Data analysis of thefts in the city of Medellin from a descriptive approach
This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the t...
- Autores:
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_6584
- Fecha de publicación:
- 2023
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/10407
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059
https://repositorio.uptc.edu.co/handle/001/10407
- Palabra clave:
- open data;
theft;
machine learning;
business intelligence
datos abiertos;
robo;
aprendizaje automático;
inteligencia de negocios
- Rights
- License
- Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovación
id |
REPOUPTC2_8e55431e07d1b00ac73c02d900f1df76 |
---|---|
oai_identifier_str |
oai:repositorio.uptc.edu.co:001/10407 |
network_acronym_str |
REPOUPTC2 |
network_name_str |
RiUPTC: Repositorio Institucional UPTC |
repository_id_str |
|
spelling |
2023-02-152024-07-05T18:04:15Z2024-07-05T18:04:15Zhttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/1605910.19053/20278306.v13.n1.2023.16059https://repositorio.uptc.edu.co/handle/001/10407This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the theft modality variable are analyzed. The results show that historically the second half of the year has the highest trend of incidences, where most thefts occur in public places 60% without the use of weapons. It is shown that due to the COVID pandemic, historical trends showed significant changes, but once the restrictions were lifted, they resumed the trends of increases in thefts in pre-pandemic conditions. It is concluded that the use of open data analisys gives information to improve the decision-making of the citizensEste artículo tiene por objetivo identificar las tendencias y patrones de hurto en la ciudad de Medellín en el periodo 2014-2020, usando datos abiertos de gobierno. Se utiliza como metodología la inteligencia de negocios para el análisis de datos descriptivo. Se analizan variables como barrios, modalidades, tipo de hurto y se realiza la predicción de la variable modalidad de hurto. Los resultados muestran que históricamente el segundo semestre del año tiene la mayor tendencia de incidencias, donde la mayoría de robos suceden en los lugares públicos con un 60% sin el uso de armas. Se identificó que, debido a la pandemia de COVID, las tendencias históricas presentaron alteraciones notables, pero una vez levantadas las restricciones, estas retomaron las tendencias de alzas en robos en las condiciones de prepandemia. Se concluye que el análisis de datos abiertos brinda información relevante para la toma de decisiones de los ciudadanosapplication/pdftext/xmlspaspaUniversidad Pedagógica y Tecnológica de Colombiahttps://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13097https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13561Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovaciónhttp://purl.org/coar/access_right/c_abf85http://purl.org/coar/access_right/c_abf2Revista de Investigación, Desarrollo e Innovación; Vol. 13 No. 1 (2023): Enero-Junio; 173-184Revista de Investigación, Desarrollo e Innovación; Vol. 13 Núm. 1 (2023): Enero-Junio; 173-1842389-94172027-8306open data;theft;machine learning;business intelligencedatos abiertos;robo;aprendizaje automático;inteligencia de negociosData analysis of thefts in the city of Medellin from a descriptive approachAnálisis de datos sobre los hurtos en la ciudad de Medellín desde un enfoque descriptivoinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6584http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a168http://purl.org/coar/version/c_970fb48d4fbd8a85Maestre-Gongora, GinaAcuña-Castellanos, Camilo AndrésLondoño-Bedoya, EdwarGarcía-García, Sergio001/10407oai:repositorio.uptc.edu.co:001/104072025-07-18 11:51:10.173metadata.onlyhttps://repositorio.uptc.edu.coRepositorio Institucional UPTCrepositorio.uptc@uptc.edu.co |
dc.title.en-US.fl_str_mv |
Data analysis of thefts in the city of Medellin from a descriptive approach |
dc.title.es-ES.fl_str_mv |
Análisis de datos sobre los hurtos en la ciudad de Medellín desde un enfoque descriptivo |
title |
Data analysis of thefts in the city of Medellin from a descriptive approach |
spellingShingle |
Data analysis of thefts in the city of Medellin from a descriptive approach open data; theft; machine learning; business intelligence datos abiertos; robo; aprendizaje automático; inteligencia de negocios |
title_short |
Data analysis of thefts in the city of Medellin from a descriptive approach |
title_full |
Data analysis of thefts in the city of Medellin from a descriptive approach |
title_fullStr |
Data analysis of thefts in the city of Medellin from a descriptive approach |
title_full_unstemmed |
Data analysis of thefts in the city of Medellin from a descriptive approach |
title_sort |
Data analysis of thefts in the city of Medellin from a descriptive approach |
dc.subject.en-US.fl_str_mv |
open data; theft; machine learning; business intelligence |
topic |
open data; theft; machine learning; business intelligence datos abiertos; robo; aprendizaje automático; inteligencia de negocios |
dc.subject.es-ES.fl_str_mv |
datos abiertos; robo; aprendizaje automático; inteligencia de negocios |
description |
This article aims to identify trends and patterns of theft in the city of Medellin in the period 2014-2020, using open government data. The methodology used is business intelligence for descriptive data analysis. Variables such as neighborhoods, modalities, type of theft, and the prediction of the theft modality variable are analyzed. The results show that historically the second half of the year has the highest trend of incidences, where most thefts occur in public places 60% without the use of weapons. It is shown that due to the COVID pandemic, historical trends showed significant changes, but once the restrictions were lifted, they resumed the trends of increases in thefts in pre-pandemic conditions. It is concluded that the use of open data analisys gives information to improve the decision-making of the citizens |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-07-05T18:04:15Z |
dc.date.available.none.fl_str_mv |
2024-07-05T18:04:15Z |
dc.date.none.fl_str_mv |
2023-02-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6584 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a168 |
format |
http://purl.org/coar/resource_type/c_6584 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059 10.19053/20278306.v13.n1.2023.16059 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uptc.edu.co/handle/001/10407 |
url |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059 https://repositorio.uptc.edu.co/handle/001/10407 |
identifier_str_mv |
10.19053/20278306.v13.n1.2023.16059 |
dc.language.none.fl_str_mv |
spa |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13097 https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/16059/13561 |
dc.rights.es-ES.fl_str_mv |
Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovación |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf85 |
rights_invalid_str_mv |
Derechos de autor 2023 Revista de Investigación, Desarrollo e Innovación http://purl.org/coar/access_right/c_abf85 http://purl.org/coar/access_right/c_abf2 |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.es-ES.fl_str_mv |
Universidad Pedagógica y Tecnológica de Colombia |
dc.source.en-US.fl_str_mv |
Revista de Investigación, Desarrollo e Innovación; Vol. 13 No. 1 (2023): Enero-Junio; 173-184 |
dc.source.es-ES.fl_str_mv |
Revista de Investigación, Desarrollo e Innovación; Vol. 13 Núm. 1 (2023): Enero-Junio; 173-184 |
dc.source.none.fl_str_mv |
2389-9417 2027-8306 |
institution |
Universidad Pedagógica y Tecnológica de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional UPTC |
repository.mail.fl_str_mv |
repositorio.uptc@uptc.edu.co |
_version_ |
1839633808187457536 |