PID tuning method based on IMC for inverse-response second-order plus dead time processes
This work addresses a set of tuning rules for PID controllers based on Internal Model Control (IMC) for inverse-response second-order systems with dead time. The transfer function, and some time-response characteristics for such systems are first described. Then, the IMC-based methodology is develop...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5993
- Acceso en línea:
- http://hdl.handle.net/11407/5993
- Palabra clave:
- Internal model control
Inverse response
PID tuning
Process control
Second order plus dead time)
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_3b9e934e487396652b01c3431cb04d25 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5993 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
PID tuning method based on IMC for inverse-response second-order plus dead time processes |
title |
PID tuning method based on IMC for inverse-response second-order plus dead time processes |
spellingShingle |
PID tuning method based on IMC for inverse-response second-order plus dead time processes Internal model control Inverse response PID tuning Process control Second order plus dead time) |
title_short |
PID tuning method based on IMC for inverse-response second-order plus dead time processes |
title_full |
PID tuning method based on IMC for inverse-response second-order plus dead time processes |
title_fullStr |
PID tuning method based on IMC for inverse-response second-order plus dead time processes |
title_full_unstemmed |
PID tuning method based on IMC for inverse-response second-order plus dead time processes |
title_sort |
PID tuning method based on IMC for inverse-response second-order plus dead time processes |
dc.subject.spa.fl_str_mv |
Internal model control Inverse response PID tuning Process control Second order plus dead time) |
topic |
Internal model control Inverse response PID tuning Process control Second order plus dead time) |
description |
This work addresses a set of tuning rules for PID controllers based on Internal Model Control (IMC) for inverse-response second-order systems with dead time. The transfer function, and some time-response characteristics for such systems are first described. Then, the IMC-based methodology is developed by using an optimization objective function that mixes performance and robustness. A correlation that minimizes the objective function and that allows the user to compute the controller's tuning parameter is found. The obtained expressions are mathematically simple, which facilitate their application in a ten-step systematic methodology. Finally, the proposed tuning method is compared to other well-known tuning rules that have been reported in literature, for a wide range of parameters of the process. The performance achieved with the proposed method is very good not only for disturbance rejection but for set-point tracking, when considering a wide-range of parameters of the process' transfer function. © 2020 by the authors. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-05T14:58:29Z |
dc.date.available.none.fl_str_mv |
2021-02-05T14:58:29Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
22279717 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5993 |
dc.identifier.doi.none.fl_str_mv |
10.3390/PR8091183 |
identifier_str_mv |
22279717 10.3390/PR8091183 |
url |
http://hdl.handle.net/11407/5993 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092254988&doi=10.3390%2fPR8091183&partnerID=40&md5=6da49fd2e39b725be558db30bb9d8b5b |
dc.relation.citationvolume.none.fl_str_mv |
8 |
dc.relation.citationissue.none.fl_str_mv |
9 |
dc.relation.references.none.fl_str_mv |
Camacho, O., Rojas, R., García, W., Variable structure control applied to chemical processes with inverse response (1999) ISA Trans, 38, pp. 55-72 Zhang, W., Xu, X., Sun, Y., Quantitative Performance Design for Inverse-Response Processes (2000) Ind. Eng. Chem. Res, 39, pp. 2056-2061 Stephanopoulos, G., Chemical Process Control (1984) An Introduction to Theory and Practice, , Prentice Hall: New York, NY, USA Ogunnaike, B.A., Ray, W.H., Process Dynamics Modeling and Control (1994) Topics in Chemical Engineering, p. 1260. , Oxford University Press: Don Mills, ON, Canada De Castro, P., Fernández, E., (2006) Control e Instrumentación de Procesos Químicos, , Editorial Síntesis: Madrid Spain Romagnoli, J.A., Palazoglu, A., (2012) Introduction to Process Control, , 2nd ed. CRC Press: Boca Raton, FL, USA Joshi, M., Uniyal, J., Juneja, P.K., Design of inverse response compensator for complex process (2016) In Proceedings of the 2016 International Conference on Advances in Computing, pp. 1-6. , Communication, Automation (ICACCA), Dehradun, India, 29-30 April Muresan, C.I., Ionescu, C.M., Generalization of the FOPDT Model for Identification and Control Purposes (2020) Processes, 8, p. 682 Pai, N., Chang, S., Huangb, C., Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations (2010) J. Process. Control, 20, pp. 726-733 Jeng, J., Lin, S., PID controller tuning based on Smith-type compensator for second-order process with inverse response and time delay (2011) In Proceedings of the 2011 8th Asian Control Conference (ASCC), , Kaohsiung, Taiwan, 15-18 May Castellanos, D., Castrillón, F., Controladores PI/PID en procesos con respuesta inversa evaluación de la robustez (2012) Ing.QuíMica, 502, pp. 48-52 Ocampo, J.E., Castrillón, F., Control de sistemas con respuesta inversa (2010) Ing.QuíMica, 42, pp. 76-85 Waller, K.V., Nygardas, C., On inverse response in process control (1975) Ind. Eng. Chem. Fundam, 14, pp. 221-223 Ziegler, J., Nichols, N., Optimum Settings for Automatic Controllers (1993) J. Dyn. Syst. Meas. Control, 115, pp. 220-222 Scali, C., Rachid, A., Analytical design of Proportional-Integral-Derivative controllers for inverse response process (1998) Ind. Eng. Chem. Res, 37, pp. 1372-1379 Luyben, W.L., Tuning Proportional-Integral controllers for processes with both inverse response and deadtime (2000) Ind. Eng. Chem. Res, 39, pp. 973-976 Chien, I.L., Chung, Y.C., Chen, B.S., Chuang, C.Y., Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time (2003) Ind. Eng. Chem. Res, 42, pp. 4461-4477 Sree, R.P., Chidambaram, M., Simple method of tuning PI controller for stable inverse response systems (2003) J. Indian Inst. Sci, 83, pp. 73-85 Chen, D., Seborg, D.E., PI/PID Controller design based on direct synthesis and disturbance rejection (2002) Ind. Eng. Chem. Res, 41, pp. 4807-4822 Shamsuzzoha, M., Lee, M., PID controller design for integrating processes with time delay (2008) Korean J. Chem. Eng, 25, pp. 637-645 Begum, K.G., Rao, A.S., Radhakrishnan, T., Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays (2017) ISA Trans, 68, pp. 223-234 Irshad, M., Ali, A., Optimal tuning rules for PI/PID controllers for inverse response processes (2018) IFAC PapersOnLine, 51, pp. 413-418 Patil, P., Rao, C.S., Enhanced PID Controller for Non-Minimum Phase Second Order Plus Time Delay System (2019) Chem. Prod. Process. Model, 14 Xu, G., Wu, T., Zhang, J., Yue, G., The two-degree-of-freedom parallel control for inverse response plus time delay (2019) Syst. Sci. Control. Eng, 7, pp. 90-95 Kaya, I., Integral-Proportional Derivative tuning for optimal closed loop responses to control integrating processes with inverse response (2020) Trans. Inst. Meas. Control, pp. 1-12 Siddiqui, M.A., Anwar, M.N., Laskar, S.H., Tuning of PIDF Controller in Parallel Control Structure for Integrating Process with Time Delay and Inverse Response Characteristic (2020) J. Control. Autom. Electr. Syst, 31, pp. 829-841 Nagarsheth, S.H., Sharma, S.N., Control of non-minimum phase systems with dead time: a fractional system viewpoint (2020) Int. J. Syst. Sci, 51, pp. 1905-1928 Herrera, M., Camacho, O., Leiva, H., Smith, C., An approach of dynamic sliding mode control for chemical processes (2020) J. Process. Control, 85, pp. 112-120 Luyben, W.L., Identification and tuning of integrating processes with deadtime and inverse response (2003) Ind. Eng. Chem. Res, 42, pp. 3030-3035 Rivera, D.E., Morari, M., Skogestad, S., Internal model control: PID controller design (1986) Ind. Eng. Chem. Process. Des. Dev, 25, pp. 252-265 Alfaro, V.M., Balaguer, P., Arrieta, O., Robustness Considerations on PID Tuning for Regulatory Control of Inverse Response Processes (2012) IFAC Proc. Vol, 45, pp. 193-198 Ionescu, C., Alfredo Cajo Diaz, R., Zhao, S., Ghita, M., Ghita, M., Copot, D., A Low Computational Cost, Prioritized, Multi-Objective Optimization Procedure for Predictive Control Towards Cyber Physical Systems (2020) IEEE Access, 8, pp. 128152-128166 Shamsuzzoha, M., Lee, M., IMC-PID Controller Design for Improved Disturbance Rejection of Time-Delayed Processes (2007) Ind. Eng. Chem. Res, 46, pp. 2077-2091 Lee, H., Na, G., Eun, Y., Extension of simplified internal model control for systems with double integrators (2017) In Proceedings of the 2017 17th International Conference on Control, pp. 1212-1217. , Automation and Systems (ICCAS), Jeju, Korea, 18-21 October Paulusová, J., Paulus, M., Internal model control of thermo-optical plant (2017) In Proceedings of the 2017 21st International Conference on Process Control (PC), pp. 179-184. , Štrbské Pleso, Slovakia, 6-9 June Tran, C.D., Ibrahim, R., Asirvadam, V.S., Saad, N., Miya, H.S., Internal model control for industrial wireless plant using WirelessHART hardware-in-the-loop simulator (2018) ISA Trans, 75, pp. 236-246 Leva, A., Papadopoulos, A.V., Seva, S., Cimino, C., Explicit Model-Based Real PID Tuning for Efficient Load Disturbance Rejection (2019) Ind. Eng. Chem. Res, 58, pp. 23211-23224 Tasoujian, S., Salavati, S., Franchek, M., Grigoriadis, K., Robust IMC-PID and Parameter-varying Control Strategies for Automated Blood Pressure Regulation (2019) Int. J. Control. Autom. Syst, 17, pp. 1803-1813 Vasu, G., Sivakumar, M., Ramalingaraju, M., Optimal IMC-PID controller design for large-scale power systems via EDE algorithm-based model approximation method (2020) Trans. Inst. Meas. Control, pp. 1-19 Ranganayakulu, R., Rao, A.S., Babu, G.U.B., Analytical design of fractional IMC filter-PID control strategy for performance enhancement of cascade control systems (2020) Int. J. Syst. Sci, 51, pp. 1699-1713 Jain, S., Hote, Y.V., Weighted Internal Model Control-Proportional Integral Derivative Control Scheme Via Fractional Gradient Descent Algorithm (2020) J. Dyn. Syst. Meas. Control, 142 Zeng, W., Zhu, W., Hui, T., Chen, L., Xie, J., Yu, T., An IMC-PID controller with Particle Swarm Optimization algorithm for MSBR core power control (2020) Nucl. Eng. Des, 360, pp. 1-7 Wang, P., Chen, Z., Liao, L., Wan, J., Wu, S., A multiple-model based internal model control method for power control of small pressurized water reactors (2020) Energy, 210, pp. 1-15 Cirtoaje, V., A Practical Unified Algorithm of P-IMC Type (2020) Processes, 8, p. 165 Chien, I., Fruehauf, P., Consider IMC tuning to improve controller performance (1990) Chem. Eng. Prog, 86, pp. 33-41 Irshad, M., Ali, A., A review on PID tuning rules for SOPTD inverse response processes (2017) In Proceedings of the 2017 International Conference on Intelligent Computing, pp. 17-22. , Instrumentation and Control Technologies (ICICICT), Manipal, India, 13-16 September Roffel, B., Bettlem, B., Process Dynamics and Control (2006) Modeling for Control and Prediction, , Wiley: West Sussex, UK Alcántara, S., Pedret, C., Vilanova, R., Zhang, W., Analytical Hinf design for a Smith-type inverse-response compensator (2009) In Proceedings of the 2009 American Control Conference, , Saint Louis, MO, USA, 10-12 June Balaguer, P., Alfaro, V., Arrieta, O., Second order inverse response process identification from transient step response (2011) ISA Trans, 50, pp. 231-238 Sánchez, H.S., Visioli, A., Vilanova, R., Optimal Nash tuning rules for robust PID controllers (2017) J. Frankl. Inst, 354, pp. 3945-3970 Mehta, U., Rojas, R., Smith predictor based sliding mode control for a class of unstable processes (2017) Trans. Inst. Meas. Control, 39, pp. 706-714 López, R., Sanjuán, M.E., Tuning equations for cascaded control systems based on the first order plus dead time approach (2004) Symp. Ser. Mechatronics, 1, pp. 223-232 Iglesias, E.J., Using Fuzzy Logic to Enhance Control Performance of Sliding Mode Control and Dynamic Matrix Control (2006) Ph.D. Thesis, , University of South Florida, Tampa, FL, USA Astrom, K., Hagglund, T., (1995) PID Controllers: Theory, Design and Tuning, 2nd ed., , The Instrumentation, Systems, and Automation Society (ISA): Research Triangle Park, NC, USA Box, G.E., Hunter, J.S., Hunter, W.G., Statistics for Experimenters Design (2005) Innovation and Discovery, , 2nd ed. Wiley-Interscience: New York, NY, USA Gutiérrez, H., de la Vara, R., (2012) Análisis y Diseño de Experimentos, 3rd ed., , McGraw Hill: New York, NY, USA Castellanos, D., Castrillón, F., New tuning rules for PID controllers based on IMC with minimum IAE for inverse response processes (2015) Dyna, 82, pp. 111-118 Montgomery, D.C., Runger, G.C., Hubele, N.F., (2011) Engineering Statistics, 5th ed., , Wiley: New York, NY, USA O'Dwyer, A., (2006) Handbook of PI and PID Controller Tuning Rules, 2nd ed, , Imperial College Press: London UK Pedret, C., Alcántara, S., Vilanova, R., Ibeas, A., Observer-Controller Design for a Class of Stable/Unstable Inverse Response Processes (2009) Ind. Eng. Chem. Res, 48, pp. 10986-10993 Kaya, I., PI-PD controllers for controlling stable processes with inverse response and dead time (2016) Electr. Eng, 98, pp. 55-65 Amoura, K., Mansouri, R., Bettayeb, M., Al-Saggaf, U.M., Closed-loop step response for tuning PID-fractional-order-filter controllers (2016) ISA Trans, 64, pp. 247-257 Díaz-Rodríguez, I.D., Han, S., Keel, L., Bhattacharyya, S., Advanced Tuning for Ziegler-Nichols Plants (2017) IFAC PapersOnLine, 50, pp. 1805-1810 Dincel, E., Soylemez, M.T., Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach (2018) ISA Trans, 79, pp. 189-201 Visioli, A., Improving the load disturbance rejection performances of IMC-tuned PID controllers (2002) IFAC Proc. Vol, 35, pp. 295-300 Shinskey, F., PID-Deadtime Control of Distributed Processes (2000) IFAC Proc. Vol, 33, pp. 13-17 Arbogast, J.E., Beauregard, B.M., Cooper, D.J., Intuitive robust stability metric for PID control of self-regulating processes (2008) ISA Trans, 47, pp. 420-428 Corripio, A.B., Newell, M., (2015) Tuning of Industrial Control Systems, 3rd ed, , ISA: Research Triangle Park, NC, USA |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
MDPI AG |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Telecomunicaciones |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
Processes |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159176557920256 |
spelling |
20202021-02-05T14:58:29Z2021-02-05T14:58:29Z22279717http://hdl.handle.net/11407/599310.3390/PR8091183This work addresses a set of tuning rules for PID controllers based on Internal Model Control (IMC) for inverse-response second-order systems with dead time. The transfer function, and some time-response characteristics for such systems are first described. Then, the IMC-based methodology is developed by using an optimization objective function that mixes performance and robustness. A correlation that minimizes the objective function and that allows the user to compute the controller's tuning parameter is found. The obtained expressions are mathematically simple, which facilitate their application in a ten-step systematic methodology. Finally, the proposed tuning method is compared to other well-known tuning rules that have been reported in literature, for a wide range of parameters of the process. The performance achieved with the proposed method is very good not only for disturbance rejection but for set-point tracking, when considering a wide-range of parameters of the process' transfer function. © 2020 by the authors.engMDPI AGIngeniería de TelecomunicacionesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092254988&doi=10.3390%2fPR8091183&partnerID=40&md5=6da49fd2e39b725be558db30bb9d8b5b89Camacho, O., Rojas, R., García, W., Variable structure control applied to chemical processes with inverse response (1999) ISA Trans, 38, pp. 55-72Zhang, W., Xu, X., Sun, Y., Quantitative Performance Design for Inverse-Response Processes (2000) Ind. Eng. Chem. Res, 39, pp. 2056-2061Stephanopoulos, G., Chemical Process Control (1984) An Introduction to Theory and Practice, , Prentice Hall: New York, NY, USAOgunnaike, B.A., Ray, W.H., Process Dynamics Modeling and Control (1994) Topics in Chemical Engineering, p. 1260. , Oxford University Press: Don Mills, ON, CanadaDe Castro, P., Fernández, E., (2006) Control e Instrumentación de Procesos Químicos, , Editorial Síntesis: Madrid SpainRomagnoli, J.A., Palazoglu, A., (2012) Introduction to Process Control, , 2nd ed.CRC Press: Boca Raton, FL, USAJoshi, M., Uniyal, J., Juneja, P.K., Design of inverse response compensator for complex process (2016) In Proceedings of the 2016 International Conference on Advances in Computing, pp. 1-6. , Communication, Automation (ICACCA), Dehradun, India, 29-30 AprilMuresan, C.I., Ionescu, C.M., Generalization of the FOPDT Model for Identification and Control Purposes (2020) Processes, 8, p. 682Pai, N., Chang, S., Huangb, C., Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations (2010) J. Process. Control, 20, pp. 726-733Jeng, J., Lin, S., PID controller tuning based on Smith-type compensator for second-order process with inverse response and time delay (2011) In Proceedings of the 2011 8th Asian Control Conference (ASCC), , Kaohsiung, Taiwan, 15-18 MayCastellanos, D., Castrillón, F., Controladores PI/PID en procesos con respuesta inversa evaluación de la robustez (2012) Ing.QuíMica, 502, pp. 48-52Ocampo, J.E., Castrillón, F., Control de sistemas con respuesta inversa (2010) Ing.QuíMica, 42, pp. 76-85Waller, K.V., Nygardas, C., On inverse response in process control (1975) Ind. Eng. Chem. Fundam, 14, pp. 221-223Ziegler, J., Nichols, N., Optimum Settings for Automatic Controllers (1993) J. Dyn. Syst. Meas. Control, 115, pp. 220-222Scali, C., Rachid, A., Analytical design of Proportional-Integral-Derivative controllers for inverse response process (1998) Ind. Eng. Chem. Res, 37, pp. 1372-1379Luyben, W.L., Tuning Proportional-Integral controllers for processes with both inverse response and deadtime (2000) Ind. Eng. Chem. Res, 39, pp. 973-976Chien, I.L., Chung, Y.C., Chen, B.S., Chuang, C.Y., Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time (2003) Ind. Eng. Chem. Res, 42, pp. 4461-4477Sree, R.P., Chidambaram, M., Simple method of tuning PI controller for stable inverse response systems (2003) J. Indian Inst. Sci, 83, pp. 73-85Chen, D., Seborg, D.E., PI/PID Controller design based on direct synthesis and disturbance rejection (2002) Ind. Eng. Chem. Res, 41, pp. 4807-4822Shamsuzzoha, M., Lee, M., PID controller design for integrating processes with time delay (2008) Korean J. Chem. Eng, 25, pp. 637-645Begum, K.G., Rao, A.S., Radhakrishnan, T., Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays (2017) ISA Trans, 68, pp. 223-234Irshad, M., Ali, A., Optimal tuning rules for PI/PID controllers for inverse response processes (2018) IFAC PapersOnLine, 51, pp. 413-418Patil, P., Rao, C.S., Enhanced PID Controller for Non-Minimum Phase Second Order Plus Time Delay System (2019) Chem. Prod. Process. Model, 14Xu, G., Wu, T., Zhang, J., Yue, G., The two-degree-of-freedom parallel control for inverse response plus time delay (2019) Syst. Sci. Control. Eng, 7, pp. 90-95Kaya, I., Integral-Proportional Derivative tuning for optimal closed loop responses to control integrating processes with inverse response (2020) Trans. Inst. Meas. Control, pp. 1-12Siddiqui, M.A., Anwar, M.N., Laskar, S.H., Tuning of PIDF Controller in Parallel Control Structure for Integrating Process with Time Delay and Inverse Response Characteristic (2020) J. Control. Autom. Electr. Syst, 31, pp. 829-841Nagarsheth, S.H., Sharma, S.N., Control of non-minimum phase systems with dead time: a fractional system viewpoint (2020) Int. J. Syst. Sci, 51, pp. 1905-1928Herrera, M., Camacho, O., Leiva, H., Smith, C., An approach of dynamic sliding mode control for chemical processes (2020) J. Process. Control, 85, pp. 112-120Luyben, W.L., Identification and tuning of integrating processes with deadtime and inverse response (2003) Ind. Eng. Chem. Res, 42, pp. 3030-3035Rivera, D.E., Morari, M., Skogestad, S., Internal model control: PID controller design (1986) Ind. Eng. Chem. Process. Des. Dev, 25, pp. 252-265Alfaro, V.M., Balaguer, P., Arrieta, O., Robustness Considerations on PID Tuning for Regulatory Control of Inverse Response Processes (2012) IFAC Proc. Vol, 45, pp. 193-198Ionescu, C., Alfredo Cajo Diaz, R., Zhao, S., Ghita, M., Ghita, M., Copot, D., A Low Computational Cost, Prioritized, Multi-Objective Optimization Procedure for Predictive Control Towards Cyber Physical Systems (2020) IEEE Access, 8, pp. 128152-128166Shamsuzzoha, M., Lee, M., IMC-PID Controller Design for Improved Disturbance Rejection of Time-Delayed Processes (2007) Ind. Eng. Chem. Res, 46, pp. 2077-2091Lee, H., Na, G., Eun, Y., Extension of simplified internal model control for systems with double integrators (2017) In Proceedings of the 2017 17th International Conference on Control, pp. 1212-1217. , Automation and Systems (ICCAS), Jeju, Korea, 18-21 OctoberPaulusová, J., Paulus, M., Internal model control of thermo-optical plant (2017) In Proceedings of the 2017 21st International Conference on Process Control (PC), pp. 179-184. , Štrbské Pleso, Slovakia, 6-9 JuneTran, C.D., Ibrahim, R., Asirvadam, V.S., Saad, N., Miya, H.S., Internal model control for industrial wireless plant using WirelessHART hardware-in-the-loop simulator (2018) ISA Trans, 75, pp. 236-246Leva, A., Papadopoulos, A.V., Seva, S., Cimino, C., Explicit Model-Based Real PID Tuning for Efficient Load Disturbance Rejection (2019) Ind. Eng. Chem. Res, 58, pp. 23211-23224Tasoujian, S., Salavati, S., Franchek, M., Grigoriadis, K., Robust IMC-PID and Parameter-varying Control Strategies for Automated Blood Pressure Regulation (2019) Int. J. Control. Autom. Syst, 17, pp. 1803-1813Vasu, G., Sivakumar, M., Ramalingaraju, M., Optimal IMC-PID controller design for large-scale power systems via EDE algorithm-based model approximation method (2020) Trans. Inst. Meas. Control, pp. 1-19Ranganayakulu, R., Rao, A.S., Babu, G.U.B., Analytical design of fractional IMC filter-PID control strategy for performance enhancement of cascade control systems (2020) Int. J. Syst. Sci, 51, pp. 1699-1713Jain, S., Hote, Y.V., Weighted Internal Model Control-Proportional Integral Derivative Control Scheme Via Fractional Gradient Descent Algorithm (2020) J. Dyn. Syst. Meas. Control, 142Zeng, W., Zhu, W., Hui, T., Chen, L., Xie, J., Yu, T., An IMC-PID controller with Particle Swarm Optimization algorithm for MSBR core power control (2020) Nucl. Eng. Des, 360, pp. 1-7Wang, P., Chen, Z., Liao, L., Wan, J., Wu, S., A multiple-model based internal model control method for power control of small pressurized water reactors (2020) Energy, 210, pp. 1-15Cirtoaje, V., A Practical Unified Algorithm of P-IMC Type (2020) Processes, 8, p. 165Chien, I., Fruehauf, P., Consider IMC tuning to improve controller performance (1990) Chem. Eng. Prog, 86, pp. 33-41Irshad, M., Ali, A., A review on PID tuning rules for SOPTD inverse response processes (2017) In Proceedings of the 2017 International Conference on Intelligent Computing, pp. 17-22. , Instrumentation and Control Technologies (ICICICT), Manipal, India, 13-16 SeptemberRoffel, B., Bettlem, B., Process Dynamics and Control (2006) Modeling for Control and Prediction, , Wiley: West Sussex, UKAlcántara, S., Pedret, C., Vilanova, R., Zhang, W., Analytical Hinf design for a Smith-type inverse-response compensator (2009) In Proceedings of the 2009 American Control Conference, , Saint Louis, MO, USA, 10-12 JuneBalaguer, P., Alfaro, V., Arrieta, O., Second order inverse response process identification from transient step response (2011) ISA Trans, 50, pp. 231-238Sánchez, H.S., Visioli, A., Vilanova, R., Optimal Nash tuning rules for robust PID controllers (2017) J. Frankl. Inst, 354, pp. 3945-3970Mehta, U., Rojas, R., Smith predictor based sliding mode control for a class of unstable processes (2017) Trans. Inst. Meas. Control, 39, pp. 706-714López, R., Sanjuán, M.E., Tuning equations for cascaded control systems based on the first order plus dead time approach (2004) Symp. Ser. Mechatronics, 1, pp. 223-232Iglesias, E.J., Using Fuzzy Logic to Enhance Control Performance of Sliding Mode Control and Dynamic Matrix Control (2006) Ph.D. Thesis, , University of South Florida, Tampa, FL, USAAstrom, K., Hagglund, T., (1995) PID Controllers: Theory, Design and Tuning, 2nd ed., , The Instrumentation, Systems, and Automation Society (ISA): Research Triangle Park, NC, USABox, G.E., Hunter, J.S., Hunter, W.G., Statistics for Experimenters Design (2005) Innovation and Discovery, , 2nd ed.Wiley-Interscience: New York, NY, USAGutiérrez, H., de la Vara, R., (2012) Análisis y Diseño de Experimentos, 3rd ed., , McGraw Hill: New York, NY, USACastellanos, D., Castrillón, F., New tuning rules for PID controllers based on IMC with minimum IAE for inverse response processes (2015) Dyna, 82, pp. 111-118Montgomery, D.C., Runger, G.C., Hubele, N.F., (2011) Engineering Statistics, 5th ed., , Wiley: New York, NY, USAO'Dwyer, A., (2006) Handbook of PI and PID Controller Tuning Rules, 2nd ed, , Imperial College Press: London UKPedret, C., Alcántara, S., Vilanova, R., Ibeas, A., Observer-Controller Design for a Class of Stable/Unstable Inverse Response Processes (2009) Ind. Eng. Chem. Res, 48, pp. 10986-10993Kaya, I., PI-PD controllers for controlling stable processes with inverse response and dead time (2016) Electr. Eng, 98, pp. 55-65Amoura, K., Mansouri, R., Bettayeb, M., Al-Saggaf, U.M., Closed-loop step response for tuning PID-fractional-order-filter controllers (2016) ISA Trans, 64, pp. 247-257Díaz-Rodríguez, I.D., Han, S., Keel, L., Bhattacharyya, S., Advanced Tuning for Ziegler-Nichols Plants (2017) IFAC PapersOnLine, 50, pp. 1805-1810Dincel, E., Soylemez, M.T., Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach (2018) ISA Trans, 79, pp. 189-201Visioli, A., Improving the load disturbance rejection performances of IMC-tuned PID controllers (2002) IFAC Proc. Vol, 35, pp. 295-300Shinskey, F., PID-Deadtime Control of Distributed Processes (2000) IFAC Proc. Vol, 33, pp. 13-17Arbogast, J.E., Beauregard, B.M., Cooper, D.J., Intuitive robust stability metric for PID control of self-regulating processes (2008) ISA Trans, 47, pp. 420-428Corripio, A.B., Newell, M., (2015) Tuning of Industrial Control Systems, 3rd ed, , ISA: Research Triangle Park, NC, USAProcessesInternal model controlInverse responsePID tuningProcess controlSecond order plus dead time)PID tuning method based on IMC for inverse-response second-order plus dead time processesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Castellanos-Cárdenas, D., Program of Telecommunications Engineering, Universidad de Medellín, Medellín, 050026, ColombiaCastrillón, F., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, ColombiaVásquez, R.E., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, ColombiaSmith, C., Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United Stateshttp://purl.org/coar/access_right/c_16ecCastellanos-Cárdenas D.Castrillón F.Vásquez R.E.Smith C.11407/5993oai:repository.udem.edu.co:11407/59932021-02-05 09:58:29.425Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |