A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors

Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB)...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5906
Acceso en línea:
http://hdl.handle.net/11407/5906
Palabra clave:
Ac2SGL
CD1b
endogenous spacer
Mycobacterium tuberculosis
scTCR
sulfoglycolipids
amino acid
CD1b antigen
glucose
glucose monomycolate
Mycobacterium antigen
sulfuric acid
T lymphocyte receptor
unclassified drug
Article
crystal structure
enzyme linked immunosorbent assay
human
hypothesis
light chain
molecular docking
Mycobacterium tuberculosis
protein lipid interaction
protein structure
T lymphocyte
tuberculosis
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_c32cb8dea8325aa07c1c5a86c33010a4
oai_identifier_str oai:repository.udem.edu.co:11407/5906
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
title A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
spellingShingle A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
Ac2SGL
CD1b
endogenous spacer
Mycobacterium tuberculosis
scTCR
sulfoglycolipids
amino acid
CD1b antigen
glucose
glucose monomycolate
Mycobacterium antigen
sulfuric acid
T lymphocyte receptor
unclassified drug
Article
crystal structure
enzyme linked immunosorbent assay
human
hypothesis
light chain
molecular docking
Mycobacterium tuberculosis
protein lipid interaction
protein structure
T lymphocyte
tuberculosis
title_short A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
title_full A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
title_fullStr A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
title_full_unstemmed A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
title_sort A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors
dc.subject.spa.fl_str_mv Ac2SGL
CD1b
endogenous spacer
Mycobacterium tuberculosis
scTCR
sulfoglycolipids
topic Ac2SGL
CD1b
endogenous spacer
Mycobacterium tuberculosis
scTCR
sulfoglycolipids
amino acid
CD1b antigen
glucose
glucose monomycolate
Mycobacterium antigen
sulfuric acid
T lymphocyte receptor
unclassified drug
Article
crystal structure
enzyme linked immunosorbent assay
human
hypothesis
light chain
molecular docking
Mycobacterium tuberculosis
protein lipid interaction
protein structure
T lymphocyte
tuberculosis
dc.subject.keyword.eng.fl_str_mv amino acid
CD1b antigen
glucose
glucose monomycolate
Mycobacterium antigen
sulfuric acid
T lymphocyte receptor
unclassified drug
Article
crystal structure
enzyme linked immunosorbent assay
human
hypothesis
light chain
molecular docking
Mycobacterium tuberculosis
protein lipid interaction
protein structure
T lymphocyte
tuberculosis
description Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications. © Copyright © 2020 Camacho, Moreno, Garcia-Alles, Chinea Santiago, Gilleron, Vasquez, Choong, Reyes, Norazmi, Sarmiento and Acosta.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:57:45Z
dc.date.available.none.fl_str_mv 2021-02-05T14:57:45Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 16643224
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5906
dc.identifier.doi.none.fl_str_mv 10.3389/fimmu.2020.566710
identifier_str_mv 16643224
10.3389/fimmu.2020.566710
url http://hdl.handle.net/11407/5906
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094679922&doi=10.3389%2ffimmu.2020.566710&partnerID=40&md5=4cbb6ca3c226a0faf9e350ff254de0de
dc.relation.citationvolume.none.fl_str_mv 11
dc.relation.references.none.fl_str_mv (2019) Global Tuberculosis Report Geneva:(2019), , Geneva, World Health Organization
Floyd, K., Glaziou, P., Zumla, A., Raviglione, M., The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era (2018) Lancet Respirat Med, 6, pp. 299-314
Acharya, B., Acharya, A., Gautam, S., Ghimire, S.P., Mishra, G., Parajuli, N., Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis (2020) Mol Biol Rep, 47, pp. 4065-4075. , 32248381
Hurley, C.K., Naming HLA diversity: a review of HLA nomenclature (2020) Hum Immunol, , (in press)., 32307125
Robinson, J., Guethlein, L.A., Cereb, N., Yang, S.Y., Norman, P.J., Marsh, S.G., Distinguishing functional polymorphism from random variation in the sequences of> 10,000 HLA-A,-B and-C alleles (2017) PLoS Genet, 13 (e1006862). , 28650991
Scriba, T.J., Coussens, A.K., Fletcher, H.A., Human immunology of tuberculosis (2017) Microbiol Spectr, 5, pp. 213-237
Sia, J.K., Rengarajan, J., Immunology of Mycobacterium tuberculosis infections (2019) Gram Positive Pathogens, 7, pp. 1056-1086
Bettencourt, P., Müller, J., Nicastri, A., Cantillon, D., Madhavan, M., Charles, P.D., Identification of antigens presented by MHC for vaccines against tuberculosis (2020) NPJ Vaccines, 5, pp. 1-14. , 31908851
Chancellor, A., Gadola, S.D., Mansour, S., The versatility of the CD 1 lipid antigen presentation pathway (2018) Immunology, 154, pp. 196-203. , 29460282
Mori, L., De Libero, G., Presentation of lipid antigens to T cells (2008) Immunol Lett, 117, pp. 1-8. , 18243339
Van Rhijn, I., Moody, D.B., CD 1 and mycobacterial lipids activate human T cells (2015) Immunol Rev, 264, pp. 138-153. , 25703557
Lepore, M., Mori, L., De Libero, G., The conventional nature of non-MHC-restricted T cells (2018) Front Immunol, 9 (1365). , 29963057
Gilleron, M., Stenger, S., Mazorra, Z., Wittke, F., Mariotti, S., Böhmer, G., Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis (2004) J Exp Med, 199, pp. 649-659. , 14981115
Guiard, J., Collmann, A., Garcia-Alles, L.F., Mourey, L., Brando, T., Mori, L., Fatty acyl structures of Mycobacterium tuberculosis sulfoglycolipid govern T cell response (2009) J Immunol, 182, pp. 7030-7037. , 19454700
Garcia−Alles, L.F., Versluis, K., Maveyraud, L., Vallina, A.T., Sansano, S., Bello, N.F., Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid−binding groove of CD1b (2006) EMBO J, 25, pp. 3684-3692. , 16874306
Batuwangala, T., Shepherd, D., Gadola, S.D., Gibson, K.J., Zaccai, N.R., Fersht, A.R., The crystal structure of human CD1b with a bound bacterial glycolipid (2004) J Immunol, 172, pp. 2382-2388. , 14764708
Gadola, S.D., Zaccai, N.R., Harlos, K., Shepherd, D., Castro-Palomino, J.C., Ritter, G., Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains (2002) Nat Immunol, 3, pp. 721-726. , 12118248
Garcia-Alles, L.F., Collmann, A., Versluis, C., Lindner, B., Guiard, J., Maveyraud, L., Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids (2011) Proc Natl Acad Sci USA, 108, pp. 17755-17760. , 22006319
Garcia-Alles, L.F., Giacometti, G., Versluis, C., Maveyraud, L., de Paepe, D., Guiard, J., Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes (2011) Proc Natl Acad Sci USA, 108, pp. 13230-13235. , 21788486
Camacho, F., Sarmiento, M.E., Reyes, F., Kim, L., Huggett, J., Lepore, M., Selection of phage-displayed human antibody fragments specific for CD1b presenting the Mycobacterium tuberculosis glycolipid Ac2SGL (2016) Int J Mycobacteriol, 5, pp. 120-127. , 27242221
Dass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A∗ 11 and HLA-A∗ 24 (2020) Int J Biol Macromol, 155, pp. 305-314. , 32240734
Dass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a Mycobacterium Tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A∗ 02 (2018) Mol Immunol, 101, pp. 189-196. , 30007228
Camacho, F., Huggett, J., Kim, L., Infante, J.F., Lepore, M., Perez, V., (2013) Phage display of Functional αβ Single-Chain T-Cell Receptor Molecules Specific for CD1b: Ac 2 SGL Complexes From Mycobacterium Tuberculosis-Infected Cells, BMC Immunology, , London, BioMed Central, p. S2., 23458512
Gau, B., Lemétais, A., Lepore, M., Garcia-Alles, L.F., Bourdreux, Y., Mori, L., Simplified deoxypropionate acyl chains for Mycobacterium tuberculosis sulfoglycolipid analogues: chain length is essential for high antigenicity (2013) ChemBioChem, 14, pp. 2413-2417. , 24174158
Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graphics, 14, pp. 33-38
Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform (2012) J Cheminform, 4 (17). , 22889332
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., SWISS-MODEL: homology modelling of protein structures and complexes (2018) Nucleic Acids Res, 46, pp. W296-W303. , 29788355
Brooks, B.R., Brooks, C.L., III, Mackerell, A.D., Jr., Nilsson, L., Petrella, R.J., Roux, B., CHARMM: the biomolecular simulation program (2009) J Comput Chem, 30, pp. 1545-1614. , 19444816
Gras, S., Van Rhijn, I., Shahine, A., Cheng, T.-Y., Bhati, M., Tan, L.L., T cell receptor recognition of CD1b presenting a mycobacterial glycolipid (2016) Nat Commun, 7, pp. 1-12. , 27807341
Shahine, A., Van Rhijn, I., Cheng, T.-Y., Iwany, S., Gras, S., Moody, D.B., A molecular basis of human T cell receptor autoreactivity toward self-phospholipids (2017) Sci Immunol, 2 (16). , 29054999
Shahine, A., Reinink, P., Reijneveld, J.F., Gras, S., Holzheimer, M., Cheng, T.-Y., A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids (2019) Nat Commun, 10, pp. 1-12
Lensink, M.F., Velankar, S., Wodak, S.J., Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition (2017) Proteins, 85, pp. 359-377. , 27865038
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv Frontiers Media S.A.
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
publisher.none.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv Frontiers in Immunology
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159226365280256
spelling 20202021-02-05T14:57:45Z2021-02-05T14:57:45Z16643224http://hdl.handle.net/11407/590610.3389/fimmu.2020.566710Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications. © Copyright © 2020 Camacho, Moreno, Garcia-Alles, Chinea Santiago, Gilleron, Vasquez, Choong, Reyes, Norazmi, Sarmiento and Acosta.engFrontiers Media S.A.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094679922&doi=10.3389%2ffimmu.2020.566710&partnerID=40&md5=4cbb6ca3c226a0faf9e350ff254de0de11(2019) Global Tuberculosis Report Geneva:(2019), , Geneva, World Health OrganizationFloyd, K., Glaziou, P., Zumla, A., Raviglione, M., The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era (2018) Lancet Respirat Med, 6, pp. 299-314Acharya, B., Acharya, A., Gautam, S., Ghimire, S.P., Mishra, G., Parajuli, N., Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis (2020) Mol Biol Rep, 47, pp. 4065-4075. , 32248381Hurley, C.K., Naming HLA diversity: a review of HLA nomenclature (2020) Hum Immunol, , (in press)., 32307125Robinson, J., Guethlein, L.A., Cereb, N., Yang, S.Y., Norman, P.J., Marsh, S.G., Distinguishing functional polymorphism from random variation in the sequences of> 10,000 HLA-A,-B and-C alleles (2017) PLoS Genet, 13 (e1006862). , 28650991Scriba, T.J., Coussens, A.K., Fletcher, H.A., Human immunology of tuberculosis (2017) Microbiol Spectr, 5, pp. 213-237Sia, J.K., Rengarajan, J., Immunology of Mycobacterium tuberculosis infections (2019) Gram Positive Pathogens, 7, pp. 1056-1086Bettencourt, P., Müller, J., Nicastri, A., Cantillon, D., Madhavan, M., Charles, P.D., Identification of antigens presented by MHC for vaccines against tuberculosis (2020) NPJ Vaccines, 5, pp. 1-14. , 31908851Chancellor, A., Gadola, S.D., Mansour, S., The versatility of the CD 1 lipid antigen presentation pathway (2018) Immunology, 154, pp. 196-203. , 29460282Mori, L., De Libero, G., Presentation of lipid antigens to T cells (2008) Immunol Lett, 117, pp. 1-8. , 18243339Van Rhijn, I., Moody, D.B., CD 1 and mycobacterial lipids activate human T cells (2015) Immunol Rev, 264, pp. 138-153. , 25703557Lepore, M., Mori, L., De Libero, G., The conventional nature of non-MHC-restricted T cells (2018) Front Immunol, 9 (1365). , 29963057Gilleron, M., Stenger, S., Mazorra, Z., Wittke, F., Mariotti, S., Böhmer, G., Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis (2004) J Exp Med, 199, pp. 649-659. , 14981115Guiard, J., Collmann, A., Garcia-Alles, L.F., Mourey, L., Brando, T., Mori, L., Fatty acyl structures of Mycobacterium tuberculosis sulfoglycolipid govern T cell response (2009) J Immunol, 182, pp. 7030-7037. , 19454700Garcia−Alles, L.F., Versluis, K., Maveyraud, L., Vallina, A.T., Sansano, S., Bello, N.F., Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid−binding groove of CD1b (2006) EMBO J, 25, pp. 3684-3692. , 16874306Batuwangala, T., Shepherd, D., Gadola, S.D., Gibson, K.J., Zaccai, N.R., Fersht, A.R., The crystal structure of human CD1b with a bound bacterial glycolipid (2004) J Immunol, 172, pp. 2382-2388. , 14764708Gadola, S.D., Zaccai, N.R., Harlos, K., Shepherd, D., Castro-Palomino, J.C., Ritter, G., Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains (2002) Nat Immunol, 3, pp. 721-726. , 12118248Garcia-Alles, L.F., Collmann, A., Versluis, C., Lindner, B., Guiard, J., Maveyraud, L., Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids (2011) Proc Natl Acad Sci USA, 108, pp. 17755-17760. , 22006319Garcia-Alles, L.F., Giacometti, G., Versluis, C., Maveyraud, L., de Paepe, D., Guiard, J., Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes (2011) Proc Natl Acad Sci USA, 108, pp. 13230-13235. , 21788486Camacho, F., Sarmiento, M.E., Reyes, F., Kim, L., Huggett, J., Lepore, M., Selection of phage-displayed human antibody fragments specific for CD1b presenting the Mycobacterium tuberculosis glycolipid Ac2SGL (2016) Int J Mycobacteriol, 5, pp. 120-127. , 27242221Dass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A∗ 11 and HLA-A∗ 24 (2020) Int J Biol Macromol, 155, pp. 305-314. , 32240734Dass, S.A., Norazmi, M.N., Acosta, A., Sarmiento, M.E., Tye, G.J., Generation of a T cell receptor (TCR)-like single domain antibody (sDAb) against a Mycobacterium Tuberculosis (Mtb) heat shock protein (HSP) 16kDa antigen presented by Human Leukocyte Antigen (HLA)-A∗ 02 (2018) Mol Immunol, 101, pp. 189-196. , 30007228Camacho, F., Huggett, J., Kim, L., Infante, J.F., Lepore, M., Perez, V., (2013) Phage display of Functional αβ Single-Chain T-Cell Receptor Molecules Specific for CD1b: Ac 2 SGL Complexes From Mycobacterium Tuberculosis-Infected Cells, BMC Immunology, , London, BioMed Central, p. S2., 23458512Gau, B., Lemétais, A., Lepore, M., Garcia-Alles, L.F., Bourdreux, Y., Mori, L., Simplified deoxypropionate acyl chains for Mycobacterium tuberculosis sulfoglycolipid analogues: chain length is essential for high antigenicity (2013) ChemBioChem, 14, pp. 2413-2417. , 24174158Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J Mol Graphics, 14, pp. 33-38Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform (2012) J Cheminform, 4 (17). , 22889332Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., SWISS-MODEL: homology modelling of protein structures and complexes (2018) Nucleic Acids Res, 46, pp. W296-W303. , 29788355Brooks, B.R., Brooks, C.L., III, Mackerell, A.D., Jr., Nilsson, L., Petrella, R.J., Roux, B., CHARMM: the biomolecular simulation program (2009) J Comput Chem, 30, pp. 1545-1614. , 19444816Gras, S., Van Rhijn, I., Shahine, A., Cheng, T.-Y., Bhati, M., Tan, L.L., T cell receptor recognition of CD1b presenting a mycobacterial glycolipid (2016) Nat Commun, 7, pp. 1-12. , 27807341Shahine, A., Van Rhijn, I., Cheng, T.-Y., Iwany, S., Gras, S., Moody, D.B., A molecular basis of human T cell receptor autoreactivity toward self-phospholipids (2017) Sci Immunol, 2 (16). , 29054999Shahine, A., Reinink, P., Reijneveld, J.F., Gras, S., Holzheimer, M., Cheng, T.-Y., A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids (2019) Nat Commun, 10, pp. 1-12Lensink, M.F., Velankar, S., Wodak, S.J., Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition (2017) Proteins, 85, pp. 359-377. , 27865038Frontiers in ImmunologyAc2SGLCD1bendogenous spacerMycobacterium tuberculosisscTCRsulfoglycolipidsamino acidCD1b antigenglucoseglucose monomycolateMycobacterium antigensulfuric acidT lymphocyte receptorunclassified drugArticlecrystal structureenzyme linked immunosorbent assayhumanhypothesislight chainmolecular dockingMycobacterium tuberculosisprotein lipid interactionprotein structureT lymphocytetuberculosisA Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell ReceptorsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Camacho, F., Biologicals Sciences School, University of Concepcion, Concepcion, ChileMoreno, E., Faculty of Basic Sciences, University of Medellin, Medellin, ColombiaGarcia-Alles, L.F., TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, FranceChinea Santiago, G., Center for Genetic Engineering and Biotechnology, Havana, CubaGilleron, M., Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, FranceVasquez, A., Biologicals Sciences School, University of Concepcion, Concepcion, ChileChoong, Y.S., Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, MalaysiaReyes, F., Biologicals Sciences School, University of Concepcion, Concepcion, ChileNorazmi, M.N., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, MalaysiaSarmiento, M.E., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, MalaysiaAcosta, A., School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysiahttp://purl.org/coar/access_right/c_16ecCamacho F.Moreno E.Garcia-Alles L.F.Chinea Santiago G.Gilleron M.Vasquez A.Choong Y.S.Reyes F.Norazmi M.N.Sarmiento M.E.Acosta A.11407/5906oai:repository.udem.edu.co:11407/59062021-02-05 09:57:45.786Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co