In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation
Atrial fibrillation is the most prevalent cardiac arrhythmia. Paroxysmal atrial fibrillation (pAF) may occur in episodes lasting from minutes to days. Recent studies suggest that some pAF episodes present a left-to-right dominant frequency gradient caused by ionic current gradients. However, how eac...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/6086
- Acceso en línea:
- http://hdl.handle.net/11407/6086
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_9bbccff9c6080ccded6ca9c2b8a88ef2 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/6086 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation |
title |
In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation |
spellingShingle |
In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation |
title_short |
In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation |
title_full |
In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation |
title_fullStr |
In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation |
title_full_unstemmed |
In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation |
title_sort |
In-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillation |
description |
Atrial fibrillation is the most prevalent cardiac arrhythmia. Paroxysmal atrial fibrillation (pAF) may occur in episodes lasting from minutes to days. Recent studies suggest that some pAF episodes present a left-to-right dominant frequency gradient caused by ionic current gradients. However, how each ionic current gradient affects the left-to-right dominant frequency gradient during pAF has not been studied. In this work, we use a 3D model of human atria to study how the ionic current gradients affect the dominant frequency gradient during pAF induced by continuous ectopic activity. The role of the specific gradients of acetylcholine-activated potassium current (I KACh ) and inward-rectifier potassium current (I K1 ) on determining the left-to-right dominant frequency gradient was assessed. The main outcome of this study is that either or both of the I KACh or I K1 gradients are necessary to induce a left-to-right dominant frequency gradient during pAF. However, both gradients are necessary to the left atrium maintaining, by itself, the pAF episode. These findings have potentially important implications for the development of atrial-selective therapeutic approaches. © The Author(s) 2019. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:59:17Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:59:17Z |
dc.date.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
375497 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/6086 |
dc.identifier.doi.none.fl_str_mv |
10.1177/0037549719837346 |
identifier_str_mv |
375497 10.1177/0037549719837346 |
url |
http://hdl.handle.net/11407/6086 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063608650&doi=10.1177%2f0037549719837346&partnerID=40&md5=b79cafb32842cb1361a71288d4bc8286 |
dc.relation.references.none.fl_str_mv |
Kirchhof, P., Benussi, S., Kotecha, D., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) EP Europace, 18 (11), pp. 1609-1678 Nattel, S., Burstein, B., Dobrev, D., Atrial remodeling and atrial fibrillation: Mechanisms and implications (2008) Circ Arrhythm Electrophysiol, 1 (1), pp. 62-73 Niwano, S., Wakisaka, Y., Kojima, J., Monitoring the progression of the atrial electrical remodeling in patients with paroxysmal atrial fibrillation (2003) Circ J, 67 (2), pp. 133-138 Haissaguerre, M., Jais, P., Shah, D.C., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins (1998) N Engl J Med, 339 (10), pp. 659-666 Chen, S.A., Hsieh, M.H., Tai, C.T., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: Electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation (1999) Circulation, 100 (18), pp. 1879-1886 Arentz, T., Haegeli, L., Sanders, P., High-density mapping of spontaneous pulmonary vein activity initiating atrial fibrillation in humans (2007) J Cardiovasc Electrophysiol, 18 (1), pp. 31-38 Patterson, E., Jackman, W.M., Beckman, K.J., Spontaneous pulmonary vein firing in man: Relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro (2007) J Cardiovasc Electrophysiol, 18 (10), pp. 1067-1075 Traykov, V.B., Pap, R., Gingl, Z., Role of triggering pulmonary veins in the maintenance of sustained paroxysmal atrial fibrillation (2013) Pacing Clin Electrophysiol, 36 (7), pp. 845-854 Jaïs, P., Haïssaguerre, M., Shah, D.C., A focal source of atrial fibrillation treated by discrete radiofrequency ablation (1997) Circulation, 95 (3), pp. 572-576 Kumagai, K., Gondo, N., Matsumoto, N., New technique for simultaneous catheter mapping of pulmonary veins for catheter ablation in focal atrial fibrillation (2000) Cardiology, 94 (4), pp. 233-238 Pison, L., Tilz, R., Jalife, J., Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: Implications for the choice of the most effective ablation therapy (2016) J Intern Med, 279 (5), pp. 449-456 Mandapati, R., Skanes, A., Chen, J., Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart (2000) Circulation, 101 (2), pp. 194-199 Jalife, J., Berenfeld, O., Mansour, M., Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation (2002) Cardiovasc Res, 54 (2), pp. 204-216 Belhassen, B., Glick, A., Viskin, S., Reentry in a pulmonary vein as a possible mechanism of focal atrial fibrillation (2004) J Cardiovasc Electrophysiol, 15 (7), pp. 824-828 Sanders, P., Berenfeld, O., Hocini, M., Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans (2005) Circulation, 112 (6), pp. 789-797 Yamazaki, M., Filgueiras-Rama, D., Berenfeld, O., Ectopic and reentrant activation patterns in the posterior left atrium during stretch-related atrial fibrillation (2012) Prog Biophys Mol Biol, 110 (2-3), pp. 269-277 Bingen, B.O., Engels, M.C., Schalij, M.J., Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes (2014) Cardiovasc Res, 104 (1), pp. 194-205 Climent, A.M., Guillem, M.S., Fuentes, L., Role of atrial tissue remodeling on rotor dynamics: An in vitro study (2015) Am J Physiol Circ Physiol, 309 (11), pp. H1964-H1973 Varela, M., Colman, M.A., Hancox, J.C., Atrial heterogeneity generates re-entrant substrate during atrial fibrillation and anti-arrhythmic drug action: Mechanistic insights from canine atrial models (2016) PLoS Comput Biol, 12 (12), p. e1005245 Lim, H.S., Hocini, M., Dubois, R., Complexity and distribution of drivers in relation to duration of persistent atrial fibrillation (2017) J Am Coll Cardiol, 69 (10), pp. 1257-1269 Miller, J.M., Kalra, V., Das, M.K., Clinical benefit of ablating localized sources for human atrial fibrillation: The Indiana University FIRM registry (2017) J Am Coll Cardiol, 69 (10), pp. 1247-1256 Hasebe, H., Yoshida, K., Iida, M., Right-to-left frequency gradient during atrial fibrillation initiated by right atrial ectopies and its augmentation by adenosine triphosphate: Implications of right atrial fibrillation (2016) Heart Rhythm, 13 (2), pp. 354-363 Atienza, F., Almendral, J., Jalife, J., Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm (2009) Heart Rhythm, 6 (1), pp. 33-40 Zhou, Z., Jin, Q., Chen, L.Y., Noninvasive imaging of high-frequency drivers and reconstruction of global dominant frequency maps in patients with paroxysmal and persistent atrial fibrillation (2016) IEEE Trans Biomed Eng, 63 (6), pp. 1333-1340 Cervigón, R., Castells, F., Gómez-Pulido, J., Granger causality and Jensen–Shannon divergence to determine dominant atrial area in atrial fibrillation (2018) Entropy, 20 (1), p. 57 Csepe, T.A., Hansen, B.J., Fedorov, V.V., Atrial fibrillation driver mechanisms: Insight from the isolated human heart (2017) Trends Cardiovasc Med, 27 (1), pp. 1-11 Voigt, N., Trausch, A., Knaut, M., Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation (2010) Circ Arrhythm Electrophysiol, 3 (5), pp. 472-480 Samie, F.H., Berenfeld, O., Anumonwo, J., Rectification of the background potassium current: A determinant of rotor dynamics in ventricular fibrillation (2001) Circ Res, 89 (12), pp. 1216-1223 Sekar, R.B., Kizana, E., Cho, H.C., I K1 heterogeneity affects genesis and stability of spiral waves in cardiac myocyte monolayers (2009) Circ Res, 104 (3), pp. 355-364 Berenfeld, O., The