Using a dynamic artificial neural network for forecasting the volatility of a financial time series.

The ability to obtain accurate volatility forecasts is an important issue for the financial analyst. In this paper, we use the DAN2 model, a multilayer perceptronand an ARCH model to predict the monthly conditional variance of stock prices.The results show that DAN2 model is more accurate for predic...

Full description

Autores:
Velásquez, Juan D.
Gutiérrez, Sarah
Franco, Carlos J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/962
Acceso en línea:
http://hdl.handle.net/11407/962
Palabra clave:
Volatility forecast
prediction
nonlinear models
heteroskedasticity
volatilidad (finanzas)
modelos no lineales
heterocedasticidad
Rights
License
http://creativecommons.org/licenses/by-nc-sa/4.0/