Linearization by means of Linear Implicit Rectangular Descriptions
This paper discusses a novel implementable approach to an exact linearization procedure based on the implicit systems techniques. The formal procedure we propose includes a specific “splitting” of the nonlinear state representation in two parts that involve a basic rectangular representation and an...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4262
- Acceso en línea:
- http://hdl.handle.net/11407/4262
- Palabra clave:
- feedback linearization
implicit rectangular description
implicit systems
nonlinear systems
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_a728c541d1901f8f79c49046156f75c5 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4262 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Linearization by means of Linear Implicit Rectangular Descriptions |
title |
Linearization by means of Linear Implicit Rectangular Descriptions |
spellingShingle |
Linearization by means of Linear Implicit Rectangular Descriptions feedback linearization implicit rectangular description implicit systems nonlinear systems |
title_short |
Linearization by means of Linear Implicit Rectangular Descriptions |
title_full |
Linearization by means of Linear Implicit Rectangular Descriptions |
title_fullStr |
Linearization by means of Linear Implicit Rectangular Descriptions |
title_full_unstemmed |
Linearization by means of Linear Implicit Rectangular Descriptions |
title_sort |
Linearization by means of Linear Implicit Rectangular Descriptions |
dc.contributor.affiliation.spa.fl_str_mv |
Bonilla, M., CINVESTAV-IPN, Control Automático, UMI 3175, CINVESTAV-CNRS.A.P. 14-740, Mexico Azhmyakov, V., Universidad de Medellin, Department of Basic Sciences, Medellin, Colombia Malabre, M., CNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, B.P. 92101, Cedex 03, Nantes, France |
dc.subject.keyword.eng.fl_str_mv |
feedback linearization implicit rectangular description implicit systems nonlinear systems |
topic |
feedback linearization implicit rectangular description implicit systems nonlinear systems |
description |
This paper discusses a novel implementable approach to an exact linearization procedure based on the implicit systems techniques. The formal procedure we propose includes a specific “splitting” of the nonlinear state representation in two parts that involve a basic rectangular representation and an auxiliary nonlinear algebraic equation. The proposed linear implicit systems description makes it possible to apply the conventional linear control techniques to an initially given sophisticated nonlinear dynamic model. © 2017 |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:42Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:42Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
24058963 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4262 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ifacol.2017.08.2361 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
24058963 10.1016/j.ifacol.2017.08.2361 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4262 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031782801&doi=10.1016%2fj.ifacol.2017.08.2361&partnerID=40&md5=de1977aeb5c50b70b3678de838e68728 |
dc.relation.ispartofes.spa.fl_str_mv |
IFAC-PapersOnLine IFAC-PapersOnLine Volume 50, Issue 1, July 2017, Pages 10822-10827 |
dc.relation.references.spa.fl_str_mv |
Bonilla, M., Malabre, M., & Azhmyakov, V. (2015). An implicit systems characterization of a class of impulsive linear switched control processes. part 1: Modeling. Nonlinear Analysis: Hybrid Systems, 15, 157-170. doi:10.1016/j.nahs.2014.04.002 Bonilla, M., Malabre, M., & Azhmyakov, V. (2015). An implicit systems characterization of a class of impulsive linear switched control processes. part 2: Control. Nonlinear Analysis: Hybrid Systems, 18, 15-32. doi:10.1016/j.nahs.2015.03.005 Bonilla, M., Malabre, M., & Fonseca, M. (1997). On the approximation of non-proper control laws. International Journal of Control, 68(4), 775-796. doi:10.1080/002071797223334 Daniels, R. W. (1974). Approximation Methods for Electronic Filter Design. Estrada, M. B., & Malabre, M. (2003). On the control of linear systems having internal variations. Automatica, 39(11), 1989-1996. doi:10.1016/S0005-1098(03)00222-X Gantmacher, F. R. (1959). The Theory of Matrices. Lebret, G., & Loiseau, J. J. (1994). Proportional and proportional-derivative canonical forms for descriptor systems with outputs. Automatica, 30(5), 847-864. doi:10.1016/0005-1098(94)90173-2 Morse, A. S. (1996). Supervisory control of families of linear set-point controllers - part 1: Exact matching. IEEE Transactions on Automatic Control, 41(10), 1413-1431. doi:10.1109/9.539424 Nazrulla, S., & Khalil, H. K. (2011). Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Transactions on Automatic Control, 56(4), 802-813. doi:10.1109/TAC.2010.2069612 Vidyasagar, M. (1993). Nonlinear Systems Analysis. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159262566318080 |
spelling |
2017-12-19T19:36:42Z2017-12-19T19:36:42Z201724058963http://hdl.handle.net/11407/426210.1016/j.ifacol.2017.08.2361reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThis paper discusses a novel implementable approach to an exact linearization procedure based on the implicit systems techniques. The formal procedure we propose includes a specific “splitting” of the nonlinear state representation in two parts that involve a basic rectangular representation and an auxiliary nonlinear algebraic equation. The proposed linear implicit systems description makes it possible to apply the conventional linear control techniques to an initially given sophisticated nonlinear dynamic model. © 2017engElsevier B.V.Facultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85031782801&doi=10.1016%2fj.ifacol.2017.08.2361&partnerID=40&md5=de1977aeb5c50b70b3678de838e68728IFAC-PapersOnLineIFAC-PapersOnLine Volume 50, Issue 1, July 2017, Pages 10822-10827Bonilla, M., Malabre, M., & Azhmyakov, V. (2015). An implicit systems characterization of a class of impulsive linear switched control processes. part 1: Modeling. Nonlinear Analysis: Hybrid Systems, 15, 157-170. doi:10.1016/j.nahs.2014.04.002Bonilla, M., Malabre, M., & Azhmyakov, V. (2015). An implicit systems characterization of a class of impulsive linear switched control processes. part 2: Control. Nonlinear Analysis: Hybrid Systems, 18, 15-32. doi:10.1016/j.nahs.2015.03.005Bonilla, M., Malabre, M., & Fonseca, M. (1997). On the approximation of non-proper control laws. International Journal of Control, 68(4), 775-796. doi:10.1080/002071797223334Daniels, R. W. (1974). Approximation Methods for Electronic Filter Design.Estrada, M. B., & Malabre, M. (2003). On the control of linear systems having internal variations. Automatica, 39(11), 1989-1996. doi:10.1016/S0005-1098(03)00222-XGantmacher, F. R. (1959). The Theory of Matrices.Lebret, G., & Loiseau, J. J. (1994). Proportional and proportional-derivative canonical forms for descriptor systems with outputs. Automatica, 30(5), 847-864. doi:10.1016/0005-1098(94)90173-2Morse, A. S. (1996). Supervisory control of families of linear set-point controllers - part 1: Exact matching. IEEE Transactions on Automatic Control, 41(10), 1413-1431. doi:10.1109/9.539424Nazrulla, S., & Khalil, H. K. (2011). Robust stabilization of non-minimum phase nonlinear systems using extended high-gain observers. IEEE Transactions on Automatic Control, 56(4), 802-813. doi:10.1109/TAC.2010.2069612Vidyasagar, M. (1993). Nonlinear Systems Analysis.ScopusLinearization by means of Linear Implicit Rectangular DescriptionsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Bonilla, M., CINVESTAV-IPN, Control Automático, UMI 3175, CINVESTAV-CNRS.A.P. 14-740, MexicoAzhmyakov, V., Universidad de Medellin, Department of Basic Sciences, Medellin, ColombiaMalabre, M., CNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, B.P. 92101, Cedex 03, Nantes, FranceBonilla M.Azhmyakov V.Malabre M.CINVESTAV-IPN, Control Automático, UMI 3175, CINVESTAV-CNRS.A.P. 14-740, MexicoUniversidad de Medellin, Department of Basic Sciences, Medellin, ColombiaCNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, B.P. 92101, Cedex 03, Nantes, Francefeedback linearizationimplicit rectangular descriptionimplicit systemsnonlinear systemsThis paper discusses a novel implementable approach to an exact linearization procedure based on the implicit systems techniques. The formal procedure we propose includes a specific “splitting” of the nonlinear state representation in two parts that involve a basic rectangular representation and an auxiliary nonlinear algebraic equation. The proposed linear implicit systems description makes it possible to apply the conventional linear control techniques to an initially given sophisticated nonlinear dynamic model. © 2017http://purl.org/coar/access_right/c_16ec11407/4262oai:repository.udem.edu.co:11407/42622020-05-27 19:15:54.997Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |