Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study
Lead (Pb++) is a toxic agent that can exert adverse effects on the cardiac human health. Pb++ blocks the Ltype Ca++ channels. A decrease in L-type calcium current (ICaL) is an important mechanism favoring atrial fibrillation. It is important to study the electrophysiological Pb++ effects on the atri...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4263
- Acceso en línea:
- http://hdl.handle.net/11407/4263
- Palabra clave:
- Atrial fibrillation
In silico models
L-type Ca++ current
Lead (Pb++)
Biomedical engineering
Calcium
Diseases
Electrophysiology
Action potential durations
Action potentials
Adverse effect
Atrial fibrillation
Calcium current
Healthy people
In-silico models
Toxic agents
Lead
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_4478a705f9f6f561b1d7eeab8fe3c146 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4263 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study |
title |
Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study |
spellingShingle |
Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study Atrial fibrillation In silico models L-type Ca++ current Lead (Pb++) Biomedical engineering Calcium Diseases Electrophysiology Action potential durations Action potentials Adverse effect Atrial fibrillation Calcium current Healthy people In-silico models Toxic agents Lead |
title_short |
Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study |
title_full |
Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study |
title_fullStr |
Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study |
title_full_unstemmed |
Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study |
title_sort |
Lead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico study |
dc.contributor.affiliation.spa.fl_str_mv |
Tobón, C., MATBIOM, Universidad de Medellín, Medellín, Colombia Pachajoa, D., GI2B, Instituto Tecnológico Metropolitano, Medellín, Colombia Ugarte, J.P., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, Colombia Saiz, J., CI2B, Universitat Politècnica de València, Valencia, Spain |
dc.subject.keyword.eng.fl_str_mv |
Atrial fibrillation In silico models L-type Ca++ current Lead (Pb++) Biomedical engineering Calcium Diseases Electrophysiology Action potential durations Action potentials Adverse effect Atrial fibrillation Calcium current Healthy people In-silico models Toxic agents Lead |
topic |
Atrial fibrillation In silico models L-type Ca++ current Lead (Pb++) Biomedical engineering Calcium Diseases Electrophysiology Action potential durations Action potentials Adverse effect Atrial fibrillation Calcium current Healthy people In-silico models Toxic agents Lead |
description |
Lead (Pb++) is a toxic agent that can exert adverse effects on the cardiac human health. Pb++ blocks the Ltype Ca++ channels. A decrease in L-type calcium current (ICaL) is an important mechanism favoring atrial fibrillation. It is important to study the electrophysiological Pb++ effects on the atrial action potential in healthy people and those with AF. For this, we study the consequences of Pb++ on action potential, under normal and atrial fibrillation condition using in silico models. Our results suggest that Pb++ blocks ICaL current in a fraction greater as the concentration increases, resulting in an action potential duration shortening, Pb++ has a greater action potential duration effect on control conditions. To our knowledge, this is the first work that has developed mathematical models of Pb++ effect on ICaLcurrent to study its effect on human atrial action potential. © Springer Nature Singapore Pte Ltd. 2017. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-12-19T19:36:42Z |
dc.date.available.none.fl_str_mv |
2017-12-19T19:36:42Z |
dc.date.created.none.fl_str_mv |
2017 |
dc.type.eng.fl_str_mv |
Conference Paper |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.identifier.isbn.none.fl_str_mv |
9789811040856 |
dc.identifier.issn.none.fl_str_mv |
16800737 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4263 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-981-10-4086-3_17 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
9789811040856 16800737 10.1007/978-981-10-4086-3_17 reponame:Repositorio Institucional Universidad de Medellín instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/4263 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018384836&doi=10.1007%2f978-981-10-4086-3_17&partnerID=40&md5=5ad5b61b412e38f00f9528d881e9d054 |
dc.relation.ispartofes.spa.fl_str_mv |
IFMBE Proceedings IFMBE Proceedings Volume 60, 2017, Pages 66-69 |
dc.relation.references.spa.fl_str_mv |
Revealing the costs of air pollution from industrial facilities in europe. (2011). Revealing the Costs of Air Pollution from Industrial Facilities in Europe. Acosta, G. B., & Rubio, M. C. (1990). Effects of lead nitrate on isolated rat atria. [Efecto del nitrato de plomo en aurículas aisladas de rata] Acta Physiologica Et Pharmacologica Latinoamericana, 40(2), 137-148. Ansari, M. A., Maayah, Z. H., Bakheet, S. A., El-Kadi, A. O., & Korashy, H. M. (2013). The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model. Toxicology, 306, 40-49. doi:10.1016/j.tox.2013.01.024 Barbosa Jr., F., Sertorio, J. T. C., Gerlach, R. F., & Tanus-Santos, J. E. (2006). Clinical evidence for lead-induced inhibition of nitric oxide formation. Archives of Toxicology, 80(12), 811-816. doi:10.1007/s00204-006-0111-3 Bernal, J., Lee, J. -., Cribbs, L. L., & Perez-Reyes, E. (1997). Full reversal of pb++ block of L-type ca++ channels requires treatment with heavy metal antidotes. Journal of Pharmacology and Experimental Therapeutics, 282(1), 172-180. Bhatnagar, A. (2004). Cardiovascular pathophysiology of environmental pollutants. American Journal of Physiology - Heart and Circulatory Physiology, 286(2 55-2), H479-H485. Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. American Journal of Physiology - Heart and Circulatory Physiology, 275(1 44-1), H301-H321. Courtemanche, M., Ramirez, R. J., & Nattel, S. (1999). Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: Insights from a mathematical model. Cardiovascular Research, 42(2), 477-489. doi:10.1016/S0008-6363(99)00034-6 Dinanian, S., Boixel, C., Juin, C., Hulot, J. -., Coulombe, A., Rücker-Martin, C., . . . Hatem, S. N. (2008). Downregulation of the calcium current in human right atrial myocytes from patients in sinus rhythm but with a high risk of atrial fibrillation. European Heart Journal, 29(9), 1190-1197. doi:10.1093/eurheartj/ehn140 Goralnick, E., & Bontempo, L. J. (2015). Atrial fibrillation. Emergency Medicine Clinics of North America, 33(3), 597-612. doi:10.1016/j.emc.2015.04.008 Kopp, S. J., Baker, J. C., D'Agrosa, L. S., & Hawley, P. L. (1978). Simultaneous recording of his bundle electrogram, electrocardiogram, and systolic tension from intact modified langendorff rat heart preparations I: Effects of perfusion time, cadmium, and lead. Toxicology and Applied Pharmacology, 46(2), 475-487. doi:10.1016/0041-008X(78)90093-5 Patrick, L. (2006). Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Medicine Review, 11(2), 114-127. Prentice, R. C., & Kopp, S. J. (1985). Cardiotoxicity of lead at various perfusate calcium concentrations: Functional and metabolic responses of the perfused rat heart. Toxicology and Applied Pharmacology, 81(3 PART 1), 491-501. doi:10.1016/0041-008X(85)90420-X Rodrigue, J. P. (2013). Pollutants emitted by transport systems (air, water and noise). Pollutants Emitted by Transport Systems (Air, Water and Noise). Tsao, D. -., Yu, H. -., Cheng, J. -., Ho, C. -., & Chang, H. -. (2000). The change of β-adrenergic system in lead-induced hypertension. Toxicology and Applied Pharmacology, 164(2), 127-133. doi:10.1006/taap.1999.8871 Van Wagoner, D. R. (2003). Electrophysiological remodeling in human atrial fibrillation. PACE - Pacing and Clinical Electrophysiology, 26(7 II), 1572-1575. Van Wagoner, D. R., Pond, A. L., Lamorgese, M., Rossie, S. S., McCarthy, P. M., & Nerbonne, J. M. (1999). Atrial L-type Ca2+ currents and human atrial fibrillation. Circulation Research, 85(5), 428-436. Vaziri, N. D., Liang, K., & Ding, Y. (1999). Increased nitric oxide inactivation by reactive oxygen species in lead- induced hypertension. Kidney International, 56(4), 1492-1498. doi:10.1046/j.1523-1755.1999.00670.x |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159188657438720 |
spelling |
2017-12-19T19:36:42Z2017-12-19T19:36:42Z2017978981104085616800737http://hdl.handle.net/11407/426310.1007/978-981-10-4086-3_17reponame:Repositorio Institucional Universidad de Medellíninstname:Universidad de MedellínLead (Pb++) is a toxic agent that can exert adverse effects on the cardiac human health. Pb++ blocks the Ltype Ca++ channels. A decrease in L-type calcium current (ICaL) is an important mechanism favoring atrial fibrillation. It is important to study the electrophysiological Pb++ effects on the atrial action potential in healthy people and those with AF. For this, we study the consequences of Pb++ on action potential, under normal and atrial fibrillation condition using in silico models. Our results suggest that Pb++ blocks ICaL current in a fraction greater as the concentration increases, resulting in an action potential duration shortening, Pb++ has a greater action potential duration effect on control conditions. To our knowledge, this is the first work that has developed mathematical models of Pb++ effect on ICaLcurrent to study its effect on human atrial action potential. © Springer Nature Singapore Pte Ltd. 2017.engSpringer VerlagFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85018384836&doi=10.1007%2f978-981-10-4086-3_17&partnerID=40&md5=5ad5b61b412e38f00f9528d881e9d054IFMBE ProceedingsIFMBE Proceedings Volume 60, 2017, Pages 66-69Revealing the costs of air pollution from industrial facilities in europe. (2011). Revealing the Costs of Air Pollution from Industrial Facilities in Europe.Acosta, G. B., & Rubio, M. C. (1990). Effects of lead nitrate on isolated rat atria. [Efecto del nitrato de plomo en aurículas aisladas de rata] Acta Physiologica Et Pharmacologica Latinoamericana, 40(2), 137-148.Ansari, M. A., Maayah, Z. H., Bakheet, S. A., El-Kadi, A. O., & Korashy, H. M. (2013). The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model. Toxicology, 306, 40-49. doi:10.1016/j.tox.2013.01.024Barbosa Jr., F., Sertorio, J. T. C., Gerlach, R. F., & Tanus-Santos, J. E. (2006). Clinical evidence for lead-induced inhibition of nitric oxide formation. Archives of Toxicology, 80(12), 811-816. doi:10.1007/s00204-006-0111-3Bernal, J., Lee, J. -., Cribbs, L. L., & Perez-Reyes, E. (1997). Full reversal of pb++ block of L-type ca++ channels requires treatment with heavy metal antidotes. Journal of Pharmacology and Experimental Therapeutics, 282(1), 172-180.Bhatnagar, A. (2004). Cardiovascular pathophysiology of environmental pollutants. American Journal of Physiology - Heart and Circulatory Physiology, 286(2 55-2), H479-H485.Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. American Journal of Physiology - Heart and Circulatory Physiology, 275(1 44-1), H301-H321.Courtemanche, M., Ramirez, R. J., & Nattel, S. (1999). Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: Insights from a mathematical model. Cardiovascular Research, 42(2), 477-489. doi:10.1016/S0008-6363(99)00034-6Dinanian, S., Boixel, C., Juin, C., Hulot, J. -., Coulombe, A., Rücker-Martin, C., . . . Hatem, S. N. (2008). Downregulation of the calcium current in human right atrial myocytes from patients in sinus rhythm but with a high risk of atrial fibrillation. European Heart Journal, 29(9), 1190-1197. doi:10.1093/eurheartj/ehn140Goralnick, E., & Bontempo, L. J. (2015). Atrial fibrillation. Emergency Medicine Clinics of North America, 33(3), 597-612. doi:10.1016/j.emc.2015.04.008Kopp, S. J., Baker, J. C., D'Agrosa, L. S., & Hawley, P. L. (1978). Simultaneous recording of his bundle electrogram, electrocardiogram, and systolic tension from intact modified langendorff rat heart preparations I: Effects of perfusion time, cadmium, and lead. Toxicology and Applied Pharmacology, 46(2), 475-487. doi:10.1016/0041-008X(78)90093-5Patrick, L. (2006). Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Medicine Review, 11(2), 114-127.Prentice, R. C., & Kopp, S. J. (1985). Cardiotoxicity of lead at various perfusate calcium concentrations: Functional and metabolic responses of the perfused rat heart. Toxicology and Applied Pharmacology, 81(3 PART 1), 491-501. doi:10.1016/0041-008X(85)90420-XRodrigue, J. P. (2013). Pollutants emitted by transport systems (air, water and noise). Pollutants Emitted by Transport Systems (Air, Water and Noise).Tsao, D. -., Yu, H. -., Cheng, J. -., Ho, C. -., & Chang, H. -. (2000). The change of β-adrenergic system in lead-induced hypertension. Toxicology and Applied Pharmacology, 164(2), 127-133. doi:10.1006/taap.1999.8871Van Wagoner, D. R. (2003). Electrophysiological remodeling in human atrial fibrillation. PACE - Pacing and Clinical Electrophysiology, 26(7 II), 1572-1575.Van Wagoner, D. R., Pond, A. L., Lamorgese, M., Rossie, S. S., McCarthy, P. M., & Nerbonne, J. M. (1999). Atrial L-type Ca2+ currents and human atrial fibrillation. Circulation Research, 85(5), 428-436.Vaziri, N. D., Liang, K., & Ding, Y. (1999). Increased nitric oxide inactivation by reactive oxygen species in lead- induced hypertension. Kidney International, 56(4), 1492-1498. doi:10.1046/j.1523-1755.1999.00670.xScopusLead (Pb++) effect on human atrial action potential under normal and atrial fibrillation conditions. In silico studyConference Paperinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fTobón, C., MATBIOM, Universidad de Medellín, Medellín, ColombiaPachajoa, D., GI2B, Instituto Tecnológico Metropolitano, Medellín, ColombiaUgarte, J.P., Grupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, ColombiaSaiz, J., CI2B, Universitat Politècnica de València, Valencia, SpainTobón C.Pachajoa D.Ugarte J.P.Saiz J.MATBIOM, Universidad de Medellín, Medellín, ColombiaGI2B, Instituto Tecnológico Metropolitano, Medellín, ColombiaGrupo de Dinámica Cardiovascular, Universidad Pontificia Bolivariana, Medellín, ColombiaCI2B, Universitat Politècnica de València, Valencia, SpainAtrial fibrillationIn silico modelsL-type Ca++ currentLead (Pb++)Biomedical engineeringCalciumDiseasesElectrophysiologyAction potential durationsAction potentialsAdverse effectAtrial fibrillationCalcium currentHealthy peopleIn-silico modelsToxic agentsLeadLead (Pb++) is a toxic agent that can exert adverse effects on the cardiac human health. Pb++ blocks the Ltype Ca++ channels. A decrease in L-type calcium current (ICaL) is an important mechanism favoring atrial fibrillation. It is important to study the electrophysiological Pb++ effects on the atrial action potential in healthy people and those with AF. For this, we study the consequences of Pb++ on action potential, under normal and atrial fibrillation condition using in silico models. Our results suggest that Pb++ blocks ICaL current in a fraction greater as the concentration increases, resulting in an action potential duration shortening, Pb++ has a greater action potential duration effect on control conditions. To our knowledge, this is the first work that has developed mathematical models of Pb++ effect on ICaLcurrent to study its effect on human atrial action potential. © Springer Nature Singapore Pte Ltd. 2017.http://purl.org/coar/access_right/c_16ec11407/4263oai:repository.udem.edu.co:11407/42632020-05-27 17:50:21.113Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |