Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells
We use empirical sps
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5892
- Acceso en línea:
- http://hdl.handle.net/11407/5892
- Palabra clave:
- Conduction bands
Energy gap
Gallium arsenide
Indium arsenide
Lattice constants
Light absorption
Optical lattices
Quantum theory
Semiconducting gallium
Semiconducting indium gallium arsenide
Semiconductor quantum wells
Spin orbit coupling
Valence bands
Zinc sulfide
Asymmetric quantum wells
Band nonparabolicity
Conduction-band state
Effective-mass equation
Excited energy level
Intraband transitions
Optical absorption coefficients
Tight-binding calculations
III-V semiconductors
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_4b14b8b692b3dab4c8e40d1a1b3349f6 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5892 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells |
title |
Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells |
spellingShingle |
Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells Conduction bands Energy gap Gallium arsenide Indium arsenide Lattice constants Light absorption Optical lattices Quantum theory Semiconducting gallium Semiconducting indium gallium arsenide Semiconductor quantum wells Spin orbit coupling Valence bands Zinc sulfide Asymmetric quantum wells Band nonparabolicity Conduction-band state Effective-mass equation Excited energy level Intraband transitions Optical absorption coefficients Tight-binding calculations III-V semiconductors |
title_short |
Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells |
title_full |
Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells |
title_fullStr |
Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells |
title_full_unstemmed |
Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells |
title_sort |
Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells |
dc.subject.keyword.eng.fl_str_mv |
Conduction bands Energy gap Gallium arsenide Indium arsenide Lattice constants Light absorption Optical lattices Quantum theory Semiconducting gallium Semiconducting indium gallium arsenide Semiconductor quantum wells Spin orbit coupling Valence bands Zinc sulfide Asymmetric quantum wells Band nonparabolicity Conduction-band state Effective-mass equation Excited energy level Intraband transitions Optical absorption coefficients Tight-binding calculations III-V semiconductors |
topic |
Conduction bands Energy gap Gallium arsenide Indium arsenide Lattice constants Light absorption Optical lattices Quantum theory Semiconducting gallium Semiconducting indium gallium arsenide Semiconductor quantum wells Spin orbit coupling Valence bands Zinc sulfide Asymmetric quantum wells Band nonparabolicity Conduction-band state Effective-mass equation Excited energy level Intraband transitions Optical absorption coefficients Tight-binding calculations III-V semiconductors |
description |
We use empirical sps |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:57:35Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:57:35Z |
dc.date.none.fl_str_mv |
2021 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
13698001 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5892 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.mssp.2020.105490 |
identifier_str_mv |
13698001 10.1016/j.mssp.2020.105490 |
url |
http://hdl.handle.net/11407/5892 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092700561&doi=10.1016%2fj.mssp.2020.105490&partnerID=40&md5=af0fe934a3f658b77cf1f2f7cc1bb57a |
dc.relation.citationvolume.none.fl_str_mv |
123 |
dc.relation.references.none.fl_str_mv |
Kane, E.O., Band structure of indium antimonide (1957) J. Phys. Chem. Sol., 1, p. 249 Vrehen, Q.H.F., Interband magneto-optical absorption in gallium arsenide (1968) J. Phys. Chem. Sol., 29, p. 129 Golubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., Nonparabolicity and anisotropy of the electron energy spectrum in GaAs (1985) Sov. Phys. JETP, 61, p. 1214 Bastard, G., Hydrogenic impurity states in a quantum well: a simple model (1981) Phys. Rev. B, 24, p. 4714 Bastard, G., Superlattice band structure in the envelope-function approximation (1981) Phys. Rev. B, 24, p. 5693 Bastard, G., Theoretical investigations of superlattice band structure in the envelope-function approximation (1982) Phys. Rev. B, 25, p. 7584 Bastard, G., Exciton binding energy in quantum wells (1982) Phys. Rev. B, 26, p. 1974 Burt, M.G., The justification for applying the effective-mass approximation to microstructures (1922) J. Phys. Condens. Matter, 4, p. 6651 Burt, M.G., Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries (1982) Phys. Rev. B, 50, p. 7518 Chaudhuri, S., Bajaj, K.K., Effect of nonparabolicity on the energy levels of hydrogenic donors in GaAs-Ga1-xAlxAs quantum-well structures (1984) Phys. Rev. B, 29, p. 1803 Malcher, F., Lommer, G., Rössler, U., Electron states in GaAs/Ga1-xAlxAs heterostructures: Nonparabolicity and spin-splitting (1986) Superlattice. Microst., 2, p. 267 Nelson, D.F., Miller, R.C., Kleinman, D.A., Band nonparabolicity effects in semiconductor quantum wells (1987) Phys. Rev. B, 14, p. 7770 Eckenberg, U., Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels (1989) Phys. Rev. B, 40, p. 7714 Nag, B.R., Mukhopadhyay, S., Energy levels in quantum wells of nonparabolic semiconductors (1993) Phys. Stat. Sol., 175, p. 103 Sirtori, C., Capasso, F., Faist, J., Scandolo, S., Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells (1994) Phys. Rev. B, 50, p. 8663 Wetzel, C., Winkler, R., Drechsler, M., Meyer, B.K., Rössler, U., Scriba, J., Kotthaus, J.P., Scholz, F., Electron effective mass and nonparabolicity in Ga0.47In0.53As/InP quantum wells (1996) Phys. Rev. B, 53, p. 1038 Li, Y., Voskoboynikov, O., Lee, C.P., Sze, S.M., Energy and coordinate dependent effective mass and confined electron states in quantum dots (2001) Sol. State. Commun., 120, p. 79 Le, K.Q., Finite element analsysis of quantum states in layered quantum semiconductor structures with band nonparabolicity effect (2009) Microw. Opt. Technol. Lett., 51, p. 1 Milanović, V., Radovanović, J., Ramović, S., Influence of nonparabolicity on boundary conditions in semiconductor quantum wells (2009) Phys. Lett., 373, p. 3071 Panda, S., Panda, B.K., Effect of conduction band nonparabolicity on the optical properties in a single quantum well under hydrostatic pressure and electric field (2012) Pramana - J. Phys., 78, p. 827 Kotera, N., Energy dependence of electron effective mass and effect of wave function confinement in a nanoscale In0.53Ga0.47As/In0.52Al0.48As quantum well (2013) J. Appl. Phys., 113, p. 234314 Biswas, S., Islam, M.S., Mahbub, I., Adnan, F., Numerical Investigation of the Effects of conduction band Nonparabolicity on the conduction sub-band dispersion Relationships in a Al0.88In0.12N/Ga0.9 (2013) Lecture Notes on Photonics and Optoelectronics, 1, p. 1 Biswas, S., Mahbub, I., Islam, M.S., 0.28 0.72 (2013) Conduction band-valence Band Coupling Effects on the Band Structure of In Ga N/GaN Quantum Well, 2013 Spanish Conference on Electron Devices (CDE), 211. , IEEE Voković, N., Milanović, V., Radovanović, J., Influence of nonparabolicity on electronic structure of quantum cascade laser (2014) Phys. Lett., 378, p. 2222 Bardeen, J., Shockley, W., Deformation potentials and mobilities in non-polar crystals (1950) Phys. Rev., 80, pp. 72-80 Bir, G.L., Pikus, G.E., Symmetry and Strain-Induced Effects in Semiconductors (1974), Wiley New York Singh, J., Strain induced band structure modifications in semiconductor heterostructures and consequences for electronic and optical devices (1991) Condensed Systems of Low Dimensionality. NATO ASI Series (Series B: Physics), 253. , J.L. Beeby P.K. Bhattacharya P.C. Gravelle F. Koch D.J. Lockwood Springer Boston, MA Lamberti, C., The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films (2004) Surf. Sci. Reports, 53, pp. 1-197 Sun, Y., Thompson, S.E., Nishida, T., Strain Effect in Semiconductors: Theory and Device Applications (2010), Springer New York Van de Walle, C.G., Band lineups and deformation potentials in the model-solid theory (1989) Phys. Rev. B, 39, p. 1871 Jancu, J.-M., Scholz, R., Beltram, F., Bassani, F., Empirical spds tight-binding calculation for cubic semiconductors: general method and material parameters (1998) Phys. Rev. B, 57, p. 6493 Jancu, J.-M., Voisin, P., Tetragonal and trigonal deformations in zinc-blende semiconductors: a tight-binding point of view (2007) Phys. Rev. B, 76, p. 115202 Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F., Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory (2002) Phys. Rev. B, 66, p. 125207 Niquet, Y.M., Rideau, D., Tavernier, C., Jaouen, H., Blase, X., Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: application to silicon, germanium, and their alloys (2009) Phys. Rev. B, 79, p. 245201 Boykin, T.B., Luisier, M., Salmani-Jelodar, M., Klimeck, G., Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110]uniaxial strain applied to a silicon parametrization (2010) Phys. Rev. B, 81, p. 125202 Tan, Y., Povolotskyi, M., Kubis, T., Boykin, T.B., Klimeck, G., Transferable tight-binding model for strained group IV and III-V materials and heterostructures (2016) Phys. Rev. B, 94 Sawamura, A., Otsuka, J., Kato, T., Kotani, T., Souma, S., Nearest-neighbor sp3d5s tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices (2018) Opt. Mat. Express, 8, p. 1569 Mi, Z., Bianucci, P., When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: emerging devices and applications (2012) Curr. Opin. Solid State Mater. Sci., 16, p. 52 Ivanov, S.V., Chernov, M.Y., Solov'ev, V.A., Brunkov, P.N., Firsov, D.D., Komkov, O.S., Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters (2019) Prog. Cryst. Growth Charact. Mater., 65, p. 20 Yachmenev, A.E., Pushkarev, S.S., Reznik, R.R., Khabibullin, R.A., Ponomarev, D.S., Arsenides-and related III-V materials-based multilayered structures for terahertz applications: various designs and growth technology (2020) Prog. Cryst. Growth Charact. Mater., 2020, p. 100485 Chen, X., On the role of local-field effect on optical intersubband saturation and intrinsic bistability in a step quantum well (1997) Sol. State. Commun., 104, pp. 125-130 D'Andrea, A., Tomassini, N., Ferrari, L., Righini, M., Selci, S., Bruni, M.R., Schiumarini, D., Simeone, M.G., Optical properties of stepped InxGa1-xAs/GaAs quantum wells (1998) Microelectron. Eng., 43-44, pp. 259-263 Kim, T.W., Enhancement of the intersubband Stark effectin strained InxGa1-xAs/InyAl1-yAs asymmetric step quantum wells (1998) Appl. Surf. Sci., 125, pp. 213-216 Wu, W., Tunable mid-infrared photodetectors employing Stark shifts of intersubband transitions in In0.05Ga0.95/Al0.32Ga0.68As/Al0.45Ga0.55As asymmetric step quantum wells (2004) Superlattice. Microst., 35, pp. 25-34 Barseghyan, M.G., Kirakosyan, A.A., Electronic states in a step quantum well in a magnetic field (2005) Phys. E, 28, pp. 471-481 Dakhlaoui, H., Tunability of the optical absorption and refractive index changes in step-like and parabolic quantum wells under external electric field (2018) Optik, 168, pp. 416-423 Samyh, A., Salhi, W., Rajira, A., Akabli, H., Abounadi, A., Almaggoussi, A., Double two-photon absorption in an asymmetric stepped quantum well in the terahertz range (2019) Superlattice. Microst., 130, pp. 560-568 Sauvage, S., Boucaud, P., Julien, F.H., Gérard, J.-M., Marzin, J.-Y., Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots (1997) J. Appl. Phys., 82, pp. 3396-3401 Maimon, S., Finkman, E., Bahir, G., Schacham, S.E., Garcia, J.M., Petroff, P.M., Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors (1998) Appl. Phys. Lett., 73, pp. 2003-2005 Horváth, Z.J., Dózsa, L., Van Tuyen, V., Pődör, B., Nemcsics, Á., Frigeri, P., Gombia, E., Franchi, S., Growth and electrical characteristics of InAs/GaAs quantum well and quantum dot structures (2000) Thin Sol. Films, 367, pp. 89-92 Kapre, R.M., Hu, K., Chen, L., Guha, S., Madhukar, A., Highly strained (InAs)M/(GaAs)N multiple quantum well based resonant tunneling diodes on GaAs (001) substrates and their application in optical switching (1992) Mat. Res. Soc. Symp. Proc., 228, pp. 219-224 Aleshkin, V.Y., Gaponova, D.M., Revin, D.G., Vorobjev, L.E., Danilov, S.N., Panevin, V.Y., Fedosov, N.K., Seilmeier, A., Light absorption and emission in InAs/GaAs quantum dots and stepped quantum wells (2002) Proc. SPIE -10th Int. Symp. “Nanostructures: Physics and Technology” St Petersburg, Russia, p. 5. , June 17-21, QWSL Podoskin, A., Golovin, V., Gavrina, P., Veselov, D., Zolotarev, V., Shamakhov, V., Nikolaev, D., Kopev, P., Ultrabroad tuning range (100 nm) of external-cavity continuous-wave high-power semiconductor lasers based on a single InGaAs quantum well (2019) Appl. Opt., 58, pp. 9089-9093 Podoskin, A.A., Golovin, V.S., Gavrina, P.S., Veselov, D.A., Zolotarev, V.V., Shamakhov, V.V., Nikolaev, D.N., Kopev, P.S., Properties of external-cavity high-power semiconductor lasers based on a single InGaAs quantum well at high pulsed current pump (2020) J. Opt. Soc. Am. B, 37, pp. 784-788 Han, L., Zhao, M., Tang, X., Huo, W., Deng, Z., Jiang, Y., Wang, W., Jia, H., Luminescence study in InGaAs/AlGaAs multi-quantum well light emitting diode with p-n junction engineering (2020) J. Appl. Phys., 127 Chernov, M.Y., Solov'ev, V.A., Komkov, O.S., Firsov, D.D., Andreev, A.D., Sitnikova, A.A., Ivanov, S.V., Effect of design and stress relaxation on structural, electronic, and luminescence properties of metamorphic InAs(Sb)/In(Ga,Al)As/GaAs mid-IR emitters with a superlattice waveguide (2020) J. Appl. Phys., 127, p. 125706 Vinoslavskii, M.N., Belevskii, P.A., Poroshin, V.N., Vainberg, V.V., Baidus, N.V., Effect of barrier width between GaAs/InGaAs/GaAs double coupled quantum wells on bipolar transport and terahertz radiation by hot carriers in lateral electric field (2020) Fiz. Nizk. Temp., 46, pp. 755-761 Gadzhiev, I.M., Buyalo, M.S., Payusov, A.S., Bakshaev, I.O., Kolykhalova, E.D., Portnoi, E.L., Generation of picosecond pulses by lasers with distributed feedback at a wavelength of 1064 nm (2020) Tech. Phys. Lett., 46, pp. 316-318 Slater, J.C., Koster, G.F., Simplified LCAO method for the periodic potential problem (1954) Phys. Rev., 94, p. 1498 Harrison, W.A., Electronic Structure and the Properties of Solids: the Physics of the Chemical Bond (1989), Dover New York Papaconstantopoulos, D.A., Mehl, M.J., The Slate–Koster tight-binding method: a computationally efficient and accurate approach (2003) J. Phys. Condens. Matter, 15, p. R413 Kent, P.R.C., Hart, G.L.W., Zunger, A., Biaxial strain-modified valence and conduction band offsets of zinc-blende GaN, GaP, GaAs, InN, InP, and InAs, and optical bowing of strained epitaxial InGaN alloys (2002) Appl. Phys. Lett., 81, p. 4377 Wei, S.-H., Zunger, A., Calculated natural band offsets of all II–VI and III–V semiconductors: chemical trends and the role of cation d orbitals (1998) Appl. Phys. Lett., 72, p. 2011 Colombelli, R., Piazza, V., Badolato, A., Lazzarino, M., Beltram, F., Schoenfeld, W., Petroff, P., Conduction-band offset of single InAs monolayers on GaAs (2000) Appl. Phys. Lett., 76, p. 1146 Persson, A., Cohen, R.M., Reformulated Hamiltonian for nonparabolic bands in semiconductor quantum wells (1988) Phys. Rev. B, 38, pp. 5568-5575 Ahn, D., Chuang, S.L., Calculation of linear and nonlinear intersubband optical absorptions in a quantum well Mode1 with an applied electric field (1987) IEEE J. Quantum Electron. QE-, 23, p. 2196 Ridene, S., Bouchriba, H., Effect of hydrostatic pressure on the hole effective mass in a strained InGaAs/GaAs quantum well (2014) J. Phys. Chem. Sol., 75, pp. 203-211 Mazuelas, A., Gonzalez, L., Ponce, F.A., Tapfer, L., Briones, F., Critical thickness determination of InAs, InP and GaP on GaAs by X-ray interference effect and transmission electron microscopy (1993) J. Cryst. Growth, 131, pp. 465-469 Ichimura, M., Stillinger-weber potentials for III-V compound semiconductors and their application to the critical thickness calculation for InA/GaAs (1996) Phys. Stat. Sol. A, 153, pp. 431-437 Brech, H., Optimization of GaAs Based High Electron Mobility Transistors by Numerical Simulations (1998), https://www.iue.tuwien.ac.at/phd/brech/diss.htm, Thesis Technischen Universität Wien Rudinsky, M.E., Karpov, S.Y., Lipsanen, H., Romanov, A.E., Critical thickness and bow of pseudomorphic InxGa1-xAs-based heterostructures grown on (001)GaAs and (001)InP substrates (2015) Mater. Phys. Mech., 24, pp. 278-283 Bennett, B.R., Strain relaxation in InAs/GaSb heterostructures (1998) Appl. Phys. Lett., 73, pp. 3736-3738 Chen, J.F., Lin, Y.C., Chiang, C.H., Chen, R.C.C., Chen, Y.F., Wu, Y.H., Chang, L., How do InAs quantum dots relax when the InAs growth thickness exceeds the dislocation-induced critical thickness? (2012) J. Appl. Phys., 111 Ohtake, A., Mano, T., Sakuma, Y., Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates (2020) Sci. Rep., 10, p. 4606 Mathematica, Version 12.1 (2020), https://www.wolfram.com/mathematica, Champaign, IL |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
Materials Science in Semiconductor Processing |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159252645740544 |
spelling |
20212021-02-05T14:57:35Z2021-02-05T14:57:35Z13698001http://hdl.handle.net/11407/589210.1016/j.mssp.2020.105490We use empirical spsd5 tight-binding calculations to determine the effects of compressive biaxial lattice strain, perpendicular to the [001] crystal direction, in zinc blende GaAs and InAs. Under that approach, we have been able to compute the behavior of quantities such as the average valence band energy, the energy band gap, the conduction band effective mass, and the spin-orbit split-off energy, as functions of the biaxial strain, within a range from 0 to −7%. Expressions governing these dependencies are reported for both materials. With such information at hand it is possible to calculate the variation of the coefficient of conduction band nonparabolicity due to the presence of strain. Also, the outcome for such quantities allows to evaluate the valence band offset in GaAs/InGaAs heterointerfaces as a consequence of the strain appearing from the difference between the lattice constants of the involved materials. Taking advantage of the above mentioned results, we have performed the calculation of confined conduction band states in step-like asymmetric quantum wells of the GaAs/Inx1Ga1-x1As/Inx2Ga1-x2As/GaAs prototype, using a k→⋅p→ formalism that solves the effective mass equation arising from a bi-cuadratic (nonparabolic) dispersion law. We report the calculation of the optical absorption coefficient related with intraband transitions that involve the ground and first excited energy levels. For that purpose, the study takes into account the variation of the layer widths and compositions. © 2020 Elsevier LtdengElsevier LtdFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092700561&doi=10.1016%2fj.mssp.2020.105490&partnerID=40&md5=af0fe934a3f658b77cf1f2f7cc1bb57a123Kane, E.O., Band structure of indium antimonide (1957) J. Phys. Chem. Sol., 1, p. 249Vrehen, Q.H.F., Interband magneto-optical absorption in gallium arsenide (1968) J. Phys. Chem. Sol., 29, p. 129Golubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., Nonparabolicity and anisotropy of the electron energy spectrum in GaAs (1985) Sov. Phys. JETP, 61, p. 1214Bastard, G., Hydrogenic impurity states in a quantum well: a simple model (1981) Phys. Rev. B, 24, p. 4714Bastard, G., Superlattice band structure in the envelope-function approximation (1981) Phys. Rev. B, 24, p. 5693Bastard, G., Theoretical investigations of superlattice band structure in the envelope-function approximation (1982) Phys. Rev. B, 25, p. 7584Bastard, G., Exciton binding energy in quantum wells (1982) Phys. Rev. B, 26, p. 1974Burt, M.G., The justification for applying the effective-mass approximation to microstructures (1922) J. Phys. Condens. Matter, 4, p. 6651Burt, M.G., Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries (1982) Phys. Rev. B, 50, p. 7518Chaudhuri, S., Bajaj, K.K., Effect of nonparabolicity on the energy levels of hydrogenic donors in GaAs-Ga1-xAlxAs quantum-well structures (1984) Phys. Rev. B, 29, p. 1803Malcher, F., Lommer, G., Rössler, U., Electron states in GaAs/Ga1-xAlxAs heterostructures: Nonparabolicity and spin-splitting (1986) Superlattice. Microst., 2, p. 267Nelson, D.F., Miller, R.C., Kleinman, D.A., Band nonparabolicity effects in semiconductor quantum wells (1987) Phys. Rev. B, 14, p. 7770Eckenberg, U., Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels (1989) Phys. Rev. B, 40, p. 7714Nag, B.R., Mukhopadhyay, S., Energy levels in quantum wells of nonparabolic semiconductors (1993) Phys. Stat. Sol., 175, p. 103Sirtori, C., Capasso, F., Faist, J., Scandolo, S., Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells (1994) Phys. Rev. B, 50, p. 8663Wetzel, C., Winkler, R., Drechsler, M., Meyer, B.K., Rössler, U., Scriba, J., Kotthaus, J.P., Scholz, F., Electron effective mass and nonparabolicity in Ga0.47In0.53As/InP quantum wells (1996) Phys. Rev. B, 53, p. 1038Li, Y., Voskoboynikov, O., Lee, C.P., Sze, S.M., Energy and coordinate dependent effective mass and confined electron states in quantum dots (2001) Sol. State. Commun., 120, p. 79Le, K.Q., Finite element analsysis of quantum states in layered quantum semiconductor structures with band nonparabolicity effect (2009) Microw. Opt. Technol. Lett., 51, p. 1Milanović, V., Radovanović, J., Ramović, S., Influence of nonparabolicity on boundary conditions in semiconductor quantum wells (2009) Phys. Lett., 373, p. 3071Panda, S., Panda, B.K., Effect of conduction band nonparabolicity on the optical properties in a single quantum well under hydrostatic pressure and electric field (2012) Pramana - J. Phys., 78, p. 827Kotera, N., Energy dependence of electron effective mass and effect of wave function confinement in a nanoscale In0.53Ga0.47As/In0.52Al0.48As quantum well (2013) J. Appl. Phys., 113, p. 234314Biswas, S., Islam, M.S., Mahbub, I., Adnan, F., Numerical Investigation of the Effects of conduction band Nonparabolicity on the conduction sub-band dispersion Relationships in a Al0.88In0.12N/Ga0.9 (2013) Lecture Notes on Photonics and Optoelectronics, 1, p. 1Biswas, S., Mahbub, I., Islam, M.S., 0.28 0.72 (2013) Conduction band-valence Band Coupling Effects on the Band Structure of In Ga N/GaN Quantum Well, 2013 Spanish Conference on Electron Devices (CDE), 211. , IEEEVoković, N., Milanović, V., Radovanović, J., Influence of nonparabolicity on electronic structure of quantum cascade laser (2014) Phys. Lett., 378, p. 2222Bardeen, J., Shockley, W., Deformation potentials and mobilities in non-polar crystals (1950) Phys. Rev., 80, pp. 72-80Bir, G.L., Pikus, G.E., Symmetry and Strain-Induced Effects in Semiconductors (1974), Wiley New YorkSingh, J., Strain induced band structure modifications in semiconductor heterostructures and consequences for electronic and optical devices (1991) Condensed Systems of Low Dimensionality. NATO ASI Series (Series B: Physics), 253. , J.L. Beeby P.K. Bhattacharya P.C. Gravelle F. Koch D.J. Lockwood Springer Boston, MALamberti, C., The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films (2004) Surf. Sci. Reports, 53, pp. 1-197Sun, Y., Thompson, S.E., Nishida, T., Strain Effect in Semiconductors: Theory and Device Applications (2010), Springer New YorkVan de Walle, C.G., Band lineups and deformation potentials in the model-solid theory (1989) Phys. Rev. B, 39, p. 1871Jancu, J.-M., Scholz, R., Beltram, F., Bassani, F., Empirical spdstight-binding calculation for cubic semiconductors: general method and material parameters (1998) Phys. Rev. B, 57, p. 6493Jancu, J.-M., Voisin, P., Tetragonal and trigonal deformations in zinc-blende semiconductors: a tight-binding point of view (2007) Phys. Rev. B, 76, p. 115202Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F., Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory (2002) Phys. Rev. B, 66, p. 125207Niquet, Y.M., Rideau, D., Tavernier, C., Jaouen, H., Blase, X., Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: application to silicon, germanium, and their alloys (2009) Phys. Rev. B, 79, p. 245201Boykin, T.B., Luisier, M., Salmani-Jelodar, M., Klimeck, G., Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110]uniaxial strain applied to a silicon parametrization (2010) Phys. Rev. B, 81, p. 125202Tan, Y., Povolotskyi, M., Kubis, T., Boykin, T.B., Klimeck, G., Transferable tight-binding model for strained group IV and III-V materials and heterostructures (2016) Phys. Rev. B, 94Sawamura, A., Otsuka, J., Kato, T., Kotani, T., Souma, S., Nearest-neighbor sp3d5stight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices (2018) Opt. Mat. Express, 8, p. 1569Mi, Z., Bianucci, P., When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: emerging devices and applications (2012) Curr. Opin. Solid State Mater. Sci., 16, p. 52Ivanov, S.V., Chernov, M.Y., Solov'ev, V.A., Brunkov, P.N., Firsov, D.D., Komkov, O.S., Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters (2019) Prog. Cryst. Growth Charact. Mater., 65, p. 20Yachmenev, A.E., Pushkarev, S.S., Reznik, R.R., Khabibullin, R.A., Ponomarev, D.S., Arsenides-and related III-V materials-based multilayered structures for terahertz applications: various designs and growth technology (2020) Prog. Cryst. Growth Charact. Mater., 2020, p. 100485Chen, X., On the role of local-field effect on optical intersubband saturation and intrinsic bistability in a step quantum well (1997) Sol. State. Commun., 104, pp. 125-130D'Andrea, A., Tomassini, N., Ferrari, L., Righini, M., Selci, S., Bruni, M.R., Schiumarini, D., Simeone, M.G., Optical properties of stepped InxGa1-xAs/GaAs quantum wells (1998) Microelectron. Eng., 43-44, pp. 259-263Kim, T.W., Enhancement of the intersubband Stark effectin strained InxGa1-xAs/InyAl1-yAs asymmetric step quantum wells (1998) Appl. Surf. Sci., 125, pp. 213-216Wu, W., Tunable mid-infrared photodetectors employing Stark shifts of intersubband transitions in In0.05Ga0.95/Al0.32Ga0.68As/Al0.45Ga0.55As asymmetric step quantum wells (2004) Superlattice. Microst., 35, pp. 25-34Barseghyan, M.G., Kirakosyan, A.A., Electronic states in a step quantum well in a magnetic field (2005) Phys. E, 28, pp. 471-481Dakhlaoui, H., Tunability of the optical absorption and refractive index changes in step-like and parabolic quantum wells under external electric field (2018) Optik, 168, pp. 416-423Samyh, A., Salhi, W., Rajira, A., Akabli, H., Abounadi, A., Almaggoussi, A., Double two-photon absorption in an asymmetric stepped quantum well in the terahertz range (2019) Superlattice. Microst., 130, pp. 560-568Sauvage, S., Boucaud, P., Julien, F.H., Gérard, J.-M., Marzin, J.-Y., Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots (1997) J. Appl. Phys., 82, pp. 3396-3401Maimon, S., Finkman, E., Bahir, G., Schacham, S.E., Garcia, J.M., Petroff, P.M., Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors (1998) Appl. Phys. Lett., 73, pp. 2003-2005Horváth, Z.J., Dózsa, L., Van Tuyen, V., Pődör, B., Nemcsics, Á., Frigeri, P., Gombia, E., Franchi, S., Growth and electrical characteristics of InAs/GaAs quantum well and quantum dot structures (2000) Thin Sol. Films, 367, pp. 89-92Kapre, R.M., Hu, K., Chen, L., Guha, S., Madhukar, A., Highly strained (InAs)M/(GaAs)N multiple quantum well based resonant tunneling diodes on GaAs (001) substrates and their application in optical switching (1992) Mat. Res. Soc. Symp. Proc., 228, pp. 219-224Aleshkin, V.Y., Gaponova, D.M., Revin, D.G., Vorobjev, L.E., Danilov, S.N., Panevin, V.Y., Fedosov, N.K., Seilmeier, A., Light absorption and emission in InAs/GaAs quantum dots and stepped quantum wells (2002) Proc. SPIE -10th Int. Symp. “Nanostructures: Physics and Technology” St Petersburg, Russia, p. 5. , June 17-21, QWSLPodoskin, A., Golovin, V., Gavrina, P., Veselov, D., Zolotarev, V., Shamakhov, V., Nikolaev, D., Kopev, P., Ultrabroad tuning range (100 nm) of external-cavity continuous-wave high-power semiconductor lasers based on a single InGaAs quantum well (2019) Appl. Opt., 58, pp. 9089-9093Podoskin, A.A., Golovin, V.S., Gavrina, P.S., Veselov, D.A., Zolotarev, V.V., Shamakhov, V.V., Nikolaev, D.N., Kopev, P.S., Properties of external-cavity high-power semiconductor lasers based on a single InGaAs quantum well at high pulsed current pump (2020) J. Opt. Soc. Am. B, 37, pp. 784-788Han, L., Zhao, M., Tang, X., Huo, W., Deng, Z., Jiang, Y., Wang, W., Jia, H., Luminescence study in InGaAs/AlGaAs multi-quantum well light emitting diode with p-n junction engineering (2020) J. Appl. Phys., 127Chernov, M.Y., Solov'ev, V.A., Komkov, O.S., Firsov, D.D., Andreev, A.D., Sitnikova, A.A., Ivanov, S.V., Effect of design and stress relaxation on structural, electronic, and luminescence properties of metamorphic InAs(Sb)/In(Ga,Al)As/GaAs mid-IR emitters with a superlattice waveguide (2020) J. Appl. Phys., 127, p. 125706Vinoslavskii, M.N., Belevskii, P.A., Poroshin, V.N., Vainberg, V.V., Baidus, N.V., Effect of barrier width between GaAs/InGaAs/GaAs double coupled quantum wells on bipolar transport and terahertz radiation by hot carriers in lateral electric field (2020) Fiz. Nizk. Temp., 46, pp. 755-761Gadzhiev, I.M., Buyalo, M.S., Payusov, A.S., Bakshaev, I.O., Kolykhalova, E.D., Portnoi, E.L., Generation of picosecond pulses by lasers with distributed feedback at a wavelength of 1064 nm (2020) Tech. Phys. Lett., 46, pp. 316-318Slater, J.C., Koster, G.F., Simplified LCAO method for the periodic potential problem (1954) Phys. Rev., 94, p. 1498Harrison, W.A., Electronic Structure and the Properties of Solids: the Physics of the Chemical Bond (1989), Dover New YorkPapaconstantopoulos, D.A., Mehl, M.J., The Slate–Koster tight-binding method: a computationally efficient and accurate approach (2003) J. Phys. Condens. Matter, 15, p. R413Kent, P.R.C., Hart, G.L.W., Zunger, A., Biaxial strain-modified valence and conduction band offsets of zinc-blende GaN, GaP, GaAs, InN, InP, and InAs, and optical bowing of strained epitaxial InGaN alloys (2002) Appl. Phys. Lett., 81, p. 4377Wei, S.-H., Zunger, A., Calculated natural band offsets of all II–VI and III–V semiconductors: chemical trends and the role of cation d orbitals (1998) Appl. Phys. Lett., 72, p. 2011Colombelli, R., Piazza, V., Badolato, A., Lazzarino, M., Beltram, F., Schoenfeld, W., Petroff, P., Conduction-band offset of single InAs monolayers on GaAs (2000) Appl. Phys. Lett., 76, p. 1146Persson, A., Cohen, R.M., Reformulated Hamiltonian for nonparabolic bands in semiconductor quantum wells (1988) Phys. Rev. B, 38, pp. 5568-5575Ahn, D., Chuang, S.L., Calculation of linear and nonlinear intersubband optical absorptions in a quantum well Mode1 with an applied electric field (1987) IEEE J. Quantum Electron. QE-, 23, p. 2196Ridene, S., Bouchriba, H., Effect of hydrostatic pressure on the hole effective mass in a strained InGaAs/GaAs quantum well (2014) J. Phys. Chem. Sol., 75, pp. 203-211Mazuelas, A., Gonzalez, L., Ponce, F.A., Tapfer, L., Briones, F., Critical thickness determination of InAs, InP and GaP on GaAs by X-ray interference effect and transmission electron microscopy (1993) J. Cryst. Growth, 131, pp. 465-469Ichimura, M., Stillinger-weber potentials for III-V compound semiconductors and their application to the critical thickness calculation for InA/GaAs (1996) Phys. Stat. Sol. A, 153, pp. 431-437Brech, H., Optimization of GaAs Based High Electron Mobility Transistors by Numerical Simulations (1998), https://www.iue.tuwien.ac.at/phd/brech/diss.htm, Thesis Technischen Universität WienRudinsky, M.E., Karpov, S.Y., Lipsanen, H., Romanov, A.E., Critical thickness and bow of pseudomorphic InxGa1-xAs-based heterostructures grown on (001)GaAs and (001)InP substrates (2015) Mater. Phys. Mech., 24, pp. 278-283Bennett, B.R., Strain relaxation in InAs/GaSb heterostructures (1998) Appl. Phys. Lett., 73, pp. 3736-3738Chen, J.F., Lin, Y.C., Chiang, C.H., Chen, R.C.C., Chen, Y.F., Wu, Y.H., Chang, L., How do InAs quantum dots relax when the InAs growth thickness exceeds the dislocation-induced critical thickness? (2012) J. Appl. Phys., 111Ohtake, A., Mano, T., Sakuma, Y., Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates (2020) Sci. Rep., 10, p. 4606Mathematica, Version 12.1 (2020), https://www.wolfram.com/mathematica, Champaign, ILMaterials Science in Semiconductor ProcessingLattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wellsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Conduction bandsEnergy gapGallium arsenideIndium arsenideLattice constantsLight absorptionOptical latticesQuantum theorySemiconducting galliumSemiconducting indium gallium arsenideSemiconductor quantum wellsSpin orbit couplingValence bandsZinc sulfideAsymmetric quantum wellsBand nonparabolicityConduction-band stateEffective-mass equationExcited energy levelIntraband transitionsOptical absorption coefficientsTight-binding calculationsIII-V semiconductorsMozo-Vargas, J.J.M., Centro de Investigación en Dispositivos Semiconductores-ICUAP, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, CP 72570, Mexico, Instituto de Física, Benemérita Universidad Autńoma de Puebla, Ciudad Universitaria, Puebla, CP 72570, MexicoMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, ColombiaDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombiahttp://purl.org/coar/access_right/c_16ecMozo-Vargas J.J.M.Mora-Ramos M.E.Correa J.D.Duque C.A.11407/5892oai:repository.udem.edu.co:11407/58922021-02-05 09:57:35.952Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |