Some homological properties of Jordan plane
The Jordan plane can be seen as a quotient algebra, as a graded Ore extension and as a graded skew PBW extension. Using these interpretations, it is proved that the Jordan plane is an Artin-Schelter regular algebra and a skew Calabi-Yau algebra, in addition its Nakayama automorphis...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Pedagógica y Tecnológica de Colombia
- Repositorio:
- RiUPTC: Repositorio Institucional UPTC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uptc.edu.co:001/15251
- Acceso en línea:
- https://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/8140
https://repositorio.uptc.edu.co/handle/001/15251
- Palabra clave:
- Plano de Jordan
álgebras Artin-Schelter regulares
álgebras Calabi-Yau torcidas
automorfismo de Nakayama
Álgebra
Jordan plane, Artin-Schelter regular algebras, skew Calabi-Yau algebras, Nakayama automorphism
- Rights
- License
- Derechos de autor 2018 CIENCIA EN DESARROLLO