Optimization of Enzyme-Assisted Extraction of Flavonoids from Corn Husks

Corn husks are an important byproduct of the corn processing industry. Although they are a rich source of bioactive compounds, especially flavonoids, corn husks are usually disposed of or used as animal feed. In this paper, we investigate their recovery by an enzyme-assisted extraction process consi...

Full description

Autores:
ZUORRO, Antonio
González-Delgado, Angel Darío
García-Martinez, Janet
Lavecchia, Roberto
L’Abbate, Pasqua
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
eng
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/510
Acceso en línea:
http://repositorio.ufps.edu.co/handle/ufps/510
Palabra clave:
flavonoids
corn husks
cellulase
Enzyme-assisted extraction
Waste valorization
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
Description
Summary:Corn husks are an important byproduct of the corn processing industry. Although they are a rich source of bioactive compounds, especially flavonoids, corn husks are usually disposed of or used as animal feed. In this paper, we investigate their recovery by an enzyme-assisted extraction process consisting of a pretreatment of the plant material with cellulase followed by solvent extraction with aqueous ethanol. A four-factor, three-level Box–Behnken design combined with the response surface methodology was used to optimize the enzyme dosage (0.3–0.5 g/100 g), incubation time (1.5–2.5 h), liquid-to-solid ratio (30–40 mL g^(-1) ) and ethanol concentration in the solvent (60–80% v/v). Under the optimal conditions, about 1.3 g of total flavonoids per 100 g of dry waste were recovered. A statistical analysis of the results was performed to provide a quantitative estimation of the influence of the four factors, alone or in combination, on the extraction yields. Overall, the results from this study indicate that corn husks are a valuable source of flavonoids and that they can be easily recovered by a sustainable and environmentally friendly extraction process.