major role of I K1 in mechanisms of rotor drift in the atria: A computational study (2016) Clin Med Insights Cardiol, 10 (1), pp. 71-79 Berenfeld, O., Jalife, J., Mechanisms of atrial fibrillation: Rotors, ionic determinants, and excitation frequency (2014) Cardiol Clin, 32 (4), pp. 495-506 Ehrlich, J.R., Inward rectifier potassium currents as a target for atrial fibrillation therapy (2008) J Cardiovasc Pharmacol, 52 (2), pp. 129-135 Sarmast, F., Kolli, A., Zaitsev, A., Cholinergic atrial fibrillation: I K,ACh gradients determine unequal left/right atrial frequencies and rotor dynamics (2003) Cardiovasc Res, 59 (4), pp. 863-873 Mansour, M., Mandapati, R., Berenfeld, O., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart (2001) Circulation, 103 (21), pp. 2631-2636 Tobón, C., Ruiz-Villa, C.A., Heidenreich, E., A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship (2013) PLoS One, 8 (2), p. e50883 Saiz, J., Tobón, C., Supraventricular arrhythmias in a realistic 3D model of the human atria (2013) Cardiac electrophysiology: From cell to bedside, pp. 351-359. , Zipes D.P., Jalife J., (eds), 6th ed., Philadelphia, PA, USA, Elsevier Saunders, In:, (eds Sanchez-Quintana, D., Anderson, R., Cabrera, J., The terminal crest: Morphological features relevant to electrophysiology (2002) Heart, 88 (4), pp. 406-411 Cabrera, J.A., Ho, S.Y., Climent, V., The architecture of the left lateral atrial wall: A particular anatomic region with implications for ablation of atrial fibrillation (2008) Eur Heart J, 29 (3), pp. 356-362 Ho, S.Y., Sánchez-Quintana, D., The importance of atrial structure and fibers (2009) Clin Anat, 22 (1), pp. 52-63 Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am J Physiol, 275 (1), pp. H301-H321 Kneller, J., Zou, R., Vigmond, E.J., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ Res, 90 (9), pp. E73-E87 Feng, J., Yue, L., Wang, Z., Ionic mechanisms of regional action potential heterogeneity in the canine right atrium (1998) Circ Res, 83 (5), pp. 541-551 Cha, T.J., Ehrlich, J.R., Zhang, L., Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: Comparison with left atrium and potential relation to arrhythmogenesis (2005) Circulation, 111 (6), pp. 728-735 Li, D., Zhang, L., Kneller, J., Potential ionic mechanism for repolarization differences between canine right and left atrium (2001) Circ Res, 88 (11), pp. 1168-1175 Heidenreich, E.A., Ferrero, J.M., Doblaré, M., Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology (2010) Ann Biomed Eng, 38 (7), pp. 2331-2345 Boineau, J.P., Canavan, T.E., Schuessler, R.B., Demonstration of a widely distributed atrial pacemaker complex in the human heart (1988) Circulation, 77 (6), pp. 1221-1237 Shah, D.C., Haissaguerre, M., Jais, P., High-resolution mapping of tachycardia originating from the superior vena cava: Evidence of electrical heterogeneity, slow conduction, and possible circus movement reentry (2002) J Cardiovasc Electrophysiol, 13 (4), pp. 388-392 Ugarte, J.P., Orozco-Duque, A., Tobón, C., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PLoS One, 9 (12), p. e114577 Schuessler, R.B., Grayson, T.M., Bromberg, B.I., Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium (1992) Circ Res, 71 (5), pp. 1254-1267 Veenhuyzen, G.D., Simpson, C.S., Abdollah, H., Atrial fibrillation (2004) CMAJ, 171 (7), pp. 755-760 Tsai, C.F., Tai, C.T., Hsieh, M.H., Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: Electrophysiological characteristics and results of radiofrequency ablation (2000) Circulation, 102, pp. 67-74 Berenfeld, O., Zaitsev, A.V., Mironov, S.F., Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium (2002) Circ Res, 90 (11), pp. 1173-1180 Berenfeld, O., Ionic and substrate mechanism of atrial fibrillation: Rotors and the exitation frequency approach (2010) Arch Cardiol Mex, 80 (4), pp. 301-314 Atienza, F., Almendral, J., Moreno, J., Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: Evidence for a reentrant mechanism (2006) Circulation, 114 (23), pp. 2434-2442 Lazar, S., Dixit, S., Marchlinski, F.E., Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans (2004) Circulation, 110 (20), pp. 3181-3186 Ehrlich, J.R., Biliczki, P., Hohnloser, S.H., Atrial-selective approaches for the treatment of atrial fibrillation (2008) J Am Coll Cardiol, 51 (8), pp. 787-792 Nadimi, A.E., Ebrahimipour, S.Y., Afshar, E.G., Nano-scale drug delivery systems for antiarrhythmic agents (2018) Eur J Med Chem, 157, pp. 1153-1163 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
SAGE Publications Ltd |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
SAGE Publications Ltd |
dc.source.none.fl_str_mv |
Simulation |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159267113992192 |
spelling |
20192021-02-05T14:59:17Z2021-02-05T14:59:17Z375497http://hdl.handle.net/11407/608610.1177/0037549719837346Atrial fibrillation is the most prevalent cardiac arrhythmia. Paroxysmal atrial fibrillation (pAF) may occur in episodes lasting from minutes to days. Recent studies suggest that some pAF episodes present a left-to-right dominant frequency gradient caused by ionic current gradients. However, how each ionic current gradient affects the left-to-right dominant frequency gradient during pAF has not been studied. In this work, we use a 3D model of human atria to study how the ionic current gradients affect the dominant frequency gradient during pAF induced by continuous ectopic activity. The role of the specific gradients of acetylcholine-activated potassium current (I KACh ) and inward-rectifier potassium current (I K1 ) on determining the left-to-right dominant frequency gradient was assessed. The main outcome of this study is that either or both of the I KACh or I K1 gradients are necessary to induce a left-to-right dominant frequency gradient during pAF. However, both gradients are necessary to the left atrium maintaining, by itself, the pAF episode. These findings have potentially important implications for the development of atrial-selective therapeutic approaches. © The Author(s) 2019.engSAGE Publications LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063608650&doi=10.1177%2f0037549719837346&partnerID=40&md5=b79cafb32842cb1361a71288d4bc8286Kirchhof, P., Benussi, S., Kotecha, D., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS (2016) EP Europace, 18 (11), pp. 1609-1678Nattel, S., Burstein, B., Dobrev, D., Atrial remodeling and atrial fibrillation: Mechanisms and implications (2008) Circ Arrhythm Electrophysiol, 1 (1), pp. 62-73Niwano, S., Wakisaka, Y., Kojima, J., Monitoring the progression of the atrial electrical remodeling in patients with paroxysmal atrial fibrillation (2003) Circ J, 67 (2), pp. 133-138Haissaguerre, M., Jais, P., Shah, D.C., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins (1998) N Engl J Med, 339 (10), pp. 659-666Chen, S.A., Hsieh, M.H., Tai, C.T., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: Electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation (1999) Circulation, 100 (18), pp. 1879-1886Arentz, T., Haegeli, L., Sanders, P., High-density mapping of spontaneous pulmonary vein activity initiating atrial fibrillation in humans (2007) J Cardiovasc Electrophysiol, 18 (1), pp. 31-38Patterson, E., Jackman, W.M., Beckman, K.J., Spontaneous pulmonary vein firing in man: Relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro (2007) J Cardiovasc Electrophysiol, 18 (10), pp. 1067-1075Traykov, V.B., Pap, R., Gingl, Z., Role of triggering pulmonary veins in the maintenance of sustained paroxysmal atrial fibrillation (2013) Pacing Clin Electrophysiol, 36 (7), pp. 845-854Jaïs, P., Haïssaguerre, M., Shah, D.C., A focal source of atrial fibrillation treated by discrete radiofrequency ablation (1997) Circulation, 95 (3), pp. 572-576Kumagai, K., Gondo, N., Matsumoto, N., New technique for simultaneous catheter mapping of pulmonary veins for catheter ablation in focal atrial fibrillation (2000) Cardiology, 94 (4), pp. 233-238Pison, L., Tilz, R., Jalife, J., Pulmonary vein triggers, focal sources, rotors and atrial cardiomyopathy: Implications for the choice of the most effective ablation therapy (2016) J Intern Med, 279 (5), pp. 449-456Mandapati, R., Skanes, A., Chen, J., Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart (2000) Circulation, 101 (2), pp. 194-199Jalife, J., Berenfeld, O., Mansour, M., Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation (2002) Cardiovasc Res, 54 (2), pp. 204-216Belhassen, B., Glick, A., Viskin, S., Reentry in a pulmonary vein as a possible mechanism of focal atrial fibrillation (2004) J Cardiovasc Electrophysiol, 15 (7), pp. 824-828Sanders, P., Berenfeld, O., Hocini, M., Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans (2005) Circulation, 112 (6), pp. 789-797Yamazaki, M., Filgueiras-Rama, D., Berenfeld, O., Ectopic and reentrant activation patterns in the posterior left atrium during stretch-related atrial fibrillation (2012) Prog Biophys Mol Biol, 110 (2-3), pp. 269-277Bingen, B.O., Engels, M.C., Schalij, M.J., Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes (2014) Cardiovasc Res, 104 (1), pp. 194-205Climent, A.M., Guillem, M.S., Fuentes, L., Role of atrial tissue remodeling on rotor dynamics: An in vitro study (2015) Am J Physiol Circ Physiol, 309 (11), pp. H1964-H1973Varela, M., Colman, M.A., Hancox, J.C., Atrial heterogeneity generates re-entrant substrate during atrial fibrillation and anti-arrhythmic drug action: Mechanistic insights from canine atrial models (2016) PLoS Comput Biol, 12 (12), p. e1005245Lim, H.S., Hocini, M., Dubois, R., Complexity and distribution of drivers in relation to duration of persistent atrial fibrillation (2017) J Am Coll Cardiol, 69 (10), pp. 1257-1269Miller, J.M., Kalra, V., Das, M.K., Clinical benefit of ablating localized sources for human atrial fibrillation: The Indiana University FIRM registry (2017) J Am Coll Cardiol, 69 (10), pp. 1247-1256Hasebe, H., Yoshida, K., Iida, M., Right-to-left frequency gradient during atrial fibrillation initiated by right atrial ectopies and its augmentation by adenosine triphosphate: Implications of right atrial fibrillation (2016) Heart Rhythm, 13 (2), pp. 354-363Atienza, F., Almendral, J., Jalife, J., Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm (2009) Heart Rhythm, 6 (1), pp. 33-40Zhou, Z., Jin, Q., Chen, L.Y., Noninvasive imaging of high-frequency drivers and reconstruction of global dominant frequency maps in patients with paroxysmal and persistent atrial fibrillation (2016) IEEE Trans Biomed Eng, 63 (6), pp. 1333-1340Cervigón, R., Castells, F., Gómez-Pulido, J., Granger causality and Jensen–Shannon divergence to determine dominant atrial area in atrial fibrillation (2018) Entropy, 20 (1), p. 57Csepe, T.A., Hansen, B.J., Fedorov, V.V., Atrial fibrillation driver mechanisms: Insight from the isolated human heart (2017) Trends Cardiovasc Med, 27 (1), pp. 1-11Voigt, N., Trausch, A., Knaut, M., Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation (2010) Circ Arrhythm Electrophysiol, 3 (5), pp. 472-480Samie, F.H., Berenfeld, O., Anumonwo, J., Rectification of the background potassium current: A determinant of rotor dynamics in ventricular fibrillation (2001) Circ Res, 89 (12), pp. 1216-1223Sekar, R.B., Kizana, E., Cho, H.C., I K1 heterogeneity affects genesis and stability of spiral waves in cardiac myocyte monolayers (2009) Circ Res, 104 (3), pp. 355-364Berenfeld, O., The major role of I K1 in mechanisms of rotor drift in the atria: A computational study (2016) Clin Med Insights Cardiol, 10 (1), pp. 71-79Berenfeld, O., Jalife, J., Mechanisms of atrial fibrillation: Rotors, ionic determinants, and excitation frequency (2014) Cardiol Clin, 32 (4), pp. 495-506Ehrlich, J.R., Inward rectifier potassium currents as a target for atrial fibrillation therapy (2008) J Cardiovasc Pharmacol, 52 (2), pp. 129-135Sarmast, F., Kolli, A., Zaitsev, A., Cholinergic atrial fibrillation: I K,ACh gradients determine unequal left/right atrial frequencies and rotor dynamics (2003) Cardiovasc Res, 59 (4), pp. 863-873Mansour, M., Mandapati, R., Berenfeld, O., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart (2001) Circulation, 103 (21), pp. 2631-2636Tobón, C., Ruiz-Villa, C.A., Heidenreich, E., A three-dimensional human atrial model with fiber orientation. Electrograms and arrhythmic activation patterns relationship (2013) PLoS One, 8 (2), p. e50883Saiz, J., Tobón, C., Supraventricular arrhythmias in a realistic 3D model of the human atria (2013) Cardiac electrophysiology: From cell to bedside, pp. 351-359. , Zipes D.P., Jalife J., (eds), 6th ed., Philadelphia, PA, USA, Elsevier Saunders, In:, (edsSanchez-Quintana, D., Anderson, R., Cabrera, J., The terminal crest: Morphological features relevant to electrophysiology (2002) Heart, 88 (4), pp. 406-411Cabrera, J.A., Ho, S.Y., Climent, V., The architecture of the left lateral atrial wall: A particular anatomic region with implications for ablation of atrial fibrillation (2008) Eur Heart J, 29 (3), pp. 356-362Ho, S.Y., Sánchez-Quintana, D., The importance of atrial structure and fibers (2009) Clin Anat, 22 (1), pp. 52-63Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am J Physiol, 275 (1), pp. H301-H321Kneller, J., Zou, R., Vigmond, E.J., Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties (2002) Circ Res, 90 (9), pp. E73-E87Feng, J., Yue, L., Wang, Z., Ionic mechanisms of regional action potential heterogeneity in the canine right atrium (1998) Circ Res, 83 (5), pp. 541-551Cha, T.J., Ehrlich, J.R., Zhang, L., Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: Comparison with left atrium and potential relation to arrhythmogenesis (2005) Circulation, 111 (6), pp. 728-735Li, D., Zhang, L., Kneller, J., Potential ionic mechanism for repolarization differences between canine right and left atrium (2001) Circ Res, 88 (11), pp. 1168-1175Heidenreich, E.A., Ferrero, J.M., Doblaré, M., Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology (2010) Ann Biomed Eng, 38 (7), pp. 2331-2345Boineau, J.P., Canavan, T.E., Schuessler, R.B., Demonstration of a widely distributed atrial pacemaker complex in the human heart (1988) Circulation, 77 (6), pp. 1221-1237Shah, D.C., Haissaguerre, M., Jais, P., High-resolution mapping of tachycardia originating from the superior vena cava: Evidence of electrical heterogeneity, slow conduction, and possible circus movement reentry (2002) J Cardiovasc Electrophysiol, 13 (4), pp. 388-392Ugarte, J.P., Orozco-Duque, A., Tobón, C., Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model (2014) PLoS One, 9 (12), p. e114577Schuessler, R.B., Grayson, T.M., Bromberg, B.I., Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium (1992) Circ Res, 71 (5), pp. 1254-1267Veenhuyzen, G.D., Simpson, C.S., Abdollah, H., Atrial fibrillation (2004) CMAJ, 171 (7), pp. 755-760Tsai, C.F., Tai, C.T., Hsieh, M.H., Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: Electrophysiological characteristics and results of radiofrequency ablation (2000) Circulation, 102, pp. 67-74Berenfeld, O., Zaitsev, A.V., Mironov, S.F., Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium (2002) Circ Res, 90 (11), pp. 1173-1180Berenfeld, O., Ionic and substrate mechanism of atrial fibrillation: Rotors and the exitation frequency approach (2010) Arch Cardiol Mex, 80 (4), pp. 301-314Atienza, F., Almendral, J., Moreno, J., Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: Evidence for a reentrant mechanism (2006) Circulation, 114 (23), pp. 2434-2442Lazar, S., Dixit, S., Marchlinski, F.E., Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans (2004) Circulation, 110 (20), pp. 3181-3186Ehrlich, J.R., Biliczki, P., Hohnloser, S.H., Atrial-selective approaches for the treatment of atrial fibrillation (2008) J Am Coll Cardiol, 51 (8), pp. 787-792Nadimi, A.E., Ebrahimipour, S.Y., Afshar, E.G., Nano-scale drug delivery systems for antiarrhythmic agents (2018) Eur J Med Chem, 157, pp. 1153-1163SimulationIn-silico study of the ionic current gradients determining left-to-right atrial frequencies during paroxysmal atrial fibrillationArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Palacio, L.C., MATBIOM, Universidad de Medellín, Medellín, ColombiaUgarte, J.P., GIMSC, Universidad de San Buenaventura, Medellín, ColombiaTobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecPalacio L.C.Ugarte J.P.Tobón C.11407/6086oai:repository.udem.edu.co:11407/60862021-02-05 09:59:18.024Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |