Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
Given the accelerated advancements in microelectronics and processing systems, robotics are constantly going forward in new areas alongside the industries. Some robotic handlers require being able to maneuver with objects with different dimensions, surfaces, and delicate textures, which sets the nee...
- Autores:
-
Silva Plata, Carolina
Gallardo Arancibia, José
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5520
- Acceso en línea:
- http://hdl.handle.net/11407/5520
https://doi.org/10.22395/rium.v18n34a7
- Palabra clave:
- Robotic gripper
Robotic grip
Adaptive grip
FinRay®structure
Pinça robótica
Pinça adaptativa
Estrutura FinRay®
Pinza robótica
Pinza adaptativa
Estructura FinRay®
- Rights
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
REPOUDEM2_3d6636b0c566edc66fbb1787d6bae2d8 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5520 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure |
dc.title.por.fl_str_mv |
Desenho e implantação de protótipo de uma pinça robótica adaptativa de três dedos baseada na estrutura FinRay® |
dc.title.spa.fl_str_mv |
Diseño e implementación de prototipo de una pinza robótica adaptativa de tres dedos basada en estructura FinRay® |
title |
Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure |
spellingShingle |
Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure Robotic gripper Robotic grip Adaptive grip FinRay®structure Pinça robótica Pinça adaptativa Estrutura FinRay® Pinza robótica Pinza adaptativa Estructura FinRay® |
title_short |
Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure |
title_full |
Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure |
title_fullStr |
Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure |
title_full_unstemmed |
Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure |
title_sort |
Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure |
dc.creator.fl_str_mv |
Silva Plata, Carolina Gallardo Arancibia, José |
dc.contributor.author.none.fl_str_mv |
Silva Plata, Carolina Gallardo Arancibia, José |
dc.subject.eng.fl_str_mv |
Robotic gripper Robotic grip Adaptive grip FinRay®structure |
topic |
Robotic gripper Robotic grip Adaptive grip FinRay®structure Pinça robótica Pinça adaptativa Estrutura FinRay® Pinza robótica Pinza adaptativa Estructura FinRay® |
dc.subject.por.fl_str_mv |
Pinça robótica Pinça adaptativa Estrutura FinRay® |
dc.subject.spa.fl_str_mv |
Pinza robótica Pinza adaptativa Estructura FinRay® |
description |
Given the accelerated advancements in microelectronics and processing systems, robotics are constantly going forward in new areas alongside the industries. Some robotic handlers require being able to maneuver with objects with different dimensions, surfaces, and delicate textures, which sets the need for new final effectors with new mechanics and control features. Likewise, with the ongoing research developed in the bio-mimesis area, a very reliable and viable for replicating nature principles for the development of technological appliances. This document describes the mechanical design and the physical implementing process of an adaptive robotic gripper with jaws based on the FinRay® structure regarding the movement reaction of a fish fins. The achieved results show its effectivity and adaptability for the gripping of different objects. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-07T15:34:26Z |
dc.date.available.none.fl_str_mv |
2019-11-07T15:34:26Z |
dc.date.created.none.fl_str_mv |
2019-06-28 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
Artículo científico |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1692-3324 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5520 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.22395/rium.v18n34a7 |
dc.identifier.eissn.none.fl_str_mv |
2248-4094 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad de Medellín |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.udem.edu.co/ |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de Medellín |
identifier_str_mv |
1692-3324 2248-4094 reponame:Repositorio Institucional Universidad de Medellín repourl:https://repository.udem.edu.co/ instname:Universidad de Medellín |
url |
http://hdl.handle.net/11407/5520 https://doi.org/10.22395/rium.v18n34a7 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.uri.none.fl_str_mv |
https://revistas.udem.edu.co/index.php/ingenierias/article/view/2199 |
dc.relation.citationvolume.none.fl_str_mv |
18 |
dc.relation.citationissue.none.fl_str_mv |
34 |
dc.relation.citationstartpage.none.fl_str_mv |
103 |
dc.relation.citationendpage.none.fl_str_mv |
121 |
dc.relation.references.spa.fl_str_mv |
[1] J. Hemming, et al., “A robot for harvesting sweet-pepper in greenhouses”. International Conference of Agricultural Engineering, Zúrich, 2014. [2] W.Crooks, G. Vukasin, M. O’Sullivan, W. Messner, C. Rogers. “Fin Ray® Effect Inspired Soft Robotic Gripper: From the RoboSoft Grand Challenge toward Optimization” Frontiers in Robotics and AI, vol 3, pp. 70, 2016. DOI: 10.3389/frobt.2016.00070 [3] A. Zapciu, G. Constantin, D. Popescu, “Adaptive robotic end-effector with embedded 3Dprinted sensing circuits”, MATEC Web of Conferences, vol. 121, 2017. [4] J. C. Yeo, H. K. Yap, W. Xi, Z. Wang , C.-H. Yeow, C. T. Lim. “Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications”. Advanced Materials Technologies, vol 1, n.° 3, pp. 1600018-1600026, May 2016 [5] R. D. Howe, A. M. Dollar, M. Claffee, “Robots get a Grip”, IEEE Spectrum, pp. 42-47, Dec. 2014. [6] E. Brown, et al., “Universal robotic gripper based on the jamming of granular material”, PNAS, vol 107, n.° 44, pp 18809-18814, 2010. [7] B. Homberg, R. Katzschmann, M.R. Dogar, D. Rus, “Haptic identification of objects using a modular soft robotic gripper”, IEEE/RSJ International Conference, Hamburg, Germany, 2015. [8] W. Crooks, S., Rozen-Levy, B. Trimmer, C. Rogers, W. Messner, “Passive gripper inspired by Manduca sexta and the Fin Ray® Effect.”, International Journal of Advanced Robotic Systems, vol 14, n.° 4, 2016. [9] Y. Bar-Cohen, “Biomimetics: Nature-Based Innovation”, Boca Ratón: CRC, 2016. [10] O. Pfaff, S. Simeonov, I. Cirovic, P. Stano. “Application of FinRay® Effect approach for production process automation”, DAAAM International, vol 22, n.° 1, pp. 1247-1248, 2011. [11] W. Natchigall y N. Wisser, Bionics by Examples: 250 Scenaries from Classical to Modern Times. Alemania: Springer, pp 325, 2015. [12] A. Barrientos, L. Peñin, C. Balaguer, R. Aracil, Fundamentos de Robótica, España: McGraw Hill, 2007. [13] R. Miranda, Cinemática y Dinánima de Robots Manipuladores, México: Alfaomega, 2016. [14] S. Khatib, Handbook of Robotics, Berlín: Springer, 2008. [15] G. Kragten, Underactuated Hands. Fundamentals, performance analysis and design, Ph. D, Technische Universiteit Delft, 2011. |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.creativecommons.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
p. 103-121 |
dc.format.medium.spa.fl_str_mv |
Electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad de Medellín |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.source.spa.fl_str_mv |
Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 103-121 |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159226458603520 |
spelling |
Silva Plata, CarolinaGallardo Arancibia, JoséSilva Plata, Carolina; Universidad Católica del NorteGallardo Arancibia, José; Universidad Católica del Norte2019-11-07T15:34:26Z2019-11-07T15:34:26Z2019-06-281692-3324http://hdl.handle.net/11407/5520https://doi.org/10.22395/rium.v18n34a72248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínGiven the accelerated advancements in microelectronics and processing systems, robotics are constantly going forward in new areas alongside the industries. Some robotic handlers require being able to maneuver with objects with different dimensions, surfaces, and delicate textures, which sets the need for new final effectors with new mechanics and control features. Likewise, with the ongoing research developed in the bio-mimesis area, a very reliable and viable for replicating nature principles for the development of technological appliances. This document describes the mechanical design and the physical implementing process of an adaptive robotic gripper with jaws based on the FinRay® structure regarding the movement reaction of a fish fins. The achieved results show its effectivity and adaptability for the gripping of different objects.Com o rápido avanço da microelectrónica e os sistemas de processamento, a robótica está irrompendo constantemente em novas áreas além da indústria. Alguns manipuladores robóticos requerem manobrar objetos com propriedades dimensionais variantes, superfícies complexas e texturas delicadas, o que leva à busca de desenhos de efeitos finais que apresentem novas características mecânicas e de controle. Além disso, com as pesquisas contínuas desenvolvidas na disciplina científica da biomímese, uma opção confiável e viável é reproduzir princípios da natureza para desenvolver aplicações tecnológicas. Neste documento, são é descrito o desenho mecânico e a implantação física de uma pinça robótica adaptativa e subatuada com mordaças baseadas na estrutura do efeito FinRay®, que faz referência à reação de movimento da barbatana de um peixe. Os resultados demonstram sua efetividade e adaptabilidade para a fixação de diferentes objetos.Con el acelerado avance de la microelectrónica y los sistemas de procesamiento, la robótica está irrumpiendo constantemente en nuevas áreas además de la industria. Algunos manipuladores robóticos requieren maniobrar objetos con propiedades dimensionales variantes, superficies complejas y texturas delicadas, lo que lleva a la búsqueda de diseños de efectores finales que presenten nuevas características mecánicas y de control. Asimismo, con las investigaciones continuas que se han desarrollado en la disciplina científica de la biomímesis, una opción muy confiable y viable es replicar principios de la naturaleza para desarrollar aplicaciones tecnológicas. En este documento se describe el diseño mecánico y la implementación física de una pinza robótica adaptativa y subactuada con mordazas basadas en la estructura del efecto FinRay®, que hace referencia a la reacción de movimiento de la aleta de un pez. Los resultados logrados demuestran su efectividad y adaptabilidad para la sujeción de distintos tipos de objetos.p. 103-121Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttps://revistas.udem.edu.co/index.php/ingenierias/article/view/21991834103121[1] J. Hemming, et al., “A robot for harvesting sweet-pepper in greenhouses”. International Conference of Agricultural Engineering, Zúrich, 2014.[2] W.Crooks, G. Vukasin, M. O’Sullivan, W. Messner, C. Rogers. “Fin Ray® Effect Inspired Soft Robotic Gripper: From the RoboSoft Grand Challenge toward Optimization” Frontiers in Robotics and AI, vol 3, pp. 70, 2016. DOI: 10.3389/frobt.2016.00070[3] A. Zapciu, G. Constantin, D. Popescu, “Adaptive robotic end-effector with embedded 3Dprinted sensing circuits”, MATEC Web of Conferences, vol. 121, 2017.[4] J. C. Yeo, H. K. Yap, W. Xi, Z. Wang , C.-H. Yeow, C. T. Lim. “Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications”. Advanced Materials Technologies, vol 1, n.° 3, pp. 1600018-1600026, May 2016[5] R. D. Howe, A. M. Dollar, M. Claffee, “Robots get a Grip”, IEEE Spectrum, pp. 42-47, Dec. 2014.[6] E. Brown, et al., “Universal robotic gripper based on the jamming of granular material”, PNAS, vol 107, n.° 44, pp 18809-18814, 2010.[7] B. Homberg, R. Katzschmann, M.R. Dogar, D. Rus, “Haptic identification of objects using a modular soft robotic gripper”, IEEE/RSJ International Conference, Hamburg, Germany, 2015.[8] W. Crooks, S., Rozen-Levy, B. Trimmer, C. Rogers, W. Messner, “Passive gripper inspired by Manduca sexta and the Fin Ray® Effect.”, International Journal of Advanced Robotic Systems, vol 14, n.° 4, 2016.[9] Y. Bar-Cohen, “Biomimetics: Nature-Based Innovation”, Boca Ratón: CRC, 2016.[10] O. Pfaff, S. Simeonov, I. Cirovic, P. Stano. “Application of FinRay® Effect approach for production process automation”, DAAAM International, vol 22, n.° 1, pp. 1247-1248, 2011.[11] W. Natchigall y N. Wisser, Bionics by Examples: 250 Scenaries from Classical to Modern Times. Alemania: Springer, pp 325, 2015.[12] A. Barrientos, L. Peñin, C. Balaguer, R. Aracil, Fundamentos de Robótica, España: McGraw Hill, 2007.[13] R. Miranda, Cinemática y Dinánima de Robots Manipuladores, México: Alfaomega, 2016.[14] S. Khatib, Handbook of Robotics, Berlín: Springer, 2008.[15] G. Kragten, Underactuated Hands. Fundamentals, performance analysis and design, Ph. D, Technische Universiteit Delft, 2011.Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 103-121Robotic gripperRobotic gripAdaptive gripFinRay®structurePinça robóticaPinça adaptativaEstrutura FinRay®Pinza robóticaPinza adaptativaEstructura FinRay®Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structureDesenho e implantação de protótipo de uma pinça robótica adaptativa de três dedos baseada na estrutura FinRay®Diseño e implementación de prototipo de una pinza robótica adaptativa de tres dedos basada en estructura FinRay®Articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees11407/5520oai:repository.udem.edu.co:11407/55202021-05-14 14:29:54.388Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |