Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene
In this work, oxidation processes are correlated with the current-voltage characteristics of few-layer black phosphorus obtained by liquid-phase exfoliation. Black phosphorous (BP), a room-temperature p-type semiconductor, exhibits an anomalous switching behavior between 373 and 448 K. The anomalous...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5934
- Acceso en línea:
- http://hdl.handle.net/11407/5934
- Palabra clave:
- Black Phosphorus
Calculations
Current voltage characteristics
Electric conductance
Electric resistance
Electronic structure
Ohmic contacts
Oxidation
Oxygen
Phosphorus
Electrical conductance
Electrical resistance measurement
Electrical resistances
Electronic differences
First-principles calculation
Interstitial oxygen
Ohmic contact formation
P type semiconductor
Activation energy
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_a4d42f40604729a38e4dbab0393e33bb |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5934 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene |
title |
Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene |
spellingShingle |
Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene Black Phosphorus Calculations Current voltage characteristics Electric conductance Electric resistance Electronic structure Ohmic contacts Oxidation Oxygen Phosphorus Electrical conductance Electrical resistance measurement Electrical resistances Electronic differences First-principles calculation Interstitial oxygen Ohmic contact formation P type semiconductor Activation energy |
title_short |
Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene |
title_full |
Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene |
title_fullStr |
Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene |
title_full_unstemmed |
Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene |
title_sort |
Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene |
dc.subject.keyword.eng.fl_str_mv |
Black Phosphorus Calculations Current voltage characteristics Electric conductance Electric resistance Electronic structure Ohmic contacts Oxidation Oxygen Phosphorus Electrical conductance Electrical resistance measurement Electrical resistances Electronic differences First-principles calculation Interstitial oxygen Ohmic contact formation P type semiconductor Activation energy |
topic |
Black Phosphorus Calculations Current voltage characteristics Electric conductance Electric resistance Electronic structure Ohmic contacts Oxidation Oxygen Phosphorus Electrical conductance Electrical resistance measurement Electrical resistances Electronic differences First-principles calculation Interstitial oxygen Ohmic contact formation P type semiconductor Activation energy |
description |
In this work, oxidation processes are correlated with the current-voltage characteristics of few-layer black phosphorus obtained by liquid-phase exfoliation. Black phosphorous (BP), a room-temperature p-type semiconductor, exhibits an anomalous switching behavior between 373 and 448 K. The anomalous increase in electrical resistance is explained using a combined spectroscopic and DFT approach. The activation energy for thermally activated electrical conductance was calculated from the current-voltage characteristics and correlated with the oxidation processes. The activation energy for thermally activated electrical conductance in the dangling oxide BP phase was found to be 79.7 meV, ∼40 times lower than that in the interstitial counterpart. First-principles calculations reveal electronic differences between dangling and interstitial oxides, and electrical resistance measurements reveal a Schottky-to-ohmic contact formation related to the differences in the calculated work function of dangling and interstitial oxides. We propose that this phenomenon can be exploited as a fast, economical method for the evaluation of the oxidation processes in few-layer BP. © |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:04Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:04Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
19327447 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5934 |
dc.identifier.doi.none.fl_str_mv |
10.1021/acs.jpcc.0c06542 |
identifier_str_mv |
19327447 10.1021/acs.jpcc.0c06542 |
url |
http://hdl.handle.net/11407/5934 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096065530&doi=10.1021%2facs.jpcc.0c06542&partnerID=40&md5=f3c9c3e9720f1dcbe38f9ea2e742279a |
dc.relation.references.none.fl_str_mv |
Buscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., Van Der Zant, H.S.J., Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors (2014) Nano Lett., 14, pp. 3347-3352 Abbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., Black phosphorus gas sensors (2015) ACS Nano, 9, pp. 5618-5624 Cui, S., Pu, H., Wells, S.A., Wen, Z., Mao, S., Chang, J., Hersam, M.C., Chen, J., Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors (2015) Nat. Commun., 6, p. 8632 Hanlon, D., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics (2015) Nat. Commun., 6, p. 8563 Yasaei, P., Kumar, B., Foroozan, T., Wang, C., Asadi, M., Tuschel, D., Indacochea, J.E., Salehi-Khojin, A., High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation (2015) Adv. Mater., 27, pp. 1887-1892 Chen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J., Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets (2017) Biosens. Bioelectron., 89, pp. 505-510 Lv, Y., Qin, W., Wang, C., Liao, L., Liu, X., Recent Advances in Low-Dimensional Heterojunction-Based Tunnel Field Effect Transistors (2018) Adv. Electron. Mater., 5, p. 1800569 Bai, L., Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solar-Driven Chemical Reactions (2018) Adv. Mater., 30, p. 1803641 Zhang, G., Huang, S., Chaves, A., Song, C., Özçelik, V.O., Low, T., Yan, H., Infrared fingerprints of few-layer black phosphorus (2017) Nat. Commun., 8, p. 14071 Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nat. Nanotechnol., 9, pp. 372-377 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Two-dimensional gas of massless Dirac fermions in graphene (2005) Nature, 438, pp. 197-200 Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., Ultrahigh electron mobility in suspended graphene (2008) Solid State Commun., 146, pp. 351-355 Yu, Z., Ong, Z.Y., Li, S., Xu, J., Bin, Z.G., Zhang, Y.W., Shi, Y., Wang, X., Analyzing the Carrier Mobility in Transition-Metal Dichalcogenide MoS2 Field-Effect Transistors (2017) Adv. Funct. Mater., 27, p. 1604093 Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys. Rev. Lett., 114, pp. 26-29 Wang, G., Pandey, R., Karna, S.P., Phosphorene Oxide: Stability and Electronic Properties of a Novel Two-Dimensional Material (2015) Nanoscale, 7, pp. 524-531 Wang, J., Wei, L., Zhang, L., Jiang, C., Siu-Wai Kong, E., Zhang, Y., Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity (2012) J. Mater. Chem., 22, p. 8327 Kc, S., Longo, R.C., Wallace, R.M., Cho, K., Surface oxidation energetics and kinetics on MoS2 monolayer (2015) J. Appl. Phys., 117, p. 135301 Zhao, Y., Wu, X., Yang, J., Zeng, X.C., Oxidation of a two-dimensional hexagonal boron nitride monolayer: A first-principles study (2012) Phys. Chem. Chem. Phys., 14, pp. 5545-5550 Van Druenen, M., Davitt, F., Collins, T., Glynn, C., O'Dwyer, C., Holmes, J.D., Collins, G., Covalent Functionalization of Few-Layer Black Phosphorus Using Iodonium Salts and Comparison to Diazonium Modified Black Phosphorus (2018) Chem. Mater., 30, pp. 4667-4674 Ryder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry (2016) Nat. Chem., 8, pp. 597-602 Ziletti, A., Carvalho, A., Trevisanutto, P.E., Campbell, D.K., Coker, D.F., Castro, N.A.H., Phosphorene oxides: Bandgap engineering of phosphorene by oxidation (2015) Phys. Rev. B, 91 Wild, S., Monolayer black phosphorus by sequential wet-chemical surface oxidation (2019) RSC Adv., 9, pp. 3570-3576 Gómez-Pérez, J., Barna, B., Tóth, I.Y., Kónya, Z., Kukovecz, á., Quantitative tracking of the oxidation of black phosphorus in the few-layers regime (2018) ACS Omega, 3, pp. 12482-12488 Wild, S., Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus (2019) Angew. Chem., Int. Ed., 58, pp. 5763-5768 Marcia, M., Hirsch, A., Hauke, F., Perylene-based non-covalent functionalization of 2D materials (2017) FlatChem, 1, pp. 89-103 Edmonds, M.T., Creating a stable oxide at the surface of black phosphorus (2015) ACS Appl. Mater. Interfaces, 7, pp. 14557-14562 Wang, C.-X., Zhang, C., Jiang, J.-W., Rabczuk, T., The Effects of Vacancy and Oxidation on Black Phosphorus Nanoresonators (2017) Nanotechnology, 28, p. 135202 Wang, G., Slough, W.J., Pandey, R., Karna, S.P., Degradation of phosphorene in air: understanding at atomic level (2016) 2D Mater., 3 Kuntz, K.L., Control of Surface and Edge Oxidation on Phosphorene (2017) ACS Appl. Mater. Interfaces, 9, pp. 9126-9135 Lv, W., Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability (2018) ACS Appl. Mater. Interfaces, 10, pp. 9663-9668 Hsieh, Y.L., Su, W.H., Huang, C.C., Su, C.Y., In Situ Cleaning and Fluorination of Black Phosphorus for Enhanced Performance of Transistors with High Stability (2020) ACS Appl. Mater. Interfaces, 12, pp. 37375-37383 Su, C., Waterproof molecular monolayers stabilize 2D materials (2019) Proc. Natl. Acad. Sci. U. S. A., 116, pp. 20844-20849 Cai, Y., Zhang, G., Zhang, Y.-W., Layer-dependent band alignment and work function of few-layer phosphorene (2014) Sci. Rep., 4, p. 6677 Castellanos-Gomez, A., Isolation and characterization of few-layer black phosphorus (2014) 2D Mater., 1 Island, J.O., Steele, G.A., Van Der Zant, H.S.J., Castellanos-Gomez, A., Environmental instability of few-layer black phosphorus (2015) 2D Mater., 2, p. 011002 Wood, J.D., Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation (2014) Nano Lett., 14, pp. 6964-6970 Gómez-Pérez, J., Kónya, Z., Kukovecz, á., Acetone improves the topographical homogeneity of liquid phase exfoliated few-layer black phosphorus flakes (2018) Nanotechnology, 29, p. 365303 Soler, J.M., Artacho, E., Gale, J.D., Garciá, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14, pp. 2745-2779 Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868 Woomer, A.H., Farnsworth, T.W., Hu, J., Wells, R.A., Donley, C.L., Warren, S.C., Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy (2015) ACS Nano, 9, pp. 8869-8884 Favron, A., Photooxidation and quantum confinement effects in exfoliated black phosphorus (2015) Nat. Mater., 14, pp. 826-832 Abellán, G., Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus (2017) J. Am. Chem. Soc., 139, pp. 10432-10440 Brent, J.R., Ganguli, A.K., Kumar, V., Lewis, D.J., McNaughter, P.D., O'Brien, P., Sabherwal, P., Tedstone, A.A., On the stability of surfactant-stabilised few-layer black phosphorus in aqueous media (2016) RSC Adv., 6, pp. 86955-86958 Gamage, S., Li, Z., Yakovlev, V.S., Lewis, C., Wang, H., Cronin, S.B., Abate, Y., Nanoscopy of Black Phosphorus Degradation (2016) Adv. Mater. Interfaces, 3, p. 1600121 Quintanilla, J., Hooley, C., The strong-correlations puzzle (2009) Phys. World, 22, pp. 32-37 Sibari, A., Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study (2018) Sol. Energy Mater. Sol. Cells, 180, pp. 253-257 Mortazavi, B., Dianat, A., Cuniberti, G., Rabczuk, T., Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation (2016) Electrochim. Acta, 213, pp. 865-870 Wang, X., Liu, G., Liu, R.F., Luo, W.W., Sun, B.Z., Lei, X.L., Ouyang, C.Y., Xu, B., Molecular adsorption and strain-induced ferromagnetic semiconductor-metal transition in half-hydrogenated germanene (2019) J. Appl. Phys., 125, p. 082504 Kim, M., Kim, H., Park, S., Kim, J.S., Choi, H.J., Im, S., Lee, H., Yi, Y., Intrinsic correlation between electronic structure and degradation: From few layers to bulk black phosphorus (2019) Angew. Chem., Int. Ed., 58, pp. 3754-3758 Greiner, M.T., Chai, L., Helander, M.G., Tang, W.M., Lu, Z.H., Transition metal oxide work functions: The influence of cation oxidation state and oxygen vacancies (2012) Adv. Funct. Mater., 22, pp. 4557-4568 Fijol, J.F., Holloway, P.H., Ohmic contacts to ZnSe-based materials (1996) Crit. Rev. Solid State Mater. Sci., 21, pp. 77-128 Yang, B., Te-Doped Black Phosphorus Field-Effect Transistors (2016) Adv. Mater., 28, pp. 9408-9415 Han, C., Oxygen induced strong mobility modulation in few-layer black phosphorus (2017) 2D Mater., 4, p. 021007 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
American Chemical Society |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
Journal of Physical Chemistry C |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159226506838016 |
spelling |
20202021-02-05T14:58:04Z2021-02-05T14:58:04Z19327447http://hdl.handle.net/11407/593410.1021/acs.jpcc.0c06542In this work, oxidation processes are correlated with the current-voltage characteristics of few-layer black phosphorus obtained by liquid-phase exfoliation. Black phosphorous (BP), a room-temperature p-type semiconductor, exhibits an anomalous switching behavior between 373 and 448 K. The anomalous increase in electrical resistance is explained using a combined spectroscopic and DFT approach. The activation energy for thermally activated electrical conductance was calculated from the current-voltage characteristics and correlated with the oxidation processes. The activation energy for thermally activated electrical conductance in the dangling oxide BP phase was found to be 79.7 meV, ∼40 times lower than that in the interstitial counterpart. First-principles calculations reveal electronic differences between dangling and interstitial oxides, and electrical resistance measurements reveal a Schottky-to-ohmic contact formation related to the differences in the calculated work function of dangling and interstitial oxides. We propose that this phenomenon can be exploited as a fast, economical method for the evaluation of the oxidation processes in few-layer BP. ©engAmerican Chemical SocietyFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85096065530&doi=10.1021%2facs.jpcc.0c06542&partnerID=40&md5=f3c9c3e9720f1dcbe38f9ea2e742279aBuscema, M., Groenendijk, D.J., Blanter, S.I., Steele, G.A., Van Der Zant, H.S.J., Castellanos-Gomez, A., Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors (2014) Nano Lett., 14, pp. 3347-3352Abbas, A.N., Liu, B., Chen, L., Ma, Y., Cong, S., Aroonyadet, N., Köpf, M., Zhou, C., Black phosphorus gas sensors (2015) ACS Nano, 9, pp. 5618-5624Cui, S., Pu, H., Wells, S.A., Wen, Z., Mao, S., Chang, J., Hersam, M.C., Chen, J., Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors (2015) Nat. Commun., 6, p. 8632Hanlon, D., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics (2015) Nat. Commun., 6, p. 8563Yasaei, P., Kumar, B., Foroozan, T., Wang, C., Asadi, M., Tuschel, D., Indacochea, J.E., Salehi-Khojin, A., High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation (2015) Adv. Mater., 27, pp. 1887-1892Chen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J., Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets (2017) Biosens. Bioelectron., 89, pp. 505-510Lv, Y., Qin, W., Wang, C., Liao, L., Liu, X., Recent Advances in Low-Dimensional Heterojunction-Based Tunnel Field Effect Transistors (2018) Adv. Electron. Mater., 5, p. 1800569Bai, L., Black Phosphorus/Platinum Heterostructure: A Highly Efficient Photocatalyst for Solar-Driven Chemical Reactions (2018) Adv. Mater., 30, p. 1803641Zhang, G., Huang, S., Chaves, A., Song, C., Özçelik, V.O., Low, T., Yan, H., Infrared fingerprints of few-layer black phosphorus (2017) Nat. Commun., 8, p. 14071Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nat. Nanotechnol., 9, pp. 372-377Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Two-dimensional gas of massless Dirac fermions in graphene (2005) Nature, 438, pp. 197-200Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., Ultrahigh electron mobility in suspended graphene (2008) Solid State Commun., 146, pp. 351-355Yu, Z., Ong, Z.Y., Li, S., Xu, J., Bin, Z.G., Zhang, Y.W., Shi, Y., Wang, X., Analyzing the Carrier Mobility in Transition-Metal Dichalcogenide MoS2 Field-Effect Transistors (2017) Adv. Funct. Mater., 27, p. 1604093Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Castro Neto, A.H., Oxygen defects in phosphorene (2015) Phys. Rev. Lett., 114, pp. 26-29Wang, G., Pandey, R., Karna, S.P., Phosphorene Oxide: Stability and Electronic Properties of a Novel Two-Dimensional Material (2015) Nanoscale, 7, pp. 524-531Wang, J., Wei, L., Zhang, L., Jiang, C., Siu-Wai Kong, E., Zhang, Y., Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity (2012) J. Mater. Chem., 22, p. 8327Kc, S., Longo, R.C., Wallace, R.M., Cho, K., Surface oxidation energetics and kinetics on MoS2 monolayer (2015) J. Appl. Phys., 117, p. 135301Zhao, Y., Wu, X., Yang, J., Zeng, X.C., Oxidation of a two-dimensional hexagonal boron nitride monolayer: A first-principles study (2012) Phys. Chem. Chem. Phys., 14, pp. 5545-5550Van Druenen, M., Davitt, F., Collins, T., Glynn, C., O'Dwyer, C., Holmes, J.D., Collins, G., Covalent Functionalization of Few-Layer Black Phosphorus Using Iodonium Salts and Comparison to Diazonium Modified Black Phosphorus (2018) Chem. Mater., 30, pp. 4667-4674Ryder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry (2016) Nat. Chem., 8, pp. 597-602Ziletti, A., Carvalho, A., Trevisanutto, P.E., Campbell, D.K., Coker, D.F., Castro, N.A.H., Phosphorene oxides: Bandgap engineering of phosphorene by oxidation (2015) Phys. Rev. B, 91Wild, S., Monolayer black phosphorus by sequential wet-chemical surface oxidation (2019) RSC Adv., 9, pp. 3570-3576Gómez-Pérez, J., Barna, B., Tóth, I.Y., Kónya, Z., Kukovecz, á., Quantitative tracking of the oxidation of black phosphorus in the few-layers regime (2018) ACS Omega, 3, pp. 12482-12488Wild, S., Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus (2019) Angew. Chem., Int. Ed., 58, pp. 5763-5768Marcia, M., Hirsch, A., Hauke, F., Perylene-based non-covalent functionalization of 2D materials (2017) FlatChem, 1, pp. 89-103Edmonds, M.T., Creating a stable oxide at the surface of black phosphorus (2015) ACS Appl. Mater. Interfaces, 7, pp. 14557-14562Wang, C.-X., Zhang, C., Jiang, J.-W., Rabczuk, T., The Effects of Vacancy and Oxidation on Black Phosphorus Nanoresonators (2017) Nanotechnology, 28, p. 135202Wang, G., Slough, W.J., Pandey, R., Karna, S.P., Degradation of phosphorene in air: understanding at atomic level (2016) 2D Mater., 3Kuntz, K.L., Control of Surface and Edge Oxidation on Phosphorene (2017) ACS Appl. Mater. Interfaces, 9, pp. 9126-9135Lv, W., Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability (2018) ACS Appl. Mater. Interfaces, 10, pp. 9663-9668Hsieh, Y.L., Su, W.H., Huang, C.C., Su, C.Y., In Situ Cleaning and Fluorination of Black Phosphorus for Enhanced Performance of Transistors with High Stability (2020) ACS Appl. Mater. Interfaces, 12, pp. 37375-37383Su, C., Waterproof molecular monolayers stabilize 2D materials (2019) Proc. Natl. Acad. Sci. U. S. A., 116, pp. 20844-20849Cai, Y., Zhang, G., Zhang, Y.-W., Layer-dependent band alignment and work function of few-layer phosphorene (2014) Sci. Rep., 4, p. 6677Castellanos-Gomez, A., Isolation and characterization of few-layer black phosphorus (2014) 2D Mater., 1Island, J.O., Steele, G.A., Van Der Zant, H.S.J., Castellanos-Gomez, A., Environmental instability of few-layer black phosphorus (2015) 2D Mater., 2, p. 011002Wood, J.D., Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation (2014) Nano Lett., 14, pp. 6964-6970Gómez-Pérez, J., Kónya, Z., Kukovecz, á., Acetone improves the topographical homogeneity of liquid phase exfoliated few-layer black phosphorus flakes (2018) Nanotechnology, 29, p. 365303Soler, J.M., Artacho, E., Gale, J.D., Garciá, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14, pp. 2745-2779Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868Woomer, A.H., Farnsworth, T.W., Hu, J., Wells, R.A., Donley, C.L., Warren, S.C., Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy (2015) ACS Nano, 9, pp. 8869-8884Favron, A., Photooxidation and quantum confinement effects in exfoliated black phosphorus (2015) Nat. Mater., 14, pp. 826-832Abellán, G., Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus (2017) J. Am. Chem. Soc., 139, pp. 10432-10440Brent, J.R., Ganguli, A.K., Kumar, V., Lewis, D.J., McNaughter, P.D., O'Brien, P., Sabherwal, P., Tedstone, A.A., On the stability of surfactant-stabilised few-layer black phosphorus in aqueous media (2016) RSC Adv., 6, pp. 86955-86958Gamage, S., Li, Z., Yakovlev, V.S., Lewis, C., Wang, H., Cronin, S.B., Abate, Y., Nanoscopy of Black Phosphorus Degradation (2016) Adv. Mater. Interfaces, 3, p. 1600121Quintanilla, J., Hooley, C., The strong-correlations puzzle (2009) Phys. World, 22, pp. 32-37Sibari, A., Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study (2018) Sol. Energy Mater. Sol. Cells, 180, pp. 253-257Mortazavi, B., Dianat, A., Cuniberti, G., Rabczuk, T., Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation (2016) Electrochim. Acta, 213, pp. 865-870Wang, X., Liu, G., Liu, R.F., Luo, W.W., Sun, B.Z., Lei, X.L., Ouyang, C.Y., Xu, B., Molecular adsorption and strain-induced ferromagnetic semiconductor-metal transition in half-hydrogenated germanene (2019) J. Appl. Phys., 125, p. 082504Kim, M., Kim, H., Park, S., Kim, J.S., Choi, H.J., Im, S., Lee, H., Yi, Y., Intrinsic correlation between electronic structure and degradation: From few layers to bulk black phosphorus (2019) Angew. Chem., Int. Ed., 58, pp. 3754-3758Greiner, M.T., Chai, L., Helander, M.G., Tang, W.M., Lu, Z.H., Transition metal oxide work functions: The influence of cation oxidation state and oxygen vacancies (2012) Adv. Funct. Mater., 22, pp. 4557-4568Fijol, J.F., Holloway, P.H., Ohmic contacts to ZnSe-based materials (1996) Crit. Rev. Solid State Mater. Sci., 21, pp. 77-128Yang, B., Te-Doped Black Phosphorus Field-Effect Transistors (2016) Adv. Mater., 28, pp. 9408-9415Han, C., Oxygen induced strong mobility modulation in few-layer black phosphorus (2017) 2D Mater., 4, p. 021007Journal of Physical Chemistry CDangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer PhosphoreneArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Black PhosphorusCalculationsCurrent voltage characteristicsElectric conductanceElectric resistanceElectronic structureOhmic contactsOxidationOxygenPhosphorusElectrical conductanceElectrical resistance measurementElectrical resistancesElectronic differencesFirst-principles calculationInterstitial oxygenOhmic contact formationP type semiconductorActivation energyGómez-Pérez, J.F., Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, HungaryCorrea, J.D., Universidad de Medellín, Facultad de Ciencias Básicas, Medellín, 050026, ColombiaPravda, C.B., Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, HungaryKónya, Z., Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary, MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, HungaryKukovecz, Á., Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungaryhttp://purl.org/coar/access_right/c_16ecGómez-Pérez J.F.Correa J.D.Pravda C.B.Kónya Z.Kukovecz Á.11407/5934oai:repository.udem.edu.co:11407/59342021-02-05 09:58:04.82Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |