Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure

Given the accelerated advancements in microelectronics and processing systems, robotics are constantly going forward in new areas alongside the industries. Some robotic handlers require being able to maneuver with objects with different dimensions, surfaces, and delicate textures, which sets the nee...

Full description

Autores:
Silva Plata, Carolina
Gallardo Arancibia, José
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
spa
OAI Identifier:
oai:repository.udem.edu.co:11407/5520
Acceso en línea:
http://hdl.handle.net/11407/5520
https://doi.org/10.22395/rium.v18n34a7
Palabra clave:
Robotic gripper
Robotic grip
Adaptive grip
FinRay®structure
Pinça robótica
Pinça adaptativa
Estrutura FinRay®
Pinza robótica
Pinza adaptativa
Estructura FinRay®
Rights
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id REPOUDEM2_3d6636b0c566edc66fbb1787d6bae2d8
oai_identifier_str oai:repository.udem.edu.co:11407/5520
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.eng.fl_str_mv Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
dc.title.por.fl_str_mv Desenho e implantação de protótipo de uma pinça robótica adaptativa de três dedos baseada na estrutura FinRay®
dc.title.spa.fl_str_mv Diseño e implementación de prototipo de una pinza robótica adaptativa de tres dedos basada en estructura FinRay®
title Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
spellingShingle Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
Robotic gripper
Robotic grip
Adaptive grip
FinRay®structure
Pinça robótica
Pinça adaptativa
Estrutura FinRay®
Pinza robótica
Pinza adaptativa
Estructura FinRay®
title_short Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
title_full Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
title_fullStr Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
title_full_unstemmed Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
title_sort Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structure
dc.creator.fl_str_mv Silva Plata, Carolina
Gallardo Arancibia, José
dc.contributor.author.none.fl_str_mv Silva Plata, Carolina
Gallardo Arancibia, José
dc.subject.eng.fl_str_mv Robotic gripper
Robotic grip
Adaptive grip
FinRay®structure
topic Robotic gripper
Robotic grip
Adaptive grip
FinRay®structure
Pinça robótica
Pinça adaptativa
Estrutura FinRay®
Pinza robótica
Pinza adaptativa
Estructura FinRay®
dc.subject.por.fl_str_mv Pinça robótica
Pinça adaptativa
Estrutura FinRay®
dc.subject.spa.fl_str_mv Pinza robótica
Pinza adaptativa
Estructura FinRay®
description Given the accelerated advancements in microelectronics and processing systems, robotics are constantly going forward in new areas alongside the industries. Some robotic handlers require being able to maneuver with objects with different dimensions, surfaces, and delicate textures, which sets the need for new final effectors with new mechanics and control features. Likewise, with the ongoing research developed in the bio-mimesis area, a very reliable and viable for replicating nature principles for the development of technological appliances. This document describes the mechanical design and the physical implementing process of an adaptive robotic gripper with jaws based on the FinRay® structure regarding the movement reaction of a fish fins. The achieved results show its effectivity and adaptability for the gripping of different objects.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-07T15:34:26Z
dc.date.available.none.fl_str_mv 2019-11-07T15:34:26Z
dc.date.created.none.fl_str_mv 2019-06-28
dc.type.eng.fl_str_mv Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv Artículo científico
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1692-3324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5520
dc.identifier.doi.none.fl_str_mv https://doi.org/10.22395/rium.v18n34a7
dc.identifier.eissn.none.fl_str_mv 2248-4094
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.udem.edu.co/
dc.identifier.instname.spa.fl_str_mv instname:Universidad de Medellín
identifier_str_mv 1692-3324
2248-4094
reponame:Repositorio Institucional Universidad de Medellín
repourl:https://repository.udem.edu.co/
instname:Universidad de Medellín
url http://hdl.handle.net/11407/5520
https://doi.org/10.22395/rium.v18n34a7
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.uri.none.fl_str_mv https://revistas.udem.edu.co/index.php/ingenierias/article/view/2199
dc.relation.citationvolume.none.fl_str_mv 18
dc.relation.citationissue.none.fl_str_mv 34
dc.relation.citationstartpage.none.fl_str_mv 103
dc.relation.citationendpage.none.fl_str_mv 121
dc.relation.references.spa.fl_str_mv [1] J. Hemming, et al., “A robot for harvesting sweet-pepper in greenhouses”. International Conference of Agricultural Engineering, Zúrich, 2014.
[2] W.Crooks, G. Vukasin, M. O’Sullivan, W. Messner, C. Rogers. “Fin Ray® Effect Inspired Soft Robotic Gripper: From the RoboSoft Grand Challenge toward Optimization” Frontiers in Robotics and AI, vol 3, pp. 70, 2016. DOI: 10.3389/frobt.2016.00070
[3] A. Zapciu, G. Constantin, D. Popescu, “Adaptive robotic end-effector with embedded 3Dprinted sensing circuits”, MATEC Web of Conferences, vol. 121, 2017.
