Using a dynamic artificial neural network for forecasting the volatility of a financial time series.
The ability to obtain accurate volatility forecasts is an important issue for the financial analyst. In this paper, we use the DAN2 model, a multilayer perceptronand an ARCH model to predict the monthly conditional variance of stock prices.The results show that DAN2 model is more accurate for predic...
- Autores:
-
Velásquez, Juan D.
Gutiérrez, Sarah
Franco, Carlos J.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udem.edu.co:11407/962
- Acceso en línea:
- http://hdl.handle.net/11407/962
- Palabra clave:
- Volatility forecast
prediction
nonlinear models
heteroskedasticity
volatilidad (finanzas)
modelos no lineales
heterocedasticidad
- Rights
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
REPOUDEM2_fc469c0f29a2e64ab2945ffcdc9ba95e |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/962 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
spelling |
Velásquez, Juan D.Gutiérrez, SarahFranco, Carlos J.2014-10-22T23:26:11Z2014-10-22T23:26:11Z2013-06-301692-3324http://hdl.handle.net/11407/9622248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínThe ability to obtain accurate volatility forecasts is an important issue for the financial analyst. In this paper, we use the DAN2 model, a multilayer perceptronand an ARCH model to predict the monthly conditional variance of stock prices.The results show that DAN2 model is more accurate for predicting in-sample andout-of-sample variance that the other considered models for the used data set. Thus, the value of this neural network as a predictive tool is demonstrated.Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttp://revistas.udem.edu.co/index.php/ingenierias/article/view/637Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 12, núm. 22 (2013)2248-40941692-3324Volatility forecastpredictionnonlinear modelsheteroskedasticityvolatilidad (finanzas)modelos no linealesheterocedasticidadUsing a dynamic artificial neural network for forecasting the volatility of a financial time series.Articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínTHUMBNAILUsing a dynamic artificial neural network for forecasting the volatility of a financial time series..pdf.jpgUsing a dynamic artificial neural network for forecasting the volatility of a financial time series..pdf.jpgIM Thumbnailimage/jpeg6662http://repository.udem.edu.co/bitstream/11407/962/3/Using%20a%20dynamic%20artificial%20neural%20network%20for%20forecasting%20the%20volatility%20of%20a%20financial%20time%20series..pdf.jpg1c1ff823a710e99908a1ceb4956c98edMD53ORIGINALArticulo.htmltext/html574http://repository.udem.edu.co/bitstream/11407/962/1/Articulo.htmla89381039e84bda4f7e01e92e1569ba6MD51Using a dynamic artificial neural network for forecasting the volatility of a financial time series..pdfUsing a dynamic artificial neural network for forecasting the volatility of a financial time series..pdfTexto completoapplication/pdf287457http://repository.udem.edu.co/bitstream/11407/962/2/Using%20a%20dynamic%20artificial%20neural%20network%20for%20forecasting%20the%20volatility%20of%20a%20financial%20time%20series..pdf44431772a10df321e95d892338f1838bMD5211407/962oai:repository.udem.edu.co:11407/9622021-05-14 14:23:00.214Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |
dc.title.spa.fl_str_mv |
Using a dynamic artificial neural network for forecasting the volatility of a financial time series. |
title |
Using a dynamic artificial neural network for forecasting the volatility of a financial time series. |
spellingShingle |
Using a dynamic artificial neural network for forecasting the volatility of a financial time series. Volatility forecast prediction nonlinear models heteroskedasticity volatilidad (finanzas) modelos no lineales heterocedasticidad |
title_short |
Using a dynamic artificial neural network for forecasting the volatility of a financial time series. |
title_full |
Using a dynamic artificial neural network for forecasting the volatility of a financial time series. |
title_fullStr |
Using a dynamic artificial neural network for forecasting the volatility of a financial time series. |
title_full_unstemmed |
Using a dynamic artificial neural network for forecasting the volatility of a financial time series. |
title_sort |
Using a dynamic artificial neural network for forecasting the volatility of a financial time series. |
dc.creator.fl_str_mv |
Velásquez, Juan D. Gutiérrez, Sarah Franco, Carlos J. |
dc.contributor.author.none.fl_str_mv |
Velásquez, Juan D. Gutiérrez, Sarah Franco, Carlos J. |
dc.subject.spa.fl_str_mv |
Volatility forecast prediction nonlinear models heteroskedasticity volatilidad (finanzas) modelos no lineales heterocedasticidad |
topic |
Volatility forecast prediction nonlinear models heteroskedasticity volatilidad (finanzas) modelos no lineales heterocedasticidad |
description |
The ability to obtain accurate volatility forecasts is an important issue for the financial analyst. In this paper, we use the DAN2 model, a multilayer perceptronand an ARCH model to predict the monthly conditional variance of stock prices.The results show that DAN2 model is more accurate for predicting in-sample andout-of-sample variance that the other considered models for the used data set. Thus, the value of this neural network as a predictive tool is demonstrated. |
publishDate |
2013 |
dc.date.created.none.fl_str_mv |
2013-06-30 |
dc.date.accessioned.spa.fl_str_mv |
2014-10-22T23:26:11Z |
dc.date.available.spa.fl_str_mv |
2014-10-22T23:26:11Z |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
Artículo científico |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1692-3324 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/962 |
dc.identifier.eissn.none.fl_str_mv |
2248-4094 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.udem.edu.co/ |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
1692-3324 2248-4094 reponame:Repositorio Institucional Universidad de Medellín repourl:https://repository.udem.edu.co/ instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/962 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.uri.none.fl_str_mv |
http://revistas.udem.edu.co/index.php/ingenierias/article/view/637 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.creativecommons.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.medium.spa.fl_str_mv |
Electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Medellín |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.source.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín; Vol. 12, núm. 22 (2013) 2248-4094 1692-3324 |
institution |
Universidad de Medellín |
bitstream.url.fl_str_mv |
http://repository.udem.edu.co/bitstream/11407/962/3/Using%20a%20dynamic%20artificial%20neural%20network%20for%20forecasting%20the%20volatility%20of%20a%20financial%20time%20series..pdf.jpg http://repository.udem.edu.co/bitstream/11407/962/1/Articulo.html http://repository.udem.edu.co/bitstream/11407/962/2/Using%20a%20dynamic%20artificial%20neural%20network%20for%20forecasting%20the%20volatility%20of%20a%20financial%20time%20series..pdf |
bitstream.checksum.fl_str_mv |
1c1ff823a710e99908a1ceb4956c98ed a89381039e84bda4f7e01e92e1569ba6 44431772a10df321e95d892338f1838b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159192053776384 |