A modified pseudospectral method for solving trajectory optimization problems with singular arc

This paper presents a direct method based on Legendre-Radau pseudospectral method for efficient and accurate solution of a class of singular optimal control problems. In this scheme, based on a priori knowledge of control, the problem is transformed to a multidomain formulation, in which the switchi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/3149
Acceso en línea:
http://hdl.handle.net/11407/3149
Palabra clave:
Feedback rule
Legendre-Gauss-Radau
Numerical solution
Pseudospectral method
Singular optimal control problem
Switching points
Nonlinear programming
Optimal control systems
Optimization
Problem solving
Legendre
Numerical solution
Pseudospectral methods
Singular optimal control
Switching points
Numerical methods
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_e7a97816fa1173ccb35478235c84dd2e
oai_identifier_str oai:repository.udem.edu.co:11407/3149
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
spelling 2017-05-12T16:05:56Z2017-05-12T16:05:56Z20161704214http://hdl.handle.net/11407/314910.1002/mma.4097This paper presents a direct method based on Legendre-Radau pseudospectral method for efficient and accurate solution of a class of singular optimal control problems. In this scheme, based on a priori knowledge of control, the problem is transformed to a multidomain formulation, in which the switching points appear as unknown parameters. Then, by utilizing Legendre-Radau pseudospectral method, a nonlinear programming problem is derived which can be solved by the well-developed parameter optimization algorithms. The main advantages of the present method are its superior accuracy and ability to capture the switching times. Accuracy and performance of the proposed method are examined by means of some numerical experiments. © 2016 John Wiley & Sons, Ltd.engJohn Wiley and Sons Ltdhttp://onlinelibrary.wiley.com/doi/10.1002/mma.4097/abstract;jsessionid=AEC9418C4AE57356C5FCABD4B08FDF81.f04t02Mathematical Methods in the Applied SciencesScopusFeedback ruleLegendre-Gauss-RadauNumerical solutionPseudospectral methodSingular optimal control problemSwitching pointsNonlinear programmingOptimal control systemsOptimizationProblem solvingLegendreNumerical solutionPseudospectral methodsSingular optimal controlSwitching pointsNumerical methodsA modified pseudospectral method for solving trajectory optimization problems with singular arcArticle in Pressinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecForoozandeh, Z., Department of Applied Mathematics, Faculty of Mathematics and Computer Science Amirkabir University of Technology No. 424, Hafez Ave. Tehran IranShamsi, M., Department of Applied Mathematics, Faculty of Mathematics and Computer Science Amirkabir University of Technology No. 424, Hafez Ave. Tehran IranAzhmyakov, V., Department of Basic Sciences Universidad de Medellin Medellin ColombiaShafiee, M., Department of Electerical Engineeing Amirkabir University of Technology No. 424, Hafez Ave. Tehran IranForoozandeh Z.Shamsi M.Azhmyakov V.Shafiee M.11407/3149oai:repository.udem.edu.co:11407/31492020-05-27 18:33:20.575Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co
dc.title.spa.fl_str_mv A modified pseudospectral method for solving trajectory optimization problems with singular arc
title A modified pseudospectral method for solving trajectory optimization problems with singular arc
spellingShingle A modified pseudospectral method for solving trajectory optimization problems with singular arc
Feedback rule
Legendre-Gauss-Radau
Numerical solution
Pseudospectral method
Singular optimal control problem
Switching points
Nonlinear programming
Optimal control systems
Optimization
Problem solving
Legendre
Numerical solution
Pseudospectral methods
Singular optimal control
Switching points
Numerical methods
title_short A modified pseudospectral method for solving trajectory optimization problems with singular arc
title_full A modified pseudospectral method for solving trajectory optimization problems with singular arc
title_fullStr A modified pseudospectral method for solving trajectory optimization problems with singular arc
title_full_unstemmed A modified pseudospectral method for solving trajectory optimization problems with singular arc
title_sort A modified pseudospectral method for solving trajectory optimization problems with singular arc
dc.contributor.affiliation.spa.fl_str_mv Foroozandeh, Z., Department of Applied Mathematics, Faculty of Mathematics and Computer Science Amirkabir University of Technology No. 424, Hafez Ave. Tehran Iran
Shamsi, M., Department of Applied Mathematics, Faculty of Mathematics and Computer Science Amirkabir University of Technology No. 424, Hafez Ave. Tehran Iran
Azhmyakov, V., Department of Basic Sciences Universidad de Medellin Medellin Colombia
Shafiee, M., Department of Electerical Engineeing Amirkabir University of Technology No. 424, Hafez Ave. Tehran Iran
dc.subject.spa.fl_str_mv Feedback rule
Legendre-Gauss-Radau
Numerical solution
Pseudospectral method
Singular optimal control problem
Switching points
topic Feedback rule
Legendre-Gauss-Radau
Numerical solution
Pseudospectral method
Singular optimal control problem
Switching points
Nonlinear programming
Optimal control systems
Optimization
Problem solving
Legendre
Numerical solution
Pseudospectral methods
Singular optimal control
Switching points
Numerical methods
dc.subject.keyword.eng.fl_str_mv Nonlinear programming
Optimal control systems
Optimization
Problem solving
Legendre
Numerical solution
Pseudospectral methods
Singular optimal control
Switching points
Numerical methods
description This paper presents a direct method based on Legendre-Radau pseudospectral method for efficient and accurate solution of a class of singular optimal control problems. In this scheme, based on a priori knowledge of control, the problem is transformed to a multidomain formulation, in which the switching points appear as unknown parameters. Then, by utilizing Legendre-Radau pseudospectral method, a nonlinear programming problem is derived which can be solved by the well-developed parameter optimization algorithms. The main advantages of the present method are its superior accuracy and ability to capture the switching times. Accuracy and performance of the proposed method are examined by means of some numerical experiments. © 2016 John Wiley & Sons, Ltd.
publishDate 2016
dc.date.created.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-05-12T16:05:56Z
dc.date.available.none.fl_str_mv 2017-05-12T16:05:56Z
dc.type.eng.fl_str_mv Article in Press
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 1704214
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/3149
dc.identifier.doi.none.fl_str_mv 10.1002/mma.4097
identifier_str_mv 1704214
10.1002/mma.4097
url http://hdl.handle.net/11407/3149
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv http://onlinelibrary.wiley.com/doi/10.1002/mma.4097/abstract;jsessionid=AEC9418C4AE57356C5FCABD4B08FDF81.f04t02
dc.relation.ispartofes.spa.fl_str_mv Mathematical Methods in the Applied Sciences
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv John Wiley and Sons Ltd
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159230247108608