[4] J. C. Yeo, H. K. Yap, W. Xi, Z. Wang , C.-H. Yeow, C. T. Lim. “Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications”. Advanced Materials Technologies, vol 1, n.° 3, pp. 1600018-1600026, May 2016
[5] R. D. Howe, A. M. Dollar, M. Claffee, “Robots get a Grip”, IEEE Spectrum, pp. 42-47, Dec. 2014.
[6] E. Brown, et al., “Universal robotic gripper based on the jamming of granular material”, PNAS, vol 107, n.° 44, pp 18809-18814, 2010.
[7] B. Homberg, R. Katzschmann, M.R. Dogar, D. Rus, “Haptic identification of objects using a modular soft robotic gripper”, IEEE/RSJ International Conference, Hamburg, Germany, 2015.
[8] W. Crooks, S., Rozen-Levy, B. Trimmer, C. Rogers, W. Messner, “Passive gripper inspired by Manduca sexta and the Fin Ray® Effect.”, International Journal of Advanced Robotic Systems, vol 14, n.° 4, 2016.
[9] Y. Bar-Cohen, “Biomimetics: Nature-Based Innovation”, Boca Ratón: CRC, 2016.
[10] O. Pfaff, S. Simeonov, I. Cirovic, P. Stano. “Application of FinRay® Effect approach for production process automation”, DAAAM International, vol 22, n.° 1, pp. 1247-1248, 2011.
[11] W. Natchigall y N. Wisser, Bionics by Examples: 250 Scenaries from Classical to Modern Times. Alemania: Springer, pp 325, 2015.
[12] A. Barrientos, L. Peñin, C. Balaguer, R. Aracil, Fundamentos de Robótica, España: McGraw Hill, 2007.
[13] R. Miranda, Cinemática y Dinánima de Robots Manipuladores, México: Alfaomega, 2016.
[14] S. Khatib, Handbook of Robotics, Berlín: Springer, 2008.
[15] G. Kragten, Underactuated Hands. Fundamentals, performance analysis and design, Ph. D, Technische Universiteit Delft, 2011.
dc.relation.ispartofjournal.spa.fl_str_mv Revista Ingenierías Universidad de Medellín
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv p. 103-121
dc.format.medium.spa.fl_str_mv Electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Lat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.publisher.spa.fl_str_mv Universidad de Medellín
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.place.spa.fl_str_mv Medellín
dc.source.spa.fl_str_mv Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 103-121
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159226458603520
spelling Silva Plata, CarolinaGallardo Arancibia, JoséSilva Plata, Carolina; Universidad Católica del NorteGallardo Arancibia, José; Universidad Católica del Norte2019-11-07T15:34:26Z2019-11-07T15:34:26Z2019-06-281692-3324http://hdl.handle.net/11407/5520https://doi.org/10.22395/rium.v18n34a72248-4094reponame:Repositorio Institucional Universidad de Medellínrepourl:https://repository.udem.edu.co/instname:Universidad de MedellínGiven the accelerated advancements in microelectronics and processing systems, robotics are constantly going forward in new areas alongside the industries. Some robotic handlers require being able to maneuver with objects with different dimensions, surfaces, and delicate textures, which sets the need for new final effectors with new mechanics and control features. Likewise, with the ongoing research developed in the bio-mimesis area, a very reliable and viable for replicating nature principles for the development of technological appliances. This document describes the mechanical design and the physical implementing process of an adaptive robotic gripper with jaws based on the FinRay® structure regarding the movement reaction of a fish fins. The achieved results show its effectivity and adaptability for the gripping of different objects.Com o rápido avanço da microelectrónica e os sistemas de processamento, a robótica está irrompendo constantemente em novas áreas além da indústria. Alguns manipuladores robóticos requerem manobrar objetos com propriedades dimensionais variantes, superfícies complexas e texturas delicadas, o que leva à busca de desenhos de efeitos finais que apresentem novas características mecânicas e de controle. Além disso, com as pesquisas contínuas desenvolvidas na disciplina científica da biomímese, uma opção confiável e viável é reproduzir princípios da natureza para desenvolver aplicações tecnológicas. Neste documento, são é descrito o desenho mecânico e a implantação física de uma pinça robótica adaptativa e subatuada com mordaças baseadas na estrutura do efeito FinRay®, que faz referência à reação de movimento da barbatana de um peixe. Os resultados demonstram sua efetividade e adaptabilidade para a fixação de diferentes objetos.Con el acelerado avance de la microelectrónica y los sistemas de procesamiento, la robótica está irrumpiendo constantemente en nuevas áreas además de la industria. Algunos manipuladores robóticos requieren maniobrar objetos con propiedades dimensionales variantes, superficies complejas y texturas delicadas, lo que lleva a la búsqueda de diseños de efectores finales que presenten nuevas características mecánicas y de control. Asimismo, con las investigaciones continuas que se han desarrollado en la disciplina científica de la biomímesis, una opción muy confiable y viable es replicar principios de la naturaleza para desarrollar aplicaciones tecnológicas. En este documento se describe el diseño mecánico y la implementación física de una pinza robótica adaptativa y subactuada con mordazas basadas en la estructura del efecto FinRay®, que hace referencia a la reacción de movimiento de la aleta de un pez. Los resultados logrados demuestran su efectividad y adaptabilidad para la sujeción de distintos tipos de objetos.p. 103-121Electrónicoapplication/pdfspaUniversidad de MedellínFacultad de IngenieríasMedellínhttps://revistas.udem.edu.co/index.php/ingenierias/article/view/21991834103121[1] J. Hemming, et al., “A robot for harvesting sweet-pepper in greenhouses”. International Conference of Agricultural Engineering, Zúrich, 2014.[2] W.Crooks, G. Vukasin, M. O’Sullivan, W. Messner, C. Rogers. “Fin Ray® Effect Inspired Soft Robotic Gripper: From the RoboSoft Grand Challenge toward Optimization” Frontiers in Robotics and AI, vol 3, pp. 70, 2016. DOI: 10.3389/frobt.2016.00070[3] A. Zapciu, G. Constantin, D. Popescu, “Adaptive robotic end-effector with embedded 3Dprinted sensing circuits”, MATEC Web of Conferences, vol. 121, 2017.[4] J. C. Yeo, H. K. Yap, W. Xi, Z. Wang , C.-H. Yeow, C. T. Lim. “Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications”. Advanced Materials Technologies, vol 1, n.° 3, pp. 1600018-1600026, May 2016[5] R. D. Howe, A. M. Dollar, M. Claffee, “Robots get a Grip”, IEEE Spectrum, pp. 42-47, Dec. 2014.[6] E. Brown, et al., “Universal robotic gripper based on the jamming of granular material”, PNAS, vol 107, n.° 44, pp 18809-18814, 2010.[7] B. Homberg, R. Katzschmann, M.R. Dogar, D. Rus, “Haptic identification of objects using a modular soft robotic gripper”, IEEE/RSJ International Conference, Hamburg, Germany, 2015.[8] W. Crooks, S., Rozen-Levy, B. Trimmer, C. Rogers, W. Messner, “Passive gripper inspired by Manduca sexta and the Fin Ray® Effect.”, International Journal of Advanced Robotic Systems, vol 14, n.° 4, 2016.[9] Y. Bar-Cohen, “Biomimetics: Nature-Based Innovation”, Boca Ratón: CRC, 2016.[10] O. Pfaff, S. Simeonov, I. Cirovic, P. Stano. “Application of FinRay® Effect approach for production process automation”, DAAAM International, vol 22, n.° 1, pp. 1247-1248, 2011.[11] W. Natchigall y N. Wisser, Bionics by Examples: 250 Scenaries from Classical to Modern Times. Alemania: Springer, pp 325, 2015.[12] A. Barrientos, L. Peñin, C. Balaguer, R. Aracil, Fundamentos de Robótica, España: McGraw Hill, 2007.[13] R. Miranda, Cinemática y Dinánima de Robots Manipuladores, México: Alfaomega, 2016.[14] S. Khatib, Handbook of Robotics, Berlín: Springer, 2008.[15] G. Kragten, Underactuated Hands. Fundamentals, performance analysis and design, Ph. D, Technische Universiteit Delft, 2011.Revista Ingenierías Universidad de Medellínhttp://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Ingenierías Universidad de Medellín; Vol. 18 Núm. 34 (2019): Enero-Junio; 103-121Robotic gripperRobotic gripAdaptive gripFinRay®structurePinça robóticaPinça adaptativaEstrutura FinRay®Pinza robóticaPinza adaptativaEstructura FinRay®Prototype design and implementing of a three-finger adaptive robotic gripper based on the FinRay® structureDesenho e implantação de protótipo de uma pinça robótica adaptativa de três dedos baseada na estrutura FinRay®Diseño e implementación de prototipo de una pinza robótica adaptativa de tres dedos basada en estructura FinRay®Articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Artículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad de MedellínLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees11407/5520oai:repository.udem.edu.co:11407/55202021-05-14 14:29:54.388Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co