Predicting student drop-out rates using data mining techniques: A case study
The prevention of students dropping out is considered very important in many educational institutions. In this paper we describe the results of an educational data analytics case study focused on detection of dropout of Systems Engineering (SE) undergraduate students after 6 years of enrollment in a...
- Autores:
-
PEREZ GUTIERREZ, BORIS RAINIERO
Castellanos, Camilo
Correal, Dario
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Francisco de Paula Santander
- Repositorio:
- Repositorio Digital UFPS
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.ufps.edu.co:ufps/1650
- Acceso en línea:
- http://repositorio.ufps.edu.co/handle/ufps/1650
https://doi.org/10.1007/978-3-030-03023-0_10
- Palabra clave:
- Student drop out
Student desertion prediction
Educational data mining
Prediction models
- Rights
- openAccess
- License
- © Springer Nature Switzerland AG 2018