Autoregressive modelling of chromatographic signals from urine samples for prostate cancer diagnosis

This article evaluates autoregressive modeling as a feature extraction method in a database of chromatographic signals from urine samples for non-invasive diagnostic support of prostate cancer in response to the research question: Can chromatographic signals from urine be characterized and used as a...

Full description

Autores:
Soto Vergel, Angelo Joseph
Medina Delgado, Byron
palacios alvarado, wlamyr
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
eng
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/6539
Acceso en línea:
https://repositorio.ufps.edu.co/handle/ufps/6539
Palabra clave:
Chromatography
Classification (of information)
Diagnosis
Diseases
Feature extraction
Noninvasive medical procedures
Signal processing
Urology
Auto regressive models
Autoregressive coefficient
Autoregressive modelling
Chromatographic signals
Feature extraction methods
Non-invasive diagnostics
Noninvasive methods
Research questions
Extraction
Rights
openAccess
License
Content from this work may be used under the terms of theCreative Commons Attribution 3.0 licence