Desarrollo de un modelo de estimación para la prevención de incendios forestales en Colombia

Este proyecto implementa y evalúa modelos predictivos para la estimación de incendios forestales mediante técnicas avanzadas de aprendizaje automático. Se compararon dos enfoques: un modelo de Random Forest y uno Bayesiano (Gaussian Naive Bayes). Para esta comparación, se integraron datos históricos...

Full description

Autores:
Anzola, Juan David
Fuentes, Luis Daniel
Rodríguez, Edilberto Mario
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad del Norte
Repositorio:
Repositorio Uninorte
Idioma:
spa
OAI Identifier:
oai:manglar.uninorte.edu.co:10584/11968
Acceso en línea:
http://hdl.handle.net/10584/11968
Palabra clave:
Predicción de Incendios Forestales, Aprendizaje Automático, Random Forest, Modelo Bayesiano, Validación Cruzada K-Fold, CRISP-DM, Datos Meteorológicos, Datos Topográficos, Datos Socioeconómicos, Prevención de Incendios
Forest Fire Prediction, Machine Learning, Random Forest, Bayesian Model Machine Learning, Random Forest, Bayesian Model, Cross Validation, K-Fold K-Fold Cross Validation, CRISP-DM, Meteorological Data, Topographical Data, Socioeconomic Data, Fire Topographical Data, Socio-economic Data, Fire Prevention
Rights
License
Universidad del Norte