Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well
The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coeffici...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4273
- Acceso en línea:
- http://hdl.handle.net/11407/4273
- Palabra clave:
- Electric field
Hydrostatic pressure
Multiple quantum well
Optical properties
Electric fields
Electromagnetic wave absorption
Electronic structure
Equations of motion
Hydraulics
Hydrostatic pressure
Light absorption
Matrix algebra
Natural frequencies
Nonlinear equations
Nonlinear optics
Optical properties
Quantum optics
Refractive index
Semiconducting indium compounds
Density matrix equations
Gaas multiple quantum wells
Nonlinear contributions
Nonlinear optical absorption
Pressure induced effects
Refractive index changes
Rotating wave approximations
Static electric fields
Semiconductor quantum wells
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_835b952d90c8c2fe395a5894475f1d33 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4273 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well |
title |
Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well |
spellingShingle |
Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well Electric field Hydrostatic pressure Multiple quantum well Optical properties Electric fields Electromagnetic wave absorption Electronic structure Equations of motion Hydraulics Hydrostatic pressure Light absorption Matrix algebra Natural frequencies Nonlinear equations Nonlinear optics Optical properties Quantum optics Refractive index Semiconducting indium compounds Density matrix equations Gaas multiple quantum wells Nonlinear contributions Nonlinear optical absorption Pressure induced effects Refractive index changes Rotating wave approximations Static electric fields Semiconductor quantum wells |
title_short |
Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well |
title_full |
Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well |
title_fullStr |
Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well |
title_full_unstemmed |
Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well |
title_sort |
Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well |
dc.contributor.affiliation.spa.fl_str_mv |
Ospina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia Mora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Facultad de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, Mexico Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia |
dc.subject.keyword.eng.fl_str_mv |
Electric field Hydrostatic pressure Multiple quantum well Optical properties Electric fields Electromagnetic wave absorption Electronic structure Equations of motion Hydraulics Hydrostatic pressure Light absorption Matrix algebra Natural frequencies Nonlinear equations Nonlinear optics Optical properties Quantum optics Refractive index Semiconducting indium compounds Density matrix equations Gaas multiple quantum wells Nonlinear contributions Nonlinear optical absorption Pressure induced effects Refractive index changes Rotating wave approximations Static electric fields Semiconductor quantum wells |
topic |
Electric field Hydrostatic pressure Multiple quantum well Optical properties Electric fields Electromagnetic wave absorption Electronic structure Equations of motion Hydraulics Hydrostatic pressure Light absorption Matrix algebra Natural frequencies Nonlinear equations Nonlinear optics Optical properties Quantum optics Refractive index Semiconducting indium compounds Density matrix equations Gaas multiple quantum wells Nonlinear contributions Nonlinear optical absorption Pressure induced effects Refractive index changes Rotating wave approximations Static electric fields Semiconductor quantum wells |
description |
The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses. Copyright © 2017 American Scientific Publishers All rights reserved. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:43Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:43Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.isbn.none.fl_str_mv |
15334880 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4273 |
dc.identifier.doi.none.fl_str_mv |
10.1166/jnn.2017.12567 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
15334880 10.1166/jnn.2017.12567 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4273 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010039311&doi=10.1166%2fjnn.2017.12567&partnerID=40&md5=ce56378298744fab3f21e7cdf5260203 |
dc.relation.ispartofes.spa.fl_str_mv |
Journal of Nanoscience and Nanotechnology Journal of Nanoscience and Nanotechnology Volume 17, Issue 2, 2017, Pages 1247-1254 |
dc.relation.references.spa.fl_str_mv |
Ahn, D., & Chuang, S. L. (1988). Electric-field dependence of the intersubband optical absorption in a semiconductor quantum well. Superlattices and Microstructures, 4(2), 153-157. doi:10.1016/0749-6036(88)90028-6 Baghramyan, H. M., Barseghyan, M. G., Kirakosyan, A. A., Restrepo, R. L., Mora-Ramos, M. E., & Duque, C. A. (2014). Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1-xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration. Journal of Luminescence, 145, 676-683. doi:10.1016/j.jlumin.2013.08.061 Barseghyan, M. G., Restrepo, R. L., Mora-Ramos, M. E., Kirakosyan, A. A., & Duque, C. A. (2012). Nanoscale Res.Lett., 7. BenDaniel, D. J., & Duke, C. B. (1966). Space-charge effects on electron tunneling. Physical Review, 152(2), 683-692. doi:10.1103/PhysRev.152.683 Berglund, C. N., & Jayaraman, A. (1969). Hydrostatic-pressure dependence of the electronic properties of VO2 near the semiconductor-metal transition temperature. Physical Review, 185(3), 1034-1039. doi:10.1103/PhysRev.185.1034 Betancourt-Riera, R., Betancourt-Riera, R., Riera, R., & Rosas, R. (2012). Electron raman scattering in asymmetrical multiple quantum wells system with an external electric field. Physica E: Low-Dimensional Systems and Nanostructures, 44(7-8), 1152-1157. doi:10.1016/j.physe.2012.01.007 Butov, L. V., Zrenner, A., Abstreiter, G., Petinova, A. V., & Eberl, K. (1995). Phys.Rev.B, 52 Enderlein, R., Holz, T., & Gondar, J. L. (1989). The quantum well in an electric field A density of states approach. Physica Status Solidi (b), 156(1), 259-273. doi:10.1002/pssb.2221560126 Esquivias, I., Weisser, S., Ralston, J. D., Gallagher, D. F. G., Larkins, E. C., Tasker, P. J., . . . Fleissner, J. (1992). IVB-1 high-speed GaAs/AlGaAs multiple-quantum-well lasers: Design and characterization. IEEE Transactions on Electron Devices, 39(11), 2660-2661. doi:10.1109/16.163524 Ferreira, R., & Bastard, G. (1988). Wannier-stark levels in the valence band of semiconductor multiple quantum wells. Physical Review B, 38(12), 8406-8411. doi:10.1103/PhysRevB.38.8406 Franssen, G., Suski, T., Perlin, P., Bohdan, R., Bercha, A., Adamiec, P., . . . Grzegory, I. (2005). Screening of built-in electric fields in group III-nitride laser diodes observed by means of hydrostatic pressure. Paper presented at the Physica Status Solidi C: Conferences, , 2(3) 1019-1022. doi:10.1002/pssc.200460612 Franssen, G., Suski, T., Perlin, P., Bohdan, R., Bercha, A., Trzeciakowski, W., . . . Grzegory, I. (2006). Screening of polarization induced electric fields in blue/violet InGaN/GaN laser diodes by si doping in quantum barriers revealed by hydrostatic pressure. Physica Status Solidi (C) Current Topics in Solid State Physics, 3, 2303-2306. doi:10.1002/pssc.200565317 Gao, X., Souza, M. D., Botez, D., & Knezevic, I. (2007). J.Appl.Phys., 102. Ghatak, A. K., Goyal, I. C., & Gallawa, R. L. (1990). Mean lifetime calculations of quantum well structures: A rigorous analysis. IEEE Journal of Quantum Electronics, 26(2), 305-310. doi:10.1109/3.44962 Goossen, K. W., Cunningham, J. E., & Jan, W. Y. (1994). Electroabsorption in ultranarrow-barrier GaAs/AlGaAs multiple quantum well modulators. Applied Physics Letters, 64(9), 1071-1073. doi:10.1063/1.110935 Gorczyca, I., Suski, T., Christensen, N. E., & Svane, A. (2012). Appl.Phys.Lett., 101. Grahn, H. T., Haug, R. J., Müller, W., & Ploog, K. (1991). Electric-field domains in semiconductor superlattices: A novel system for tunneling between 2D systems. Physical Review Letters, 67(12), 1618-1621. doi:10.1103/PhysRevLett.67.1618 Griebl, E., Kerner, W., Haserer, B., Reisinger, T., Hahn, B., & Gebhardt, W. (1996). Absorption and photoluminescence of ZnSe/ZnxCd1-xSe superlattices and quantum wells under hydrostatic pressure. Acta Physica Polonica A, 90(5), 1017-1021. doi:10.12693/APhysPolA.90.1017 Jin, S. R., Ahmad, C. N., Sweeney, S. J., Adams, A. R., Murdin, B. N., Page, H., . . . Tomic, S. (2006). J.Appl.Phys., 89. Jirauschek, C., & Kubis, T. (2014). Appl.Phys.Rev., 1. Kohandani, R., Zandi, A., & Kaatuzian, H. (2014). Appl.Opt., 53, 1228. Leburton, J. P., & Kahen, K. (1985). GAAS-ALGAS superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation. Superlattices and Microstructures, 1(1), 49-53. doi:10.1016/0749-6036(85)90028-X Lu, S. L., Schrottke, L., Teitsworth, S. W., Hey, R., & Grahn, H. T. (2006). Phys.Rev.B, 73. Lu, X., Wienold, M., Schrottke, L., Biermann, K., & Grahn, H. T. (2013). J.Appl.Phys., 113. Luc-Koenig, E., & Bachelier, A. (1980). Systematic theoretical study of the stark spectrum of atomic hydrogen. II. density of oscillator strengths. comparison with experimental absorption spectra in solid-state and atomic physics. Journal of Physics B: Atomic and Molecular Physics, 13(9), 1769-1790. doi:10.1088/0022-3700/13/9/010 Mora, M. E., Perez, R., & Sommers, C. B. (1985). TRANSFER MATRIX IN ONE DIMENSIONAL PROBLEMS. Journal De Physique Paris, 46(7), 1021-1026. Morifuji, M., Nishikawa, Y., Hamaguchi, C., & Fujii, T. (1992). Electronic band structure of superlattices under a uniform electric field and wannier-stark effect. Semiconductor Science and Technology, 7(8), 1047-1051. doi:10.1088/0268-1242/7/8/004 Panda, S., & Panda, B. K. (2001). Analytic methods for field induced tunneling in quantum wells with arbitrary potential profiles. Pramana - Journal of Physics, 56(6), 809-822. Paspalakis, E., Boviatsis, J., & Baskoutas, S. (2013). Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots. Journal of Applied Physics, 114(15) doi:10.1063/1.4825320 Patel, D., Menoni, C. S., Temkin, H., Tome, C., Logan, R. A., & Coblentz, D. (1993). Optical properties of semiconductor lasers with hydrostatic pressure. Journal of Applied Physics, 74(1), 737-739. doi:10.1063/1.355242 Reyes-Gómez, E., Raigoza, N., & Oliveira, L. E. (2013). Europhys.Lett., 104. Ritze, M., Horing, N. J. M., & Enderlein, R. (1993). Phys.Rev.B, 47. Satpathy, S., Chandrasekhar, M., Chandrasekhar, H. R., & Venkateswaran, U. (1991). Phys.Rev.B, 44. Schönhöbela, A. M., Girón, J. A., & Porras-Montenegro, N. (2014). J.Phys.: Conf.Ser., 480. Trallero Giner, C., & López Gondar, J. (1986). Exact wave functions and energy levels for a quantum well with an applied electric field. Physica B+C, 138(3), 287-294. doi:10.1016/0378-4363(86)90009-4 Venkateswaran, U., Chandrasekhar, M., Chandrasekhar, H. R., Vojak, B. A., Chambers, F. A., & Meese, J. M. (1987). High pressure study of GaAsAlxGa1-xAs quantum wells at low temperatures. Superlattices and Microstructures, 3(3), 217-223. doi:10.1016/0749-6036(87)90061-9 Vina, L., Mendez, E. E., Wang, W. I., Chang, L. L., & Esaki, L. (1987). Stark shifts in gaas/gaalas quantum wells studied by photoluminescence spectroscopy. Journal of Physics C: Solid State Physics, 20(18), 2803-2815. doi:10.1088/0022-3719/20/18/016 von Plessen, G., Meier, T., Koch, M., Feldmann, J., Koch, S. W., Thomas, P., . . . Kopf, R. F. (1995). Electric-field-induced exciton ionization in a GaAs/AlGaAs superlattice. Il Nuovo Cimento D, 17(11-12), 1759-1762. doi:10.1007/BF02457276 Wang, L., Jia, W., Tang, R., Wang, Y., Zhou, J., Ge, W., & Wang, B. (1990). High pressure behavior of electronic states in GaAs/Ga1-xAlxAs multiple quantum wells. Superlattices and Microstructures, 7(2), 175-178. doi:10.1016/0749-6036(90)90133-R Wang, Y., Park, D. H., & Brennan, K. F. (1990). Theoretical analysis of confined quantum state GaAs/AlGaAs solid-state photomultipliers. IEEE Journal of Quantum Electronics, 26(2), 285-295. doi:10.1109/3.44960 Xia, J. -., & Fan, W. -. (1989). Electronic structures of superlattices under in-plane magnetic field. Physical Review B, 40(12), 8508-8515. doi:10.1103/PhysRevB.40.8508 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159252593311744 |
spelling |
2017-12-19T19:36:43Z2017-12-19T19:36:43Z201715334880http://hdl.handle.net/11407/427310.1166/jnn.2017.12567reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínThe properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses. Copyright © 2017 American Scientific Publishers All rights reserved.enghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85010039311&doi=10.1166%2fjnn.2017.12567&partnerID=40&md5=ce56378298744fab3f21e7cdf5260203Journal of Nanoscience and NanotechnologyJournal of Nanoscience and Nanotechnology Volume 17, Issue 2, 2017, Pages 1247-1254Ahn, D., & Chuang, S. L. (1988). Electric-field dependence of the intersubband optical absorption in a semiconductor quantum well. Superlattices and Microstructures, 4(2), 153-157. doi:10.1016/0749-6036(88)90028-6Baghramyan, H. M., Barseghyan, M. G., Kirakosyan, A. A., Restrepo, R. L., Mora-Ramos, M. E., & Duque, C. A. (2014). Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1-xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration. Journal of Luminescence, 145, 676-683. doi:10.1016/j.jlumin.2013.08.061Barseghyan, M. G., Restrepo, R. L., Mora-Ramos, M. E., Kirakosyan, A. A., & Duque, C. A. (2012). Nanoscale Res.Lett., 7.BenDaniel, D. J., & Duke, C. B. (1966). Space-charge effects on electron tunneling. Physical Review, 152(2), 683-692. doi:10.1103/PhysRev.152.683Berglund, C. N., & Jayaraman, A. (1969). Hydrostatic-pressure dependence of the electronic properties of VO2 near the semiconductor-metal transition temperature. Physical Review, 185(3), 1034-1039. doi:10.1103/PhysRev.185.1034Betancourt-Riera, R., Betancourt-Riera, R., Riera, R., & Rosas, R. (2012). Electron raman scattering in asymmetrical multiple quantum wells system with an external electric field. Physica E: Low-Dimensional Systems and Nanostructures, 44(7-8), 1152-1157. doi:10.1016/j.physe.2012.01.007Butov, L. V., Zrenner, A., Abstreiter, G., Petinova, A. V., & Eberl, K. (1995). Phys.Rev.B, 52Enderlein, R., Holz, T., & Gondar, J. L. (1989). The quantum well in an electric field A density of states approach. Physica Status Solidi (b), 156(1), 259-273. doi:10.1002/pssb.2221560126Esquivias, I., Weisser, S., Ralston, J. D., Gallagher, D. F. G., Larkins, E. C., Tasker, P. J., . . . Fleissner, J. (1992). IVB-1 high-speed GaAs/AlGaAs multiple-quantum-well lasers: Design and characterization. IEEE Transactions on Electron Devices, 39(11), 2660-2661. doi:10.1109/16.163524Ferreira, R., & Bastard, G. (1988). Wannier-stark levels in the valence band of semiconductor multiple quantum wells. Physical Review B, 38(12), 8406-8411. doi:10.1103/PhysRevB.38.8406Franssen, G., Suski, T., Perlin, P., Bohdan, R., Bercha, A., Adamiec, P., . . . Grzegory, I. (2005). Screening of built-in electric fields in group III-nitride laser diodes observed by means of hydrostatic pressure. Paper presented at the Physica Status Solidi C: Conferences, , 2(3) 1019-1022. doi:10.1002/pssc.200460612Franssen, G., Suski, T., Perlin, P., Bohdan, R., Bercha, A., Trzeciakowski, W., . . . Grzegory, I. (2006). Screening of polarization induced electric fields in blue/violet InGaN/GaN laser diodes by si doping in quantum barriers revealed by hydrostatic pressure. Physica Status Solidi (C) Current Topics in Solid State Physics, 3, 2303-2306. doi:10.1002/pssc.200565317Gao, X., Souza, M. D., Botez, D., & Knezevic, I. (2007). J.Appl.Phys., 102.Ghatak, A. K., Goyal, I. C., & Gallawa, R. L. (1990). Mean lifetime calculations of quantum well structures: A rigorous analysis. IEEE Journal of Quantum Electronics, 26(2), 305-310. doi:10.1109/3.44962Goossen, K. W., Cunningham, J. E., & Jan, W. Y. (1994). Electroabsorption in ultranarrow-barrier GaAs/AlGaAs multiple quantum well modulators. Applied Physics Letters, 64(9), 1071-1073. doi:10.1063/1.110935Gorczyca, I., Suski, T., Christensen, N. E., & Svane, A. (2012). Appl.Phys.Lett., 101.Grahn, H. T., Haug, R. J., Müller, W., & Ploog, K. (1991). Electric-field domains in semiconductor superlattices: A novel system for tunneling between 2D systems. Physical Review Letters, 67(12), 1618-1621. doi:10.1103/PhysRevLett.67.1618Griebl, E., Kerner, W., Haserer, B., Reisinger, T., Hahn, B., & Gebhardt, W. (1996). Absorption and photoluminescence of ZnSe/ZnxCd1-xSe superlattices and quantum wells under hydrostatic pressure. Acta Physica Polonica A, 90(5), 1017-1021. doi:10.12693/APhysPolA.90.1017Jin, S. R., Ahmad, C. N., Sweeney, S. J., Adams, A. R., Murdin, B. N., Page, H., . . . Tomic, S. (2006). J.Appl.Phys., 89.Jirauschek, C., & Kubis, T. (2014). Appl.Phys.Rev., 1.Kohandani, R., Zandi, A., & Kaatuzian, H. (2014). Appl.Opt., 53, 1228.Leburton, J. P., & Kahen, K. (1985). GAAS-ALGAS superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation. Superlattices and Microstructures, 1(1), 49-53. doi:10.1016/0749-6036(85)90028-XLu, S. L., Schrottke, L., Teitsworth, S. W., Hey, R., & Grahn, H. T. (2006). Phys.Rev.B, 73.Lu, X., Wienold, M., Schrottke, L., Biermann, K., & Grahn, H. T. (2013). J.Appl.Phys., 113.Luc-Koenig, E., & Bachelier, A. (1980). Systematic theoretical study of the stark spectrum of atomic hydrogen. II. density of oscillator strengths. comparison with experimental absorption spectra in solid-state and atomic physics. Journal of Physics B: Atomic and Molecular Physics, 13(9), 1769-1790. doi:10.1088/0022-3700/13/9/010Mora, M. E., Perez, R., & Sommers, C. B. (1985). TRANSFER MATRIX IN ONE DIMENSIONAL PROBLEMS. Journal De Physique Paris, 46(7), 1021-1026.Morifuji, M., Nishikawa, Y., Hamaguchi, C., & Fujii, T. (1992). Electronic band structure of superlattices under a uniform electric field and wannier-stark effect. Semiconductor Science and Technology, 7(8), 1047-1051. doi:10.1088/0268-1242/7/8/004Panda, S., & Panda, B. K. (2001). Analytic methods for field induced tunneling in quantum wells with arbitrary potential profiles. Pramana - Journal of Physics, 56(6), 809-822.Paspalakis, E., Boviatsis, J., & Baskoutas, S. (2013). Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots. Journal of Applied Physics, 114(15) doi:10.1063/1.4825320Patel, D., Menoni, C. S., Temkin, H., Tome, C., Logan, R. A., & Coblentz, D. (1993). Optical properties of semiconductor lasers with hydrostatic pressure. Journal of Applied Physics, 74(1), 737-739. doi:10.1063/1.355242Reyes-Gómez, E., Raigoza, N., & Oliveira, L. E. (2013). Europhys.Lett., 104.Ritze, M., Horing, N. J. M., & Enderlein, R. (1993). Phys.Rev.B, 47.Satpathy, S., Chandrasekhar, M., Chandrasekhar, H. R., & Venkateswaran, U. (1991). Phys.Rev.B, 44.Schönhöbela, A. M., Girón, J. A., & Porras-Montenegro, N. (2014). J.Phys.: Conf.Ser., 480.Trallero Giner, C., & López Gondar, J. (1986). Exact wave functions and energy levels for a quantum well with an applied electric field. Physica B+C, 138(3), 287-294. doi:10.1016/0378-4363(86)90009-4Venkateswaran, U., Chandrasekhar, M., Chandrasekhar, H. R., Vojak, B. A., Chambers, F. A., & Meese, J. M. (1987). High pressure study of GaAsAlxGa1-xAs quantum wells at low temperatures. Superlattices and Microstructures, 3(3), 217-223. doi:10.1016/0749-6036(87)90061-9Vina, L., Mendez, E. E., Wang, W. I., Chang, L. L., & Esaki, L. (1987). Stark shifts in gaas/gaalas quantum wells studied by photoluminescence spectroscopy. Journal of Physics C: Solid State Physics, 20(18), 2803-2815. doi:10.1088/0022-3719/20/18/016von Plessen, G., Meier, T., Koch, M., Feldmann, J., Koch, S. W., Thomas, P., . . . Kopf, R. F. (1995). Electric-field-induced exciton ionization in a GaAs/AlGaAs superlattice. Il Nuovo Cimento D, 17(11-12), 1759-1762. doi:10.1007/BF02457276Wang, L., Jia, W., Tang, R., Wang, Y., Zhou, J., Ge, W., & Wang, B. (1990). High pressure behavior of electronic states in GaAs/Ga1-xAlxAs multiple quantum wells. Superlattices and Microstructures, 7(2), 175-178. doi:10.1016/0749-6036(90)90133-RWang, Y., Park, D. H., & Brennan, K. F. (1990). Theoretical analysis of confined quantum state GaAs/AlGaAs solid-state photomultipliers. IEEE Journal of Quantum Electronics, 26(2), 285-295. doi:10.1109/3.44960Xia, J. -., & Fan, W. -. (1989). Electronic structures of superlattices under in-plane magnetic field. Physical Review B, 40(12), 8508-8515. doi:10.1103/PhysRevB.40.8508ScopusEffects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum wellArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Ospina, D.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia, Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Facultad de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, MexicoDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaOspina D.A.Mora-Ramos M.E.Duque C.A.Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, ColombiaDepartamento de Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaCentro de Investigación en Ciencias, Instituto de Facultad de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, MexicoElectric fieldHydrostatic pressureMultiple quantum wellOptical propertiesElectric fieldsElectromagnetic wave absorptionElectronic structureEquations of motionHydraulicsHydrostatic pressureLight absorptionMatrix algebraNatural frequenciesNonlinear equationsNonlinear opticsOptical propertiesQuantum opticsRefractive indexSemiconducting indium compoundsDensity matrix equationsGaas multiple quantum wellsNonlinear contributionsNonlinear optical absorptionPressure induced effectsRefractive index changesRotating wave approximationsStatic electric fieldsSemiconductor quantum wellsFacultad de Ciencias BásicasThe properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses. Copyright © 2017 American Scientific Publishers All rights reserved.http://purl.org/coar/access_right/c_16ec11407/4273oai:repository.udem.edu.co:11407/42732020-05-27 19:10:12.497Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |