A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB)...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5906
- Acceso en línea:
- http://hdl.handle.net/11407/5906
- Palabra clave:
- Ac2SGL
CD1b
endogenous spacer
Mycobacterium tuberculosis
scTCR
sulfoglycolipids
amino acid
CD1b antigen
glucose
glucose monomycolate
Mycobacterium antigen
sulfuric acid
T lymphocyte receptor
unclassified drug
Article
crystal structure
enzyme linked immunosorbent assay
human
hypothesis
light chain
molecular docking
Mycobacterium tuberculosis
protein lipid interaction
protein structure
T lymphocyte
tuberculosis
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_c32cb8dea8325aa07c1c5a86c33010a4 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5906 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors |
title |
A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors |
spellingShingle |
A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors Ac2SGL CD1b endogenous spacer Mycobacterium tuberculosis scTCR sulfoglycolipids amino acid CD1b antigen glucose glucose monomycolate Mycobacterium antigen sulfuric acid T lymphocyte receptor unclassified drug Article crystal structure enzyme linked immunosorbent assay human hypothesis light chain molecular docking Mycobacterium tuberculosis protein lipid interaction protein structure T lymphocyte tuberculosis |
title_short |
A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors |
title_full |
A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors |
title_fullStr |
A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors |
title_full_unstemmed |
A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors |
title_sort |
A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors |
dc.subject.spa.fl_str_mv |
Ac2SGL CD1b endogenous spacer Mycobacterium tuberculosis scTCR sulfoglycolipids |
topic |
Ac2SGL CD1b endogenous spacer Mycobacterium tuberculosis scTCR sulfoglycolipids amino acid CD1b antigen glucose glucose monomycolate Mycobacterium antigen sulfuric acid T lymphocyte receptor unclassified drug Article crystal structure enzyme linked immunosorbent assay human hypothesis light chain molecular docking Mycobacterium tuberculosis protein lipid interaction protein structure T lymphocyte tuberculosis |
dc.subject.keyword.eng.fl_str_mv |
amino acid CD1b antigen glucose glucose monomycolate Mycobacterium antigen sulfuric acid T lymphocyte receptor unclassified drug Article crystal structure enzyme linked immunosorbent assay human hypothesis light chain molecular docking Mycobacterium tuberculosis protein lipid interaction protein structure T lymphocyte tuberculosis |
description |
Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications. © Copyright © 2020 Camacho, Moreno, Garcia-Alles, Chinea Santiago, Gilleron, Vasquez, Choong, Reyes, Norazmi, Sarmiento and Acosta. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:45Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:45Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
16643224 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5906 |
dc.identifier.doi.none.fl_str_mv |
10.3389/fimmu.2020.566710 |
identifier_str_mv |
16643224 10.3389/fimmu.2020.566710 |
url |
http://hdl.handle.net/11407/5906 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094679922&doi=10.3389%2ffimmu.2020.566710&partnerID=40&md5=4cbb6ca3c226a0faf9e350ff254de0de |
dc.relation.citationvolume.none.fl_str_mv |
11 |
dc.relation.references.none.fl_str_mv |
(2019) Global Tuberculosis Report Geneva:(2019), , Geneva, World Health Organization Floyd, K., Glaziou, P., Zumla, A., Raviglione, M., The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era (2018) Lancet Respirat Med, 6, pp. 299-314 Acharya, B., Acharya, A., Gautam, S., Ghimire, S.P., Mishra, G., Parajuli, N., Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis (2020) Mol Biol Rep, 47, pp. 4065-4075. , 32248381 Hurley, C.K., Naming HLA diversity: a review of HLA nomenclature (2020) Hum Immunol, , (in press)., 32307125 Robinson, J., Guethlein, L.A., Cereb, N., Yang, S.Y., Norman, P.J., Marsh, S.G., Distinguishing functional polymorphism from random variation in the sequences of> 10,000 HLA-A,-B and-C alleles (2017) PLoS Genet, 13 (e1006862). , 28650991 Scriba, T.J., Coussens, A.K., Fletcher, H.A., Human immunology of tuberculosis (2017) Microbiol Spectr, 5, pp. 213-237 Sia, J.K., Rengarajan, J., Immunology of Mycobacterium tuberculosis infections (2019) Gram Positive Pathogens, 7, pp. 1056-1086 Bettencourt, P., Müller, J., Nicastri, A., Cantillon, D., Madhavan, M., Charles, P.D., Identification of antigens presented by MHC for vaccines against tuberculosis (2020) NPJ Vaccines, 5, pp. 1-14. , 31908851 Chancellor, A., Gadola, S.D., Mansour, S., The versatility of the CD 1 lipid antigen presentation pathway (2018) Immunology, 154, pp. 196-203. , 29460282 Mori, L., De Libero, G., Presentation of lipid antigens to T cells (2008) Immunol Lett, 117, pp. 1-8. , 18243339 Van Rhijn, I., Moody, D.B., CD 1 and mycobacterial lipids activate human T cells (2015) Immunol Rev, 264, pp. 138-153. , 25703557 Lepore, M., Mori, L., De Libero, G., The conventional nature of non-MHC-restricted T cells (2018) Front Immunol, 9 (1365). , 29963057 Gilleron, M., Stenger, S., Mazorra, Z., Wittke, F., Mariotti, S., Böhmer, G., Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis (2004) J Exp Med, 199, pp. 649-659. , 14981115 Guiard, J., Collmann, A., Garcia-Alles, L.F., Mourey, L., Brando, T., Mori, L., Fatty acyl structures of Mycobacterium tuberculosis sulfoglycolipid govern T cell response (2009) J Immunol, 182, pp. 7030-7037. , 19454700 Garcia−Alles, L.F., Versluis, K., Maveyraud, L., Vallina, A.T., Sansano, S., Bello, N.F., Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid−binding groove of CD1b (2006) EMBO J, 25, pp. 3684-3692. , 16874306 Batuwangala, T., Shepherd, D., Gadola, S.D., Gibson, K.J., Zaccai, N.R., Fersht, A.R., The crystal structure of human CD1b with a bound bacterial glycolipid (2004) J Immunol, 172, pp. 2382-2388. , 14764708 Gadola, S.D., Zaccai, N.R., Harlos, K., Shepherd, D., Castro-Palomino, J.C., Ritter, G., Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains (2002) Nat Immunol, 3, pp. 721-726. , 12118248 Garcia-Alles, L.F., Collmann, A., Versluis, C., Lindner, B., Guiard, J., Maveyraud, L., Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids (2011) Proc Natl Acad Sci USA, 108, pp. 17755-17760. , 22006319 Garcia-Alles, L.F., Giacometti, G., Versluis, C., Maveyraud, L., de Paepe, D., Guiard, J., Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes (2011) Proc Natl Acad Sci USA, 108, pp. 13230-13235. , 21788486 Camacho, F., Sarmiento, M.E., Reyes, F., Kim, L., Huggett, J., Lepore, M., Selection of phage-displayed human antibody fragments specific for CD1b presenting the Mycobacterium tuberculosis glycolipid Ac2SGL (2016) Int J Mycobacteriol, 5, pp. 120-127. , 27242221 Dass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A∗ 11 and HLA-A∗ 24 (2020) Int J Biol Macromol, 155, pp. 305-314. , 32240734 Dass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a Mycobacterium Tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A∗ 02 (2018) Mol Immunol, 101, pp. 189-196. , 30007228 Camacho, F., Huggett, J., Kim, L., Infante, J.F., Lepore, M., Perez, V., (2013) Phage display of Functional αβ Single-Chain T-Cell Receptor Molecules Specific for CD1b: Ac 2 SGL Complexes From Mycobacterium Tuberculosis-Infected Cells, BMC Immunology, , London, BioMed Central, p. S2., 23458512 Gau, B., Lemétais, A., Lepore, M., Garcia-Alles, L.F., Bourdreux, Y., Mori, L., Simplified deoxypropionate acyl chains for Mycobacterium tuberculosis sulfoglycolipid analogues: chain length is essential for high antigenicity (2013) ChemBioChem, 14, pp. 2413-2417. , 24174158 Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graphics, 14, pp. 33-38 Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform (2012) J Cheminform, 4 (17). , 22889332 Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., SWISS-MODEL: homology modelling of protein structures and complexes (2018) Nucleic Acids Res, 46, pp. W296-W303. , 29788355 Brooks, B.R., Brooks, C.L., III, Mackerell, A.D., Jr., Nilsson, L., Petrella, R.J., Roux, B., CHARMM: the biomolecular simulation program (2009) J Comput Chem, 30, pp. 1545-1614. , 19444816 Gras, S., Van Rhijn, I., Shahine, A., Cheng, T.-Y., Bhati, M., Tan, L.L., T cell receptor recognition of CD1b presenting a mycobacterial glycolipid (2016) Nat Commun, 7, pp. 1-12. , 27807341 Shahine, A., Van Rhijn, I., Cheng, T.-Y., Iwany, S., Gras, S., Moody, D.B., A molecular basis of human T cell receptor autoreactivity toward self-phospholipids (2017) Sci Immunol, 2 (16). , 29054999 Shahine, A., Reinink, P., Reijneveld, J.F., Gras, S., Holzheimer, M., Cheng, T.-Y., A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids (2019) Nat Commun, 10, pp. 1-12 Lensink, M.F., Velankar, S., Wodak, S.J., Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition (2017) Proteins, 85, pp. 359-377. , 27865038 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Frontiers Media S.A. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Frontiers Media S.A. |
dc.source.none.fl_str_mv |
Frontiers in Immunology |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159226365280256 |
spelling |
20202021-02-05T14:57:45Z2021-02-05T14:57:45Z16643224http://hdl.handle.net/11407/590610.3389/fimmu.2020.566710Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications. © Copyright © 2020 Camacho, Moreno, Garcia-Alles, Chinea Santiago, Gilleron, Vasquez, Choong, Reyes, Norazmi, Sarmiento and Acosta.engFrontiers Media S.A.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094679922&doi=10.3389%2ffimmu.2020.566710&partnerID=40&md5=4cbb6ca3c226a0faf9e350ff254de0de11(2019) Global Tuberculosis Report Geneva:(2019), , Geneva, World Health OrganizationFloyd, K., Glaziou, P., Zumla, A., Raviglione, M., The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era (2018) Lancet Respirat Med, 6, pp. 299-314Acharya, B., Acharya, A., Gautam, S., Ghimire, S.P., Mishra, G., Parajuli, N., Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis (2020) Mol Biol Rep, 47, pp. 4065-4075. , 32248381Hurley, C.K., Naming HLA diversity: a review of HLA nomenclature (2020) Hum Immunol, , (in press)., 32307125Robinson, J., Guethlein, L.A., Cereb, N., Yang, S.Y., Norman, P.J., Marsh, S.G., Distinguishing functional polymorphism from random variation in the sequences of> 10,000 HLA-A,-B and-C alleles (2017) PLoS Genet, 13 (e1006862). , 28650991Scriba, T.J., Coussens, A.K., Fletcher, H.A., Human immunology of tuberculosis (2017) Microbiol Spectr, 5, pp. 213-237Sia, J.K., Rengarajan, J., Immunology of Mycobacterium tuberculosis infections (2019) Gram Positive Pathogens, 7, pp. 1056-1086Bettencourt, P., Müller, J., Nicastri, A., Cantillon, D., Madhavan, M., Charles, P.D., Identification of antigens presented by MHC for vaccines against tuberculosis (2020) NPJ Vaccines, 5, pp. 1-14. , 31908851Chancellor, A., Gadola, S.D., Mansour, S., The versatility of the CD 1 lipid antigen presentation pathway (2018) Immunology, 154, pp. 196-203. , 29460282Mori, L., De Libero, G., Presentation of lipid antigens to T cells (2008) Immunol Lett, 117, pp. 1-8. , 18243339Van Rhijn, I., Moody, D.B., CD 1 and mycobacterial lipids activate human T cells (2015) Immunol Rev, 264, pp. 138-153. , 25703557Lepore, M., Mori, L., De Libero, G., The conventional nature of non-MHC-restricted T cells (2018) Front Immunol, 9 (1365). , 29963057Gilleron, M., Stenger, S., Mazorra, Z., Wittke, F., Mariotti, S., Böhmer, G., Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis (2004) J Exp Med, 199, pp. 649-659. , 14981115Guiard, J., Collmann, A., Garcia-Alles, L.F., Mourey, L., Brando, T., Mori, L., Fatty acyl structures of Mycobacterium tuberculosis sulfoglycolipid govern T cell response (2009) J Immunol, 182, pp. 7030-7037. , 19454700Garcia−Alles, L.F., Versluis, K., Maveyraud, L., Vallina, A.T., Sansano, S., Bello, N.F., Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid−binding groove of CD1b (2006) EMBO J, 25, pp. 3684-3692. , 16874306Batuwangala, T., Shepherd, D., Gadola, S.D., Gibson, K.J., Zaccai, N.R., Fersht, A.R., The crystal structure of human CD1b with a bound bacterial glycolipid (2004) J Immunol, 172, pp. 2382-2388. , 14764708Gadola, S.D., Zaccai, N.R., Harlos, K., Shepherd, D., Castro-Palomino, J.C., Ritter, G., Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains (2002) Nat Immunol, 3, pp. 721-726. , 12118248Garcia-Alles, L.F., Collmann, A., Versluis, C., Lindner, B., Guiard, J., Maveyraud, L., Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids (2011) Proc Natl Acad Sci USA, 108, pp. 17755-17760. , 22006319Garcia-Alles, L.F., Giacometti, G., Versluis, C., Maveyraud, L., de Paepe, D., Guiard, J., Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes (2011) Proc Natl Acad Sci USA, 108, pp. 13230-13235. , 21788486Camacho, F., Sarmiento, M.E., Reyes, F., Kim, L., Huggett, J., Lepore, M., Selection of phage-displayed human antibody fragments specific for CD1b presenting the Mycobacterium tuberculosis glycolipid Ac2SGL (2016) Int J Mycobacteriol, 5, pp. 120-127. , 27242221Dass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A∗ 11 and HLA-A∗ 24 (2020) Int J Biol Macromol, 155, pp. 305-314. , 32240734Dass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a Mycobacterium Tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A∗ 02 (2018) Mol Immunol, 101, pp. 189-196. , 30007228Camacho, F., Huggett, J., Kim, L., Infante, J.F., Lepore, M., Perez, V., (2013) Phage display of Functional αβ Single-Chain T-Cell Receptor Molecules Specific for CD1b: Ac 2 SGL Complexes From Mycobacterium Tuberculosis-Infected Cells, BMC Immunology, , London, BioMed Central, p. S2., 23458512Gau, B., Lemétais, A., Lepore, M., Garcia-Alles, L.F., Bourdreux, Y., Mori, L., Simplified deoxypropionate acyl chains for Mycobacterium tuberculosis sulfoglycolipid analogues: chain length is essential for high antigenicity (2013) ChemBioChem, 14, pp. 2413-2417. , 24174158Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graphics, 14, pp. 33-38Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform (2012) J Cheminform, 4 (17). , 22889332Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., SWISS-MODEL: homology modelling of protein structures and complexes (2018) Nucleic Acids Res, 46, pp. W296-W303. , 29788355Brooks, B.R., Brooks, C.L., III, Mackerell, A.D., Jr., Nilsson, L., Petrella, R.J., Roux, B., CHARMM: the biomolecular simulation program (2009) J Comput Chem, 30, pp. 1545-1614. , 19444816Gras, S., Van Rhijn, I., Shahine, A., Cheng, T.-Y., Bhati, M., Tan, L.L., T cell receptor recognition of CD1b presenting a mycobacterial glycolipid (2016) Nat Commun, 7, pp. 1-12. , 27807341Shahine, A., Van Rhijn, I., Cheng, T.-Y., Iwany, S., Gras, S., Moody, D.B., A molecular basis of human T cell receptor autoreactivity toward self-phospholipids (2017) Sci Immunol, 2 (16). , 29054999Shahine, A., Reinink, P., Reijneveld, J.F., Gras, S., Holzheimer, M., Cheng, T.-Y., A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids (2019) Nat Commun, 10, pp. 1-12Lensink, M.F., Velankar, S., Wodak, S.J., Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition (2017) Proteins, 85, pp. 359-377. , 27865038Frontiers in ImmunologyAc2SGLCD1bendogenous spacerMycobacterium tuberculosisscTCRsulfoglycolipidsamino acidCD1b antigenglucoseglucose monomycolateMycobacterium antigensulfuric acidT lymphocyte receptorunclassified drugArticlecrystal structureenzyme linked immunosorbent assayhumanhypothesislight chainmolecular dockingMycobacterium tuberculosisprotein lipid interactionprotein structureT lymphocytetuberculosisA Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell ReceptorsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Camacho, F., Biologicals Sciences School, University of Concepcion, Concepcion, ChileMoreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, ColombiaGarcia-Alles, L.F., TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, FranceChinea Santiago, G., Center for Genetic Engineering and Biotechnology, Havana, CubaGilleron, M., Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, FranceVasquez, A., Biologicals Sciences School, University of Concepcion, Concepcion, ChileChoong, Y.S., Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, MalaysiaReyes, F., Biologicals Sciences School, University of Concepcion, Concepcion, ChileNorazmi, M.N., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, MalaysiaSarmiento, M.E., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, MalaysiaAcosta, A., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysiahttp://purl.org/coar/access_right/c_16ecCamacho F.Moreno E.Garcia-Alles L.F.Chinea Santiago G.Gilleron M.Vasquez A.Choong Y.S.Reyes F.Norazmi M.N.Sarmiento M.E.Acosta A.11407/5906oai:repository.udem.edu.co:11407/59062021-02-05 09:57:45.786Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |