Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.)
ilustraciones, mapas, graficas, fotografias
- Autores:
-
Salcedo Mendoza, Jairo G.
Contreras Lozano, Karen P.
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Sucre
- Repositorio:
- Repositorio Unisucre
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unisucre.edu.co:001/1101
- Acceso en línea:
- https://repositorio.unisucre.edu.co/handle/001/1101
- Palabra clave:
- Almidón
Almidón de Yuca
Almidón de Ñame
- Rights
- openAccess
- License
- Universidad de Sucre, 2021
id |
RUNISUCRE2_cada75bad8f522ddf53eff60c60e5f25 |
---|---|
oai_identifier_str |
oai:repositorio.unisucre.edu.co:001/1101 |
network_acronym_str |
RUNISUCRE2 |
network_name_str |
Repositorio Unisucre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.) |
title |
Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.) |
spellingShingle |
Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.) Almidón Almidón de Yuca Almidón de Ñame |
title_short |
Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.) |
title_full |
Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.) |
title_fullStr |
Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.) |
title_full_unstemmed |
Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.) |
title_sort |
Agroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.) |
dc.creator.fl_str_mv |
Salcedo Mendoza, Jairo G. Contreras Lozano, Karen P. |
dc.contributor.author.none.fl_str_mv |
Salcedo Mendoza, Jairo G. Contreras Lozano, Karen P. |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad de Sucre |
dc.subject.lemb.none.fl_str_mv |
Almidón Almidón de Yuca Almidón de Ñame |
topic |
Almidón Almidón de Yuca Almidón de Ñame |
description |
ilustraciones, mapas, graficas, fotografias |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2021-10-12T20:21:52Z |
dc.date.available.none.fl_str_mv |
2021-10-12T20:21:52Z |
dc.type.spa.fl_str_mv |
Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/book |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
format |
http://purl.org/coar/resource_type/c_2f33 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unisucre.edu.co/handle/001/1101 |
url |
https://repositorio.unisucre.edu.co/handle/001/1101 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, et al. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydrate Polymers, 86(4), 1468-75. Aburto J, Alric I, Thiebaud S, Borredon E, Bikiaris D, Prinos J, et al. (1999). Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. Journal of Applied Polymer Science, 74(6), 1440-51. Adebowale, A.R., Sanni, L., Awonorin, S., Isaac, D. & Kuye, A. (2007). Effect of cassava varieties on the sorption isotherm of tapioca grits. International Journal in Food Science and Technology, 42, 448-452. Aghbashlo, M., Kianmehr, M. H., Khani, S., & Ghasemi, M. (2009). Mathematical modelling of thin-layer drying of carrot. Polish Academy of Sciences Journal, 23, 313–317. Aguerre, R. J., Suarez, C. & Viollaz, P. E. (1989). New BET type multiplayer sorption isotherms. Part II: modelling water sorption in foods. Lebensmittel-Wissenschaft & Technologie, 22, 192–195. Ajala, A. S., Aboiye, A. O., Popoola, J. O., & Adeyanju, J. A. (2012). Drying Characteristics and Mathematical Modelling of Cassava Chips. Chemical and Process Engineering Research, 4, 1–9. Ajala, A. S., Falade, K. O. & Tunde- Akintunde, T. Y. (2011). Effect of osmotic pretreatment on the drying kinetics of okra (Hibiscus ecsulentus). Journal of Engineering and Technology, 6, 41– 44. Akpinar, E., Bicer, Y. & Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59, 99–104. Alarcón, F. & Dominique, D. (1998). Almidón agrio de yuca en Colombia. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT). Alemdar A. & Sain M. (2008). Isolation and characterization of nanofibers from agricultural residues– Wheat straw and soy hulls. Bioresource Technology, 99, 1664-71. Al-Muhtaseb, A.H., McMinn, W.A.M. & Magee, T.R.A. (2004). Water sorption isotherms of starch powders. Part 1: mathematical description of experimental data. Journal of Food Engineering, 61, 297–307. Alves, A.A.C. (2002). Cassava: Biology, Production and Utilization. Wallingford, UK: CABI Publishing. American Society of Agricultural Engineers ASAE. (1995). Standard D245.5: Moisture relationship of plant-based agricultural products. Michigan, USA: ASAE. Association of Official Analytical Chemists. (2004). Official Method of Analysis (12a ed.). Washington D.C., USA: AOAC International. Association of Official Analytical Chemists. (2012). Official Method of Analysis (19a ed.). Washington D.C., USA: AOAC International. Arroyo, K. (2008). Biocompósitos de almidón termoplástico con microfibras de celulosa. (Tesis inédita de Maestría). Instituto politécnico nacional, Altamira, España. Ayala, A. (2011). Estimación de las isotermas de adsorción del calor isostérico en harina de yuca. Biotecnología en el sector agropecuario y agroindustrial, 9, 88-96. Babalis, S. J. & Belessiotis, V. G. (2004). Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, 65, 449–458. Bussolo, C., Roeselers, G., Troost, F. & Jonkers, D. (2014). Prebiotic effects of cassava bagasse in TNO's in vitro model of the colon in lean versus. Journal of Functional Foods, 11, 210–220. Caraballo, L. & Velasquez, E. (2000). Respuesta de tres cultivares de yuca a diferentes condiciones hídricas y fechas de cosecha. Agronomía Tropical, 50, 267 - 284. Carranza, J. & Sánchez, M. (2002). Cinética de secado de Musa paradisiaca L. “Plátano” Y Manihot esculenta Crantz “Yuca”. Revista Amazónica de Investigación Alimentaria, 2, 15 – 25. Carta, F., Soccol, C., Ramos, L. & Fontana, J. (1999). Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresource Technology, 68, 23-28. Caurie, M. (1970). A new model equation for predicting safe storage moisture levels for optimum stability of dehydrated foods. Journal of Food Technology, 5, 301-307. Ceballos, H. & Ospina, B. (Comps.). (2002). La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización. Cali, Colombia: Centro de Internacional de Agricultura Tropical (CIAT). Cereda, M. (1994). Resíduos da Industialização da mandioca no Brasil. São Paulo, Brasil: Editora Paulicéia. Chará, J. D. (1992). Niveles de mancha y afrecho de yuca (Manihot esculenta) como fuente energética en la dieta de patos pekín (Anas platyrhyinchos). Livestock Research for Rural Development, 4, 1-2. Chen, X. D. (2007). Moisture diffusivity in food and biological materials. Drying Technology, 25, 1203–1213. Chen, Y., Huang, S., Tanga, Z., Chen, X. & Zhang, Z. (2011). Structural changes of cassava starch granules hydrolyzed by a mixture of á-amylase and glucoamylase. Carbohydrate Polymers, 85, 272–275. Chen, D., Zheng, Y. & Zhu, X. (2013). In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, 131, 40–46. Chirife, J., Timmermann, O., Iglesias, H.A. & Boquet, R. (1992). Some features of the parameter K on the GAB equation as applied to sorption isotherms of selected food materials. Journal of Food Engineering, 15, 75-82. Chung, D. S. & Pfost, H. B. (1967). Adsorption and desorption of water vapour by cereal grains and their products. Part II: Development of the general isotherm equation. Transactions of the ASAE, 10, 549–557. Cock, J. (1989). La yuca, nuevo potencial para un cultivo tradicional. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT). Corzo, O., Bracho, N., Pereira, A. & Vásquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. LWT- Food Science and Technology, 41, 2023–2028. Costa, F. J., Almeida, R.R., Lacerda, l. G., Carvalho-filho, M. A. S., Bannach, G. & Schnitzler, E. (2011). Thermoanalytical study of native cassava starch and treated with hydrogen peroxide. Alimentos e Nutrição Araraquara, 22, 7-15. Cova, A., Sandoval, A.J., Balsamo, V. & Müller, A.J. (2010). The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohydrate Polymers, 81, 660–667. Debiagi, F., Kobayashi, R.K.T., Nakazato, G., Panagio, L.A. & Malia, S. (2014). Biodegradable active packaging based on cassava bagasse, polyvinylalcohol and essential oils. Industrial Crops and Products, 52, 664– 670. Defraeye, T. (2014). Advanced computational modelling for drying processes – A review. Applied Energy, 131, 323–344. Derossi, A., Severini, C. & Cassi, D. (2011). Advances topics in mass transfer. Rijeka, Croacia: InTech. Divya, M.P., Padmaja, P. & Moorthy, S.N. (2011). Biodegradation of cassava starch factory residue using a combination of cellulases, xylanases and hemicellulases. Biomass and Bioenergy, 35, 1211-1218. Erbay, Z. & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50, 441–464. Ertekin, C. & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349–359. Falade, K., Olurin, T., Ike, E. & Aworh, O. (2007). Effec of pretreatment and temperature on air-Drying of Discorea alata and Discorea rotundata slices. Journal of Food Engineering, 80, 1002– 1020. Farias FO, Jasko AC, Colman TAD, Pinheiro LA, Schnitzler E, Barana AC, et al. (2014). Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene. Brazilian Archives of Biology and Technology, 57(6), 821-30. Faustino, J.M.F., Barroca, M.J. & Guiné, R.P.F. (2007). Study of the drying kinetics of green bell pepper and chemical characterization. Food and Bioproducts Processing, 85, 163–170. Fernando, W. J. N., Low, H. C. & Ahmad, A. L. (2011). Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. Journal of Food Engineering, 102, 310–316. Fito, P., Andrés, A., Barat, J. & Albors, A. (2001). Introducción al secado de alimentos por aire caliente. Valencia, España: Editorial U.P.V. Frost, K., Kaminski, D., Kirwan, G., Lascaris, E. & Shanks, R. (2009). Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydrate Polymers, 78, 543–548. Furmaniak S., Terzyk A., Golembiewski R., Gauden P. A. & Czepirski L. (2009). Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity. Food Research International, 42, 1203-1214. Gálvez, A., Aravena, Elena. & Mondaca, R. (2006). Isotermas de adsorción en harina de maíz (Zea mays L.). Ciência e Tecnologia de Alimentos, 26, 821-827. Geankoplis, C.J. (1998). Procesos de transporte y operaciones unitarias (3a ed.). Ciudad de México, México: Compañía editorial continental, S.A. Giraldo-Zuniga, A.D., Arévalo-Pinedo, A., Silva, A.F., Silva, P.F., Valdes-Serra, J.C. & de Menezes-Pavlak, M.C. (2010). Datos experimentales de la cinética del secado y del modelo matemático para pulpa de Cupuaçu (Theobroma grandiflorum) en rodajas. Ciência e Tecnologia de Alimentos, 30, 179–182. Halsey, G. (1948). Physical adsorption on non-uniform surfaces. The Journal of Chemical Physics, 16, 931–937. Henderson, S. M. (1952). A basic concept of equilibrium moisture. Agricultural Engineering, 33, 29–32. Hernández, C., Ossa, Z., Ramírez, L. & Herrera, W. (2011). Influencia del espesor y la temperatura en el secado de Carambola. Ingenierías & Amazonia, 4, 131–142. Iglesias, H. A. & Chirife, J. (1982). Handbook of food isotherms: Water sorption parameters for food and food components. New York, USA: Academic Press. International Organization for Standarization. (1987). ISO 6647: Determination de la teneur en amylose. Switzerland: ISO. Jayas, D. S. & Mazza, G. (1993). Comparison of five three-parameter equations for the description of adsorption data of oats. Transactions of the ASAE, 36, 119–125. John, R.P., Sukumaran, R.K., Nampoothiri, K.M. & Pandey, A. (2007). Statistical optimization of simultaneous sacchari?cation and l (+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochemical Engineering Journal, 36, 262–267. Jyothi, A., Sasikiran, K., Nambisan, B. & Balagopalan, B. (2005). Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochemistry, 40, 3576–3579. Khan, L.M. & Hannah, M.A. (1984). Expression of soy bean oil. Transactions of the ASAE, 27, 190–194. Krokida, M. K., Karathanos, V., Maroulis, Z. & Kouris, D. M. (2003). Drying kinetics of some vegetables. Journal of Food Engineering, 59, 391– 403. Kumar, C., Karim, A., Saha, S.C., Joardder, M.U.H., Brown, R.J. & Biswas, D. (2012; Diciembre) Multiphysics modelling of convective drying of food materials. Proceedings of the Global Engineering, Science and Technology Conference, Presentada en Global Institute of Science and Technology, Bangladesh. Kumar, C., Karim, M.A. & Joardder, M.U.H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48–57. Labuza, T.P. (1968). Sorption phenomena in foods. Journal of Food Technology, 23, 15–9. Lacerda, L.G, Ramires, Rafael., Mottin, I., Silva, M.A., Carvalho, E., Woiciechowski, A.L., Bannach, G., Schnitzler, E. & Soccol, C.R. (2009). Thermoanalytical and Starch Content Evaluation of Cassava Bagasse as Agro-Industrial Residue. Brazilian Archives of Biology and Technology, 52, 143-150. Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, et al. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 39(3), 514-22. Leonel, M. & Cabello, C. (2001). Hidrólise enzimática do farelo de mandioca: Glicose e Álcool. Culturas de Tuberosas Amiláceas Latinoamericanas, 4, 280-290. Leonel, M. & Cereda, M.P. (2000). Avaliação da celulase e pectinase como enzimas complementares, no processo de hidrólise-sacarificação do farelo de mandioca para produção de etanol. Ciência e Tecnologia de Alimentos, 19, 113-117. Lertworasirikul, S. (2008). Drying kinetics of semi-finished cassava crackers: A comparative study. LWT – Food Science and Technology, 41, 1360–1371. Lewicki, P.P. (1998). A three parameter equation for food moisture sorption isotherms. Journal of Food Process Engineering, 21, 127-144. Lu, C., Zhao, J., Yang, S. & Wei, D. (2012). Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a ?brous bed bioreactor with continuous gas stripping. Bioresource Technology, 104, 380–387. Madamba, P.S., Driscoll, R.H. & Buckle, K.A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75–97. Mandal A, Chakrabarty D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291-9. Marmolejo, L., Pérez, A., Torres, P., Cajigas, A., & Cruz, C. (2008). Aprovechamiento de los residuos sólidos generados en pequeñas industrias de almidón agrio de yuca. Livestock Research for Rural Development, 20. Recuperado de http://www.lrrd.org/lrrd20/7/marm20104.htm Matsui, K.N., Larotonda, F.D.S, Paes, S.S, Luiz, D.B., Pires, A.T.N & Laurindo, J.B. (2004). Cassava bagasse- Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydrate Polymers, 55, 237–243. McCabe, W., Smith, J. & Harriott, P. (1991). Operaciones unitarias en ingeniería química (4th ed). Madrid, España: McGraw-Hill Interamericana de España. Minea, V. (2013). Drying heat pumps e Part II: Agro-food, biological and wood products. International Journal of Refrigeration, 36, 659–673. Minoru, H.J., & Grossmann, M.V.E. (2003). Effects of extrusion conditions on quality of cassava bran/cassava starch extrudates. International Journal of Food Science & Technology, 38, 511–517. Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-428. Mohammadi, A., Rafiee, S., Keyhame, A. & Emam-Djomeh, Z. (2008). Estimation of Thin-layer Drying Characteristics of Kiwifruit (cv. Hayward) with Use of Page's Model. Journal of Agriculture and Environmental Sciences, 2, 802–805. Montes, E.J.M., Pizarro, R.T., Sierra, O.A.P., Escobar, J.L.M. & Herazo, I.I.M. (2008). Modelado de la cinética de secado de ñame (Dioscorea rotundata) en capa delgada. Revista Ingeniería e Investigación, 28, 45–52. Montes, E., Torres, R., Andrade, R., Perez, O., Marimon, J. & Meza, I. (2009). Modelado de las isotermas de desorción del ñame. Dyna, 76, 145-152. Mujumdar, A. (2006). Handbook of Industrial Drying (3a ed). Boca Raton FL, USA: CRC Press. Ocampo, A. (2006). Modelo cinético del secado de la pulpa de mango. Revista Escuela de Ingeniería de Antioquia EIA, 5, 93–28. Olomo, V. & Ajibola, O. (2003). Processing factors affecting the yield and physicochemical properties of starch from cassava chips and flour. Starch-Stärke, 55, 476-481. Ondier, G.O., Siebenmorgen, T.J., Bautista, R.C. & Mauromoustakos, A. (2011). Equilibrium moisture contents of pureline, hybrid, and parboiled rice. Transactions of the ASAE, 54, 1007-1013. Oswin, C. R. (1946). The kinetics of package life III. The isotherm. Journal of the Society of Chemical Industry, 65, 419–421. Oti-Boateng, P. & Axtell, B. (1998). Técnicas de Secado (2a ed). Lima, Perú: Intermediate Technology Development Group. Oyelade, O.J., Tunde-Akintunde, Y.T., Igbeka, J.C., Oke, M.O. & Raji, O.Y. (2008). Modelling moisture sorption isotherms for maize flour. Journal of Stored Products Research, 44, 179–185. Pandey, A., Soccol, C. R., Nigam, P., Soccol, V.T., Vandenberghe, L. P. & Mohan, R. (2000). Biotechnological potential of agro-industrial residues II: cassava bagasse. Bioresource Technology, 74, 81-87. Park, K., Vohnikova, Z. & Reisbros, F. (2002). Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Journal of Food Engineering, 51, 193–199. Pastrana, F., Alviz, H. & Salcedo, J. (2014). Respuesta de dos cultivares de yuca a la aplicación de riego en condiciones hídricas diferentes. Acta Agronómica, 64, 48 – 53. Pasquini, D.,Texeira, E., Da Silva, A., Belgacem, M. & Dufresne, A. (2010). Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Industrial Crops and Products, 32, 486–490. Peleg, M. (1993). Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal of Food Process Engineering, 16, 21–37. Peng, G., Chen, X., Wu, W. & Jiang, X. (2007). Modeling of water sorption isotherm for corn starch. Journal of Food Engineering, 80, 562–567. Perdomo, J., Cova, A., Sandoval, A.J., García, L., Laredo, E. & Müller, A.J. (2009). Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, 76, 305–313. Perry, R.H. & Green. D.W. (1997). Perry's chemical engineers' handbook (7a ed). New York, USA: McGraw- Hill Companies, Inc. Putranto, A. & Chen, X.D. (2015). An assessment on modeling drying processes: Equilibrium multiphase model and the patial reaction engineering approach (S-REA). Chemical Engineering Research and Design, 94, 660–672. Rodríguez, P., San Martín, M. E. & González, G. (2001). Calorimetría diferencial de barrido y rayos-x del almidón obtenido por nixtamalización fraccionada. Superficies y Vacío, 13, 61-65. Rosa M, Medeiros E, Malmonge J, Gregorski K, Wood D, Mattoso L, et al. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83-92. Rosales, J.M. & Tang, T. (1996). Composición química y digestibilidad de insumos alimenticios de la zona de Ucayali. Folia Amazónica, 8, 13-27. Ruiz-López, I. I., Ruiz-Espinosa, H., Arellanes-Lozada, P., Bárcenas-Pozos, M. E. & García-Alvarado, M. A. (2012). Analytical model for variable moisture diffusivity estimation and drying simulation of shrinkable food products. Journal of Food Engineering, 108, 427–435 . Salcedo-Mendoza, J., Mercado, J.L., Fernández, A., Vertel, M.L. & Ruiz, L.E. (2014). Cinética de secado de la yuca (Manihot esculenta Crantz) variedad Corpoica M-tai en función de la temperatura y de la velocidad de aire. Ion, 27, 29–42. Salcedo, J. & Montes, E. (2009). Producción de jarabes de fructosa por medio de la hidrólisis enzimática del almidón de yuca de las variedades corpoica m tai8 y corpoica orense. Dyna, 76, 121 – 130. Salcedo, J.G., Rios, J.M., Ferrer, A., López, J.E., Pardo, L.M. & Aiello, C. (2013). Efecto de pretratamientos deslignificantes sobre la cristalinidad, hidrólisis enzimática y ultraestructura de residuos de la cosecha de la caña de azúcar. Acta microscópica, 22, 142-151. Sandoval-Torres, S., Rodríguez-Ramírez, J., Méndez-Lagunas, L. & Sánchez-Ramírez, J. (2006). Rapidez de secado reducida: una aplicación al secado convectivo de platano Roatán. Revista Mexicana de Ingeniería Química, 5, 35-38. Sanni, L.O., Atere, C. & Kuye, A. (1997). Moisture sorption isotherms of fufu and tapioca at different temperatures. Journal of Food Engineering, 34, 203-212. Simat, S., Femenia, A., Garau, M.C., Femenia, A. & Roselló, C. (2005). Drying of red pepper (Capsicum Annuum): Water desorption and quality. International Journal of Food Engineering, 1, 1–13. Smith, S. E. (1947). The sorption of water vapour by high polymers. Journal of the American Chemical Society, 69, 646-651. Soccol, C.R. (1994). Contribuicao ao Estudo da Fermentacao no Estado Solido em Relacao com a Producao de Aácido Fumarico, Biotransformacao de Resíduo Sólido de Mandioca por Rhizopus e Basidiomacromicetos do Genero Pleurotus. (Tésis inédita de Profesor Tiular). Universidad Federal de Paraná, Curitiba, Brasil. Sriherwanto, C., Koob, C. & Bisping, B. (2009). Cassava bagasse fermented by Rhizopus spp. for potential use as animal feed. New Biotechnology, 25, 1-5. Sriroth, K., Chollakup, R., Chotineerana, S., Piyachomkwan, K. & Oates, C.G. (2000). Processing of cassava waste for improved biomass utilization. Bioresource Technology, 71, 63-69. Stertz, S.C. (1997) Bioconversao da Farinha de Mandioca Crua (Manihot Esculenta Crantz) por Fungos do Genero Rhizopus em Fermentacao no Estado Sólido (Tésis inédita de Maestría). Universidad Federal de Paraná, Curitiba. Suppakul, P., Chalernsook, B., Ratisuthawat, B., Prapasitthi, S. & Munchukangwan, N. (2013). Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing-antiplasticizing effects. LWT- Food Science and Technology, 50, 290-297. Teixeira, E.,Pasquini, D., Curvelo, A., Corradini, E., Belgacem, M. & Dufresne, A. (2009). Cassava bagasse cellulose nano?brils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78, 422–431. Texeira, E., Curvelo, A.A.S., Corrêa, A.C., Marconcini, J.M., Glenn, G.M. & Mattoso, L.H.C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Product, 37, 61– 68. Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying – a new model. Transactions of ASAE, 24, 582–586. Torregroza-Espinosa, A. M., Montes-Montes, E. J., Ávila-Gómez, A. E., & Remolina-López, J. F. (2014). Modelado de las cinéticas de secado de tres variedades de yuca industrial. DYNA, 81, 184–192. Torres, P., Cruz, C., Marmolejo, L., Cajigas, A. & Pérez, A. (2006). Producción Más Limpia aplicada al proceso de extracción de almidón de yuca. Cali, Colombia: Colciencias–Universidad del Valle. Vallejos, M., Curvelo, A., Teixeira, E., Mendes, F., Carvalho, A., Felissia, F. & Area, M. (2000). Composite materials of thermoplastic starch and ?bers from the ethanol–water fractionation of bagasse. Industrial Crops and Products, 33, 739–746. Van den Berg, C. & Bruin, S. (1981). Water activity, influence on food quality. New York, USA: Academic Press. Vandenberghe, L.P.S., Soccol, C.R., Lebeault, J.M. & Krieger, N. (1998). Cassava wastes hydrolysate an alternative carbon source for citric acid production by Candida lipolytica. Artículo presentado en el Congreso Internacional de BIotecnología, Portugal. Vasic, M., Grbavcic, Z. & Radojevic, Z. (2014). Determination of the moisture diffusivity coefficient andmathematical modeling of drying. Chemical Engineering and Processing, 76, 33– 44. Vega, A., Andres, A. & Fito, P. (2005). Modelado de la cinética de secado del pimiento rojo (Capsicumannuum L. cv Lamuyo). Información Tecnológica, 16, 3–11. Vega, A. & Lemus, R. (2003). Modelado de la cinética de secado de papaya chilena (Basconcellea pubescens). Información Teconológica, 17, 23–31. Vega, A., Uribe, E., Lemus, R. & Miranda, M. (2007). Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT- Food Science and Technology, 40, 1698–1707. Woiciechowski, A.L., Nitsche, A., Pandey, A. & Soccol, C.R. (2002). Acid and enzymatic hydrolysis to recovery reducing sugars from cassava bagasse: an economic study. Brazilian archives of biology and technology, 45, 393-400. Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456-480. |
dc.rights.spa.fl_str_mv |
Universidad de Sucre, 2021 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Universidad de Sucre, 2021 https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
284 páginas, |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Sucre, Colombia |
dc.publisher.spa.fl_str_mv |
Universidad de Sucre |
dc.publisher.place.spa.fl_str_mv |
Sincelejo, Colombia |
dc.source.spa.fl_str_mv |
Archivo Pdf |
institution |
Universidad de Sucre |
bitstream.url.fl_str_mv |
https://repositorio.unisucre.edu.co/bitstreams/f1fa9e16-b05a-4840-9624-5ebc11abd155/download https://repositorio.unisucre.edu.co/bitstreams/a2e7e4ec-ce17-41f2-91c3-ea336d846e5e/download https://repositorio.unisucre.edu.co/bitstreams/6a0aaf24-8eee-41c2-9bc1-1f7b99c5baa9/download https://repositorio.unisucre.edu.co/bitstreams/c5e2054d-ca96-4e74-89a7-548ab8eece62/download |
bitstream.checksum.fl_str_mv |
759187b87790493c8645f960378a8c7b 5f839364c91422e4b2a78812717048fb b167b79914792d48682d636b80d03fd9 8c4edd81e7336beab0cd93ce4a5222e6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Sucre |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814111975401062400 |
spelling |
Salcedo Mendoza, Jairo G.a559e9a130563ee161366aed485c1368Contreras Lozano, Karen P.54f6f1bac5e21ddffac25f39b68d4389600Universidad de Sucre2021-10-12T20:21:52Z2021-10-12T20:21:52Z2017https://repositorio.unisucre.edu.co/handle/001/1101ilustraciones, mapas, graficas, fotografiassta publicación es el resultado del proyecto de investigación “Desarrollo agroindustrial de los cultivos de yuca y ñame en el departamento de Sucre” realizado por el grupo de investigación “Procesos Agroindustriales y Desarrollo Sostenible (PADES)” de la Universidad de Sucre, con la participación de la Gobernación de Sucre y Almidones de Sucre S.A.S, y financiado por el Sistema General de Regalías (SGR). Se realizaron diversos estudios acerca de la caracterización, modificación y aplicaciones alimentarias de almidones derivados de yuca (Manihot esculenta Crantz), ñame (Dioscorea spp.) y batata (Ipomeas batatas); caracterización, deshidratación y aplicaciones del afrecho de yuca obtenido en un proceso industrial de extracción de almidón nativo; diseño de una planta multifuncional para la obtención de harinas, almidones y jarabes a partir de yuca, ñame y batata.Primera edición284 páginas,application/pdfspaUniversidad de SucreSincelejo, ColombiaUniversidad de Sucre, 2021https://creativecommons.org/licenses/by-nc/4.0/Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Archivo PdfAgroindustria de productos amiláceos I. Yuca (Manihot esculente Crantz) y ñame (Dioscorea spp.)Libroinfo:eu-repo/semantics/bookhttp://purl.org/coar/resource_type/c_2f33http://purl.org/coar/version/c_71e4c1898caa6e32AlmidónAlmidón de YucaAlmidón de ÑameAbraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, et al. (2011). Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydrate Polymers, 86(4), 1468-75. Aburto J, Alric I, Thiebaud S, Borredon E, Bikiaris D, Prinos J, et al. (1999). Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. Journal of Applied Polymer Science, 74(6), 1440-51. Adebowale, A.R., Sanni, L., Awonorin, S., Isaac, D. & Kuye, A. (2007). Effect of cassava varieties on the sorption isotherm of tapioca grits. International Journal in Food Science and Technology, 42, 448-452. Aghbashlo, M., Kianmehr, M. H., Khani, S., & Ghasemi, M. (2009). Mathematical modelling of thin-layer drying of carrot. Polish Academy of Sciences Journal, 23, 313–317. Aguerre, R. J., Suarez, C. & Viollaz, P. E. (1989). New BET type multiplayer sorption isotherms. Part II: modelling water sorption in foods. Lebensmittel-Wissenschaft & Technologie, 22, 192–195. Ajala, A. S., Aboiye, A. O., Popoola, J. O., & Adeyanju, J. A. (2012). Drying Characteristics and Mathematical Modelling of Cassava Chips. Chemical and Process Engineering Research, 4, 1–9. Ajala, A. S., Falade, K. O. & Tunde- Akintunde, T. Y. (2011). Effect of osmotic pretreatment on the drying kinetics of okra (Hibiscus ecsulentus). Journal of Engineering and Technology, 6, 41– 44. Akpinar, E., Bicer, Y. & Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59, 99–104. Alarcón, F. & Dominique, D. (1998). Almidón agrio de yuca en Colombia. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT). Alemdar A. & Sain M. (2008). Isolation and characterization of nanofibers from agricultural residues– Wheat straw and soy hulls. Bioresource Technology, 99, 1664-71. Al-Muhtaseb, A.H., McMinn, W.A.M. & Magee, T.R.A. (2004). Water sorption isotherms of starch powders. Part 1: mathematical description of experimental data. Journal of Food Engineering, 61, 297–307. Alves, A.A.C. (2002). Cassava: Biology, Production and Utilization. Wallingford, UK: CABI Publishing. American Society of Agricultural Engineers ASAE. (1995). Standard D245.5: Moisture relationship of plant-based agricultural products. Michigan, USA: ASAE. Association of Official Analytical Chemists. (2004). Official Method of Analysis (12a ed.). Washington D.C., USA: AOAC International. Association of Official Analytical Chemists. (2012). Official Method of Analysis (19a ed.). Washington D.C., USA: AOAC International. Arroyo, K. (2008). Biocompósitos de almidón termoplástico con microfibras de celulosa. (Tesis inédita de Maestría). Instituto politécnico nacional, Altamira, España. Ayala, A. (2011). Estimación de las isotermas de adsorción del calor isostérico en harina de yuca. Biotecnología en el sector agropecuario y agroindustrial, 9, 88-96. Babalis, S. J. & Belessiotis, V. G. (2004). Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, 65, 449–458. Bussolo, C., Roeselers, G., Troost, F. & Jonkers, D. (2014). Prebiotic effects of cassava bagasse in TNO's in vitro model of the colon in lean versus. Journal of Functional Foods, 11, 210–220. Caraballo, L. & Velasquez, E. (2000). Respuesta de tres cultivares de yuca a diferentes condiciones hídricas y fechas de cosecha. Agronomía Tropical, 50, 267 - 284. Carranza, J. & Sánchez, M. (2002). Cinética de secado de Musa paradisiaca L. “Plátano” Y Manihot esculenta Crantz “Yuca”. Revista Amazónica de Investigación Alimentaria, 2, 15 – 25. Carta, F., Soccol, C., Ramos, L. & Fontana, J. (1999). Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresource Technology, 68, 23-28. Caurie, M. (1970). A new model equation for predicting safe storage moisture levels for optimum stability of dehydrated foods. Journal of Food Technology, 5, 301-307. Ceballos, H. & Ospina, B. (Comps.). (2002). La yuca en el tercer milenio: Sistemas modernos de producción, procesamiento, utilización y comercialización. Cali, Colombia: Centro de Internacional de Agricultura Tropical (CIAT). Cereda, M. (1994). Resíduos da Industialização da mandioca no Brasil. São Paulo, Brasil: Editora Paulicéia. Chará, J. D. (1992). Niveles de mancha y afrecho de yuca (Manihot esculenta) como fuente energética en la dieta de patos pekín (Anas platyrhyinchos). Livestock Research for Rural Development, 4, 1-2. Chen, X. D. (2007). Moisture diffusivity in food and biological materials. Drying Technology, 25, 1203–1213. Chen, Y., Huang, S., Tanga, Z., Chen, X. & Zhang, Z. (2011). Structural changes of cassava starch granules hydrolyzed by a mixture of á-amylase and glucoamylase. Carbohydrate Polymers, 85, 272–275. Chen, D., Zheng, Y. & Zhu, X. (2013). In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, 131, 40–46. Chirife, J., Timmermann, O., Iglesias, H.A. & Boquet, R. (1992). Some features of the parameter K on the GAB equation as applied to sorption isotherms of selected food materials. Journal of Food Engineering, 15, 75-82. Chung, D. S. & Pfost, H. B. (1967). Adsorption and desorption of water vapour by cereal grains and their products. Part II: Development of the general isotherm equation. Transactions of the ASAE, 10, 549–557. Cock, J. (1989). La yuca, nuevo potencial para un cultivo tradicional. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT). Corzo, O., Bracho, N., Pereira, A. & Vásquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. LWT- Food Science and Technology, 41, 2023–2028. Costa, F. J., Almeida, R.R., Lacerda, l. G., Carvalho-filho, M. A. S., Bannach, G. & Schnitzler, E. (2011). Thermoanalytical study of native cassava starch and treated with hydrogen peroxide. Alimentos e Nutrição Araraquara, 22, 7-15. Cova, A., Sandoval, A.J., Balsamo, V. & Müller, A.J. (2010). The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohydrate Polymers, 81, 660–667. Debiagi, F., Kobayashi, R.K.T., Nakazato, G., Panagio, L.A. & Malia, S. (2014). Biodegradable active packaging based on cassava bagasse, polyvinylalcohol and essential oils. Industrial Crops and Products, 52, 664– 670. Defraeye, T. (2014). Advanced computational modelling for drying processes – A review. Applied Energy, 131, 323–344. Derossi, A., Severini, C. & Cassi, D. (2011). Advances topics in mass transfer. Rijeka, Croacia: InTech. Divya, M.P., Padmaja, P. & Moorthy, S.N. (2011). Biodegradation of cassava starch factory residue using a combination of cellulases, xylanases and hemicellulases. Biomass and Bioenergy, 35, 1211-1218. Erbay, Z. & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50, 441–464. Ertekin, C. & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349–359. Falade, K., Olurin, T., Ike, E. & Aworh, O. (2007). Effec of pretreatment and temperature on air-Drying of Discorea alata and Discorea rotundata slices. Journal of Food Engineering, 80, 1002– 1020. Farias FO, Jasko AC, Colman TAD, Pinheiro LA, Schnitzler E, Barana AC, et al. (2014). Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene. Brazilian Archives of Biology and Technology, 57(6), 821-30. Faustino, J.M.F., Barroca, M.J. & Guiné, R.P.F. (2007). Study of the drying kinetics of green bell pepper and chemical characterization. Food and Bioproducts Processing, 85, 163–170. Fernando, W. J. N., Low, H. C. & Ahmad, A. L. (2011). Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. Journal of Food Engineering, 102, 310–316. Fito, P., Andrés, A., Barat, J. & Albors, A. (2001). Introducción al secado de alimentos por aire caliente. Valencia, España: Editorial U.P.V. Frost, K., Kaminski, D., Kirwan, G., Lascaris, E. & Shanks, R. (2009). Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydrate Polymers, 78, 543–548. Furmaniak S., Terzyk A., Golembiewski R., Gauden P. A. & Czepirski L. (2009). Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity. Food Research International, 42, 1203-1214. Gálvez, A., Aravena, Elena. & Mondaca, R. (2006). Isotermas de adsorción en harina de maíz (Zea mays L.). Ciência e Tecnologia de Alimentos, 26, 821-827. Geankoplis, C.J. (1998). Procesos de transporte y operaciones unitarias (3a ed.). Ciudad de México, México: Compañía editorial continental, S.A. Giraldo-Zuniga, A.D., Arévalo-Pinedo, A., Silva, A.F., Silva, P.F., Valdes-Serra, J.C. & de Menezes-Pavlak, M.C. (2010). Datos experimentales de la cinética del secado y del modelo matemático para pulpa de Cupuaçu (Theobroma grandiflorum) en rodajas. Ciência e Tecnologia de Alimentos, 30, 179–182. Halsey, G. (1948). Physical adsorption on non-uniform surfaces. The Journal of Chemical Physics, 16, 931–937. Henderson, S. M. (1952). A basic concept of equilibrium moisture. Agricultural Engineering, 33, 29–32. Hernández, C., Ossa, Z., Ramírez, L. & Herrera, W. (2011). Influencia del espesor y la temperatura en el secado de Carambola. Ingenierías & Amazonia, 4, 131–142. Iglesias, H. A. & Chirife, J. (1982). Handbook of food isotherms: Water sorption parameters for food and food components. New York, USA: Academic Press. International Organization for Standarization. (1987). ISO 6647: Determination de la teneur en amylose. Switzerland: ISO. Jayas, D. S. & Mazza, G. (1993). Comparison of five three-parameter equations for the description of adsorption data of oats. Transactions of the ASAE, 36, 119–125. John, R.P., Sukumaran, R.K., Nampoothiri, K.M. & Pandey, A. (2007). Statistical optimization of simultaneous sacchari?cation and l (+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochemical Engineering Journal, 36, 262–267. Jyothi, A., Sasikiran, K., Nambisan, B. & Balagopalan, B. (2005). Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochemistry, 40, 3576–3579. Khan, L.M. & Hannah, M.A. (1984). Expression of soy bean oil. Transactions of the ASAE, 27, 190–194. Krokida, M. K., Karathanos, V., Maroulis, Z. & Kouris, D. M. (2003). Drying kinetics of some vegetables. Journal of Food Engineering, 59, 391– 403. Kumar, C., Karim, A., Saha, S.C., Joardder, M.U.H., Brown, R.J. & Biswas, D. (2012; Diciembre) Multiphysics modelling of convective drying of food materials. Proceedings of the Global Engineering, Science and Technology Conference, Presentada en Global Institute of Science and Technology, Bangladesh. Kumar, C., Karim, M.A. & Joardder, M.U.H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48–57. Labuza, T.P. (1968). Sorption phenomena in foods. Journal of Food Technology, 23, 15–9. Lacerda, L.G, Ramires, Rafael., Mottin, I., Silva, M.A., Carvalho, E., Woiciechowski, A.L., Bannach, G., Schnitzler, E. & Soccol, C.R. (2009). Thermoanalytical and Starch Content Evaluation of Cassava Bagasse as Agro-Industrial Residue. Brazilian Archives of Biology and Technology, 52, 143-150. Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, et al. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 39(3), 514-22. Leonel, M. & Cabello, C. (2001). Hidrólise enzimática do farelo de mandioca: Glicose e Álcool. Culturas de Tuberosas Amiláceas Latinoamericanas, 4, 280-290. Leonel, M. & Cereda, M.P. (2000). Avaliação da celulase e pectinase como enzimas complementares, no processo de hidrólise-sacarificação do farelo de mandioca para produção de etanol. Ciência e Tecnologia de Alimentos, 19, 113-117. Lertworasirikul, S. (2008). Drying kinetics of semi-finished cassava crackers: A comparative study. LWT – Food Science and Technology, 41, 1360–1371. Lewicki, P.P. (1998). A three parameter equation for food moisture sorption isotherms. Journal of Food Process Engineering, 21, 127-144. Lu, C., Zhao, J., Yang, S. & Wei, D. (2012). Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a ?brous bed bioreactor with continuous gas stripping. Bioresource Technology, 104, 380–387. Madamba, P.S., Driscoll, R.H. & Buckle, K.A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75–97. Mandal A, Chakrabarty D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291-9. Marmolejo, L., Pérez, A., Torres, P., Cajigas, A., & Cruz, C. (2008). Aprovechamiento de los residuos sólidos generados en pequeñas industrias de almidón agrio de yuca. Livestock Research for Rural Development, 20. Recuperado de http://www.lrrd.org/lrrd20/7/marm20104.htm Matsui, K.N., Larotonda, F.D.S, Paes, S.S, Luiz, D.B., Pires, A.T.N & Laurindo, J.B. (2004). Cassava bagasse- Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydrate Polymers, 55, 237–243. McCabe, W., Smith, J. & Harriott, P. (1991). Operaciones unitarias en ingeniería química (4th ed). Madrid, España: McGraw-Hill Interamericana de España. Minea, V. (2013). Drying heat pumps e Part II: Agro-food, biological and wood products. International Journal of Refrigeration, 36, 659–673. Minoru, H.J., & Grossmann, M.V.E. (2003). Effects of extrusion conditions on quality of cassava bran/cassava starch extrudates. International Journal of Food Science & Technology, 38, 511–517. Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-428. Mohammadi, A., Rafiee, S., Keyhame, A. & Emam-Djomeh, Z. (2008). Estimation of Thin-layer Drying Characteristics of Kiwifruit (cv. Hayward) with Use of Page's Model. Journal of Agriculture and Environmental Sciences, 2, 802–805. Montes, E.J.M., Pizarro, R.T., Sierra, O.A.P., Escobar, J.L.M. & Herazo, I.I.M. (2008). Modelado de la cinética de secado de ñame (Dioscorea rotundata) en capa delgada. Revista Ingeniería e Investigación, 28, 45–52. Montes, E., Torres, R., Andrade, R., Perez, O., Marimon, J. & Meza, I. (2009). Modelado de las isotermas de desorción del ñame. Dyna, 76, 145-152. Mujumdar, A. (2006). Handbook of Industrial Drying (3a ed). Boca Raton FL, USA: CRC Press. Ocampo, A. (2006). Modelo cinético del secado de la pulpa de mango. Revista Escuela de Ingeniería de Antioquia EIA, 5, 93–28. Olomo, V. & Ajibola, O. (2003). Processing factors affecting the yield and physicochemical properties of starch from cassava chips and flour. Starch-Stärke, 55, 476-481. Ondier, G.O., Siebenmorgen, T.J., Bautista, R.C. & Mauromoustakos, A. (2011). Equilibrium moisture contents of pureline, hybrid, and parboiled rice. Transactions of the ASAE, 54, 1007-1013. Oswin, C. R. (1946). The kinetics of package life III. The isotherm. Journal of the Society of Chemical Industry, 65, 419–421. Oti-Boateng, P. & Axtell, B. (1998). Técnicas de Secado (2a ed). Lima, Perú: Intermediate Technology Development Group. Oyelade, O.J., Tunde-Akintunde, Y.T., Igbeka, J.C., Oke, M.O. & Raji, O.Y. (2008). Modelling moisture sorption isotherms for maize flour. Journal of Stored Products Research, 44, 179–185. Pandey, A., Soccol, C. R., Nigam, P., Soccol, V.T., Vandenberghe, L. P. & Mohan, R. (2000). Biotechnological potential of agro-industrial residues II: cassava bagasse. Bioresource Technology, 74, 81-87. Park, K., Vohnikova, Z. & Reisbros, F. (2002). Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Journal of Food Engineering, 51, 193–199. Pastrana, F., Alviz, H. & Salcedo, J. (2014). Respuesta de dos cultivares de yuca a la aplicación de riego en condiciones hídricas diferentes. Acta Agronómica, 64, 48 – 53. Pasquini, D.,Texeira, E., Da Silva, A., Belgacem, M. & Dufresne, A. (2010). Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Industrial Crops and Products, 32, 486–490. Peleg, M. (1993). Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal of Food Process Engineering, 16, 21–37. Peng, G., Chen, X., Wu, W. & Jiang, X. (2007). Modeling of water sorption isotherm for corn starch. Journal of Food Engineering, 80, 562–567. Perdomo, J., Cova, A., Sandoval, A.J., García, L., Laredo, E. & Müller, A.J. (2009). Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, 76, 305–313. Perry, R.H. & Green. D.W. (1997). Perry's chemical engineers' handbook (7a ed). New York, USA: McGraw- Hill Companies, Inc. Putranto, A. & Chen, X.D. (2015). An assessment on modeling drying processes: Equilibrium multiphase model and the patial reaction engineering approach (S-REA). Chemical Engineering Research and Design, 94, 660–672. Rodríguez, P., San Martín, M. E. & González, G. (2001). Calorimetría diferencial de barrido y rayos-x del almidón obtenido por nixtamalización fraccionada. Superficies y Vacío, 13, 61-65. Rosa M, Medeiros E, Malmonge J, Gregorski K, Wood D, Mattoso L, et al. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83-92. Rosales, J.M. & Tang, T. (1996). Composición química y digestibilidad de insumos alimenticios de la zona de Ucayali. Folia Amazónica, 8, 13-27. Ruiz-López, I. I., Ruiz-Espinosa, H., Arellanes-Lozada, P., Bárcenas-Pozos, M. E. & García-Alvarado, M. A. (2012). Analytical model for variable moisture diffusivity estimation and drying simulation of shrinkable food products. Journal of Food Engineering, 108, 427–435 . Salcedo-Mendoza, J., Mercado, J.L., Fernández, A., Vertel, M.L. & Ruiz, L.E. (2014). Cinética de secado de la yuca (Manihot esculenta Crantz) variedad Corpoica M-tai en función de la temperatura y de la velocidad de aire. Ion, 27, 29–42. Salcedo, J. & Montes, E. (2009). Producción de jarabes de fructosa por medio de la hidrólisis enzimática del almidón de yuca de las variedades corpoica m tai8 y corpoica orense. Dyna, 76, 121 – 130. Salcedo, J.G., Rios, J.M., Ferrer, A., López, J.E., Pardo, L.M. & Aiello, C. (2013). Efecto de pretratamientos deslignificantes sobre la cristalinidad, hidrólisis enzimática y ultraestructura de residuos de la cosecha de la caña de azúcar. Acta microscópica, 22, 142-151. Sandoval-Torres, S., Rodríguez-Ramírez, J., Méndez-Lagunas, L. & Sánchez-Ramírez, J. (2006). Rapidez de secado reducida: una aplicación al secado convectivo de platano Roatán. Revista Mexicana de Ingeniería Química, 5, 35-38. Sanni, L.O., Atere, C. & Kuye, A. (1997). Moisture sorption isotherms of fufu and tapioca at different temperatures. Journal of Food Engineering, 34, 203-212. Simat, S., Femenia, A., Garau, M.C., Femenia, A. & Roselló, C. (2005). Drying of red pepper (Capsicum Annuum): Water desorption and quality. International Journal of Food Engineering, 1, 1–13. Smith, S. E. (1947). The sorption of water vapour by high polymers. Journal of the American Chemical Society, 69, 646-651. Soccol, C.R. (1994). Contribuicao ao Estudo da Fermentacao no Estado Solido em Relacao com a Producao de Aácido Fumarico, Biotransformacao de Resíduo Sólido de Mandioca por Rhizopus e Basidiomacromicetos do Genero Pleurotus. (Tésis inédita de Profesor Tiular). Universidad Federal de Paraná, Curitiba, Brasil. Sriherwanto, C., Koob, C. & Bisping, B. (2009). Cassava bagasse fermented by Rhizopus spp. for potential use as animal feed. New Biotechnology, 25, 1-5. Sriroth, K., Chollakup, R., Chotineerana, S., Piyachomkwan, K. & Oates, C.G. (2000). Processing of cassava waste for improved biomass utilization. Bioresource Technology, 71, 63-69. Stertz, S.C. (1997) Bioconversao da Farinha de Mandioca Crua (Manihot Esculenta Crantz) por Fungos do Genero Rhizopus em Fermentacao no Estado Sólido (Tésis inédita de Maestría). Universidad Federal de Paraná, Curitiba. Suppakul, P., Chalernsook, B., Ratisuthawat, B., Prapasitthi, S. & Munchukangwan, N. (2013). Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing-antiplasticizing effects. LWT- Food Science and Technology, 50, 290-297. Teixeira, E.,Pasquini, D., Curvelo, A., Corradini, E., Belgacem, M. & Dufresne, A. (2009). Cassava bagasse cellulose nano?brils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78, 422–431. Texeira, E., Curvelo, A.A.S., Corrêa, A.C., Marconcini, J.M., Glenn, G.M. & Mattoso, L.H.C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Product, 37, 61– 68. Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying – a new model. Transactions of ASAE, 24, 582–586. Torregroza-Espinosa, A. M., Montes-Montes, E. J., Ávila-Gómez, A. E., & Remolina-López, J. F. (2014). Modelado de las cinéticas de secado de tres variedades de yuca industrial. DYNA, 81, 184–192. Torres, P., Cruz, C., Marmolejo, L., Cajigas, A. & Pérez, A. (2006). Producción Más Limpia aplicada al proceso de extracción de almidón de yuca. Cali, Colombia: Colciencias–Universidad del Valle. Vallejos, M., Curvelo, A., Teixeira, E., Mendes, F., Carvalho, A., Felissia, F. & Area, M. (2000). Composite materials of thermoplastic starch and ?bers from the ethanol–water fractionation of bagasse. Industrial Crops and Products, 33, 739–746. Van den Berg, C. & Bruin, S. (1981). Water activity, influence on food quality. New York, USA: Academic Press. Vandenberghe, L.P.S., Soccol, C.R., Lebeault, J.M. & Krieger, N. (1998). Cassava wastes hydrolysate an alternative carbon source for citric acid production by Candida lipolytica. Artículo presentado en el Congreso Internacional de BIotecnología, Portugal. Vasic, M., Grbavcic, Z. & Radojevic, Z. (2014). Determination of the moisture diffusivity coefficient andmathematical modeling of drying. Chemical Engineering and Processing, 76, 33– 44. Vega, A., Andres, A. & Fito, P. (2005). Modelado de la cinética de secado del pimiento rojo (Capsicumannuum L. cv Lamuyo). Información Tecnológica, 16, 3–11. Vega, A. & Lemus, R. (2003). Modelado de la cinética de secado de papaya chilena (Basconcellea pubescens). Información Teconológica, 17, 23–31. Vega, A., Uribe, E., Lemus, R. & Miranda, M. (2007). Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT- Food Science and Technology, 40, 1698–1707. Woiciechowski, A.L., Nitsche, A., Pandey, A. & Soccol, C.R. (2002). Acid and enzymatic hydrolysis to recovery reducing sugars from cassava bagasse: an economic study. Brazilian archives of biology and technology, 45, 393-400. Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456-480.Sucre, ColombiaEspecializadaPublicationORIGINALAgroindustria de productos amiláceos I. Métodos y técnicas de caracterización.pdfAgroindustria de productos amiláceos I. Métodos y técnicas de caracterización.pdfEsta publicación es el resultado del proyecto de investigación “Desarrollo agroindustrial de los cultivos de yuca y ñame en el departamento de Sucre” realizado por el grupo de investigación “Procesos Agroindustriales y Desarrollo Sostenible (PADES)” de la Universidad de Sucre, con la participación de la Gobernación de Sucre y Almidones de Sucre S.A.S, y financiado por el Sistema General de Regalías (SGR). Se realizaron diversos estudios acerca de la caracterización, modificación y aplicaciones alimentarias de almidones derivados de yuca (Manihot esculenta Crantz), ñame (Dioscorea spp.) y batata (Ipomeas batatas); caracterización, deshidratación y aplicaciones del afrecho de yuca obtenido en un proceso industrial de extracción de almidón nativo; diseño de una planta multifuncional para la obtención de harinas, almidones y jarabes a partir de yuca, ñame y batataapplication/pdf12700379https://repositorio.unisucre.edu.co/bitstreams/f1fa9e16-b05a-4840-9624-5ebc11abd155/download759187b87790493c8645f960378a8c7bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81366https://repositorio.unisucre.edu.co/bitstreams/a2e7e4ec-ce17-41f2-91c3-ea336d846e5e/download5f839364c91422e4b2a78812717048fbMD52TEXTAgroindustria de productos amiláceos I. Métodos y técnicas de caracterización.pdf.txtAgroindustria de productos amiláceos I. Métodos y técnicas de caracterización.pdf.txtExtracted texttext/plain763620https://repositorio.unisucre.edu.co/bitstreams/6a0aaf24-8eee-41c2-9bc1-1f7b99c5baa9/downloadb167b79914792d48682d636b80d03fd9MD53THUMBNAILAgroindustria de productos amiláceos I. Métodos y técnicas de caracterización.pdf.jpgAgroindustria de productos amiláceos I. Métodos y técnicas de caracterización.pdf.jpgGenerated Thumbnailimage/jpeg5210https://repositorio.unisucre.edu.co/bitstreams/c5e2054d-ca96-4e74-89a7-548ab8eece62/download8c4edd81e7336beab0cd93ce4a5222e6MD54001/1101oai:repositorio.unisucre.edu.co:001/11012024-04-17 16:31:35.109https://creativecommons.org/licenses/by-nc/4.0/Universidad de Sucre, 2021open.accesshttps://repositorio.unisucre.edu.coRepositorio Institucional Universidad de Sucrebdigital@metabiblioteca.comYXV0b3Jpem8gYSBsYSBVTklWRVJTSURBRCBERSBTVUNSRSwgcGFyYToKCkkuCVF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIHkgdXNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGVkaWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKSUkuCUxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLCBlbGVjdHLDs25pY28sIGRpZ2l0YWwsIMOzcHRpY28sIHVzb3MgZW4gcmVkLCBJbnRlcm5ldCwgaW50cmFuZXQsIGV0Yy4sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgpJSUkuCUVMIEFVVE9SIOKAkyBBVVRPUkVTLCBtYW5pZmllc3RhbiBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBzdSBleGNsdXNpdmEgYXV0b3LDrWEgeSBkZXRlbnRhIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAgCgpJVi4JRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEVTVFVESUFOVEUg4oCTIEFVVE9SLCBhc3VtaXLDoSB0b2RhICBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhICBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7ICBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCg== |