems, IEEE Trans Syst Man Cybern Pt C Appl Rev, vol. 37, (6), pp. 1067-1080, 2007. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-36248934122doi=10.1109\%2fTSMCC.2007.905750partnerID=40;md5=24 54644b18133a464502dfc82efbb147. DOI: 10.1109/TSMCC.2007.905750.Ogata Katsuhiko, Modern Control Engineering, Fifth Edition. Editorial Pearson.Data Fusion For Improved TOA/TDOA Position Determination in Wireless Systems, VTechWorks, 2000. [Online]. Available: https://vtechworks.lib.vt.edu/bitstream/handle/10919/34723/Master4.pdf?sequen ce=1&isAllowed=y.R. Kaune, Accuracy studies for TDOA and TOA localization, 2012 15th International Conference on Information Fusion, Singapore, 2012, pp. 408-415.F. Zafari, A. Gkelias and K. K. Leung, A Survey of Indoor Localization Systems and Technologies, in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568-2599, thirdquarter 2019, doi: 10.1109/COMST.2019.2911558.C. Yang and H. Shao,WiFi-based indoor positioning, IEEE Communications Magazine, vol. 53, (3), pp. 150-157, 2015. DOI: 10.1109/MCOM.2015.7060497.F. Abdelhafeid and R. Penno, AoA Estimation Using an Array of Diversely Polarized Microstrip Antenna, NAECON 2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, 2018, pp. 611-617, doi: 10.1109/NAECON.2018.8556805.G. Cullen, K. Curran, J. Santos, G. Maguire and D. Bourne, CAPTURE Cooperatively applied positioning techniques utilizing range extensions, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, 2014, pp. 340-346, doi: 10.1109/IPIN.2014.7275501.Kaibi Zhang, Yangchuan Zhang and Subo Wan, Research of RSSI indoor ranging algorithm based on Gaussian - Kalman linear filtering, 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016, pp. 1628-1632, doi: 10.1109/IMCEC.2016.7867493.A. F. G. Ferreira et al, Localization and Positioning Systems for Emergency Responders: A Survey, IEEE Communications Surveys Tutorials, vol. 19, (4), pp. 2836-2870, 2017. DOI: 10.1109/COMST.2017.2703620E. García Polo, Técnicas de Localización en Redes Inalámbricas de Sensores, Departamento de Sistemas Informáticos (DSI). [Online]. Available:http://www.dsi.uclm.es/personal/EvaMariaGarcia/docs/2008-Curso%20Verano.pdfA. Noertjahyana, I. A. Wijayanto and J. Andjarwirawan, Development of Mobile Indoor Positioning System Application Using Android and Bluetooth Low Energy with Trilateration Method, 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), Denpasar, 2017, pp. 185-189, doi: 10.1109/ICSIIT.2017.64.E. Tudanca Capón, Estudio de un sistema de posicionamiento 3D de drones, 2019. [Online]. Available: http://hdl.handle.net/10017/39107.N. Alsindi, Z. Chaloupka and J. Aweya, Entropy-based location fingerprinting for WLAN systems, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, NSW, 2012, pp. 1-7, doi: 10.1109/IPIN.2012.6418895.Radio Versions Bluetooth Technology Website, Bluetooth Technology Website. [Online]. Available: https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/.M. Ji, J. Kim, J. Jeon and Y. Cho, Analysis of positioning accuracy corresponding to the number of BLE beacons in indoor positioning system, 2015 17th International Conference on Advanced Communication Technology (ICACT), Seoul, 2015, pp. 92-95, doi: 10.1109/ICACT.2015.7224764.H. Torii, S. Ibi and S. Sampei, Indoor Positioning and Tracking by Multi-Point Observations of BLE Beacon Signal, 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, 2018, pp. 1-5, doi: 10.1109/WPNC.2018.8555808.S. Subedi, G. Kwon, Seokjoo Shin, Suk-seung Hwang and Jae-Young Pyun, Beacon based indoor positioning system using weighted centroid localization approach, 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, 2016, pp. 1016-1019, doi: 10.1109/ICUFN.2016.7536951.Ross, John. Book of Wireless : A Painless Guide to Wi-Fi and Broadband Wireless, No Starch Press, Incorporated, 2008. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/bibliotecausta-ebooks/detail.action?docID=1137524.H. X. Jian and W. Hao, WIFI Indoor Location Optimization Method Based on Position Fingerprint Algorithm, 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA), Changsha, 2017, pp. 585-588, doi: 10.1109/ICSGEA.2017.123.F. Davila, L. Barros, J. Reynolds, A. Lewis and I. Mogollón, El ultrasonido: desde el murciélago hasta la cardiología no invasivaUltrasound: from bats to non-invasive cardiology, sciencedirect, 2016, doi: 10.1016/j.rccar.2016.05.010ultrasonido Diccionario de la lengua española, Diccionario de la lengua española - Edición del Tricentenario. [Online]. Available: https://dle.rae.es/ultrasonido?m=30_2.Resonancia en columnas de aire, Universidad Católica del Norte. [Online]. Available: http://www.fisica.ucn.cl/wp-content/uploads/2017/09/GL6-RESONANCIA-EN-COLUMNAS-DE-AIRE.pdf.A. Vargas, L. Amescua-Guerra, M. Bernal and C. Pineda, Principios físicos básicos del ultrasonido, sonoanatomía del sistema musculoesquelético y artefactos ecográficos, 2008. [Online]. Available: https://www.medigraphic.com/pdfs/ortope/or-2008/or086e.pdf.J. Sáez Cardador, Medidor de distancia por ultrasonidos, Universidad Carlos III de Madrid, 2006. [Online]. Available: http://hdl.handle.net/10016/9052.PIC12F509 Data Sheet. 2004. [Online]. Available: https://pdf1.alldatasheet.com/datasheet-pdf/view/105920/MICROCHIP/PIC12F5-09.html433 MHz RF Receiver Module, Components101, 2018. [Online]. Available: https://components101.com/433-mhz-rf-receiver-module.ARM Cortex M3 STM32F103C8T6, microcontrollerelectronics. [Online]. Available: https://microcontrollerelectronics.com/arm-cortex-m3-stm32f103c8t6/Tarjeta de Desarrollo STM32F103C8T6 ARM Cortex-M3 STM32, electronilab. [Online]. Available: https://electronilab.co/tienda/tarjeta-de-desarollo-stm32f103c8t6-arm-cortex-m3-stm32/.¿Qué es XBee? XBee.cl - Comunicación Inalámbrica para Tus Proyectos, DIGI. [Online]. Available: https://xbee.cl/que-es-xbee/.DIGI XBee, mouser. [Online]. Available: https://www.mouser.es/new/digi-international/digi-xbee-s2c-rf-modules/C. Rimoldi and L. Mundo, ENSAYO NO DESTRUCTIVO POR MÉTODO DE ULTRASONIDO. [Online]. Available: http://www.aero.ing.unlp.edu.ar/catedras/archivos/Apunte%20Ultrasonido%202012.pdfORIGINAL2021stefhannyaforero.pdf2021stefhannyaforero.pdfapplication/pdf29134821https://repository.usta.edu.co/bitstream/11634/33179/1/2021stefhannyaforero.pdf9212b461fdfb0a3a0ccdabaa71cd6368MD51open accessCartaAutorizacion2021ForeroStefhannyaTorresJuan .pdfCartaAutorizacion2021ForeroStefhannyaTorresJuan .pdfCarta autorizaciónapplication/pdf323560https://repository.usta.edu.co/bitstream/11634/33179/2/CartaAutorizacion2021ForeroStefhannyaTorresJuan%20.pdf199475191d68a94c70736f12323c0f61MD52metadata only accessCarta_aprobacion_Biblioteca. Torres Laguado y Forero Gallego.pdfCarta_aprobacion_Biblioteca. Torres Laguado y Forero Gallego.pdfCarta aprobación bibliotecaapplication/pdf132974https://repository.usta.edu.co/bitstream/11634/33179/3/Carta_aprobacion_Biblioteca.%20Torres%20Laguado%20y%20Forero%20Gallego.pdf2471ff9bb1caf5d6618cc00d9fe255a8MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/33179/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/33179/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2021stefhannyaforero.pdf.jpg2021stefhannyaforero.pdf.jpgIM Thumbnailimage/jpeg5369https://repository.usta.edu.co/bitstream/11634/33179/6/2021stefhannyaforero.pdf.jpg3886256874604f45431bdb3098924da4MD56open accessCartaAutorizacion2021ForeroStefhannyaTorresJuan .pdf.jpgCartaAutorizacion2021ForeroStefhannyaTorresJuan .pdf.jpgIM Thumbnailimage/jpeg7805https://repository.usta.edu.co/bitstream/11634/33179/7/CartaAutorizacion2021ForeroStefhannyaTorresJuan%20.pdf.jpgda5e1312a0a9df5d7b1bb605f270d727MD57open accessCarta_aprobacion_Biblioteca. Torres Laguado y Forero Gallego.pdf.jpgCarta_aprobacion_Biblioteca. Torres Laguado y Forero Gallego.pdf.jpgIM Thumbnailimage/jpeg6293https://repository.usta.edu.co/bitstream/11634/33179/8/Carta_aprobacion_Biblioteca.%20Torres%20Laguado%20y%20Forero%20Gallego.pdf.jpg1cb0f13080bbdd79c49a9b8b41774112MD58open access11634/33179oai:repository.usta.edu.co:11634/331792022-11-27 03:10:47.215open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K