Using a dynamic artificial neural network for forecasting the volatility of a financial time series.
The ability to obtain accurate volatility forecasts is an important issue for the financial analyst. In this paper, we use the DAN2 model, a multilayer perceptronand an ARCH model to predict the monthly conditional variance of stock prices.The results show that DAN2 model is more accurate for predic...
- Autores:
-
Velásquez, Juan D.
Gutiérrez, Sarah
Franco, Carlos J.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udem.edu.co:11407/962
- Acceso en línea:
- http://hdl.handle.net/11407/962
- Palabra clave:
- Volatility forecast
prediction
nonlinear models
heteroskedasticity
volatilidad (finanzas)
modelos no lineales
heterocedasticidad
- Rights
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/