PID tuning method based on IMC for inverse-response second-order plus dead time processes

This work addresses a set of tuning rules for PID controllers based on Internal Model Control (IMC) for inverse-response second-order systems with dead time. The transfer function, and some time-response characteristics for such systems are first described. Then, the IMC-based methodology is develop...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/5993
Acceso en línea:
http://hdl.handle.net/11407/5993
Palabra clave:
Internal model control
Inverse response
PID tuning
Process control
Second order plus dead time)
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_3b9e934e487396652b01c3431cb04d25
oai_identifier_str oai:repository.udem.edu.co:11407/5993
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.none.fl_str_mv PID tuning method based on IMC for inverse-response second-order plus dead time processes
title PID tuning method based on IMC for inverse-response second-order plus dead time processes
spellingShingle PID tuning method based on IMC for inverse-response second-order plus dead time processes
Internal model control
Inverse response
PID tuning
Process control
Second order plus dead time)
title_short PID tuning method based on IMC for inverse-response second-order plus dead time processes
title_full PID tuning method based on IMC for inverse-response second-order plus dead time processes
title_fullStr PID tuning method based on IMC for inverse-response second-order plus dead time processes
title_full_unstemmed PID tuning method based on IMC for inverse-response second-order plus dead time processes
title_sort PID tuning method based on IMC for inverse-response second-order plus dead time processes
dc.subject.spa.fl_str_mv Internal model control
Inverse response
PID tuning
Process control
Second order plus dead time)
topic Internal model control
Inverse response
PID tuning
Process control
Second order plus dead time)
description This work addresses a set of tuning rules for PID controllers based on Internal Model Control (IMC) for inverse-response second-order systems with dead time. The transfer function, and some time-response characteristics for such systems are first described. Then, the IMC-based methodology is developed by using an optimization objective function that mixes performance and robustness. A correlation that minimizes the objective function and that allows the user to compute the controller's tuning parameter is found. The obtained expressions are mathematically simple, which facilitate their application in a ten-step systematic methodology. Finally, the proposed tuning method is compared to other well-known tuning rules that have been reported in literature, for a wide range of parameters of the process. The performance achieved with the proposed method is very good not only for disturbance rejection but for set-point tracking, when considering a wide-range of parameters of the process' transfer function. © 2020 by the authors.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T14:58:29Z
dc.date.available.none.fl_str_mv 2021-02-05T14:58:29Z
dc.date.none.fl_str_mv 2020
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 22279717
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/5993
dc.identifier.doi.none.fl_str_mv 10.3390/PR8091183
identifier_str_mv 22279717
10.3390/PR8091183
url http://hdl.handle.net/11407/5993
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092254988&doi=10.3390%2fPR8091183&partnerID=40&md5=6da49fd2e39b725be558db30bb9d8b5b
dc.relation.citationvolume.none.fl_str_mv 8
dc.relation.citationissue.none.fl_str_mv 9
dc.relation.references.none.fl_str_mv Camacho, O., Rojas, R., García, W., Variable structure control applied to chemical processes with inverse response (1999) ISA Trans, 38, pp. 55-72
Zhang, W., Xu, X., Sun, Y., Quantitative Performance Design for Inverse-Response Processes (2000) Ind. Eng. Chem. Res, 39, pp. 2056-2061
Stephanopoulos, G., Chemical Process Control (1984) An Introduction to Theory and Practice, , Prentice Hall: New York, NY, USA
Ogunnaike, B.A., Ray, W.H., Process Dynamics Modeling and Control (1994) Topics in Chemical Engineering, p. 1260. , Oxford University Press: Don Mills, ON, Canada
De Castro, P., Fernández, E., (2006) Control e Instrumentación de Procesos Químicos, , Editorial Síntesis: Madrid Spain
Romagnoli, J.A., Palazoglu, A., (2012) Introduction to Process Control, , 2nd ed.
CRC Press: Boca Raton, FL, USA
Joshi, M., Uniyal, J., Juneja, P.K., Design of inverse response compensator for complex process (2016) In Proceedings of the 2016 International Conference on Advances in Computing, pp. 1-6. , Communication, Automation (ICACCA), Dehradun, India, 29-30 April
Muresan, C.I., Ionescu, C.M., Generalization of the FOPDT Model for Identification and Control Purposes (2020) Processes, 8, p. 682
Pai, N., Chang, S., Huangb, C., Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations (2010) J. Process. Control, 20, pp. 726-733
Jeng, J., Lin, S., PID controller tuning based on Smith-type compensator for second-order process with inverse response and time delay (2011) In Proceedings of the 2011 8th Asian Control Conference (ASCC), , Kaohsiung, Taiwan, 15-18 May
Castellanos, D., Castrillón, F., Controladores PI/PID en procesos con respuesta inversa evaluación de la robustez (2012) Ing.QuíMica, 502, pp. 48-52
Ocampo, J.E., Castrillón, F., Control de sistemas con respuesta inversa (2010) Ing.QuíMica, 42, pp. 76-85
Waller, K.V., Nygardas, C., On inverse response in process control (1975) Ind. Eng. Chem. Fundam, 14, pp. 221-223
Ziegler, J., Nichols, N., Optimum Settings for Automatic Controllers (1993) J. Dyn. Syst. Meas. Control, 115, pp. 220-222
Scali, C., Rachid, A., Analytical design of Proportional-Integral-Derivative controllers for inverse response process (1998) Ind. Eng. Chem. Res, 37, pp. 1372-1379
Luyben, W.L., Tuning Proportional-Integral controllers for processes with both inverse response and deadtime (2000) Ind. Eng. Chem. Res, 39, pp. 973-976
Chien, I.L., Chung, Y.C., Chen, B.S., Chuang, C.Y., Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time (2003) Ind. Eng. Chem. Res, 42, pp. 4461-4477
Sree, R.P., Chidambaram, M., Simple method of tuning PI controller for stable inverse response systems (2003) J. Indian Inst. Sci, 83, pp. 73-85
Chen, D., Seborg, D.E., PI/PID Controller design based on direct synthesis and disturbance rejection (2002) Ind. Eng. Chem. Res, 41, pp. 4807-4822
Shamsuzzoha, M., Lee, M., PID controller design for integrating processes with time delay (2008) Korean J. Chem. Eng, 25, pp. 637-645
Begum, K.G., Rao, A.S., Radhakrishnan, T., Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays (2017) ISA Trans, 68, pp. 223-234
Irshad, M., Ali, A., Optimal tuning rules for PI/PID controllers for inverse response processes (2018) IFAC PapersOnLine, 51, pp. 413-418
Patil, P., Rao, C.S., Enhanced PID Controller for Non-Minimum Phase Second Order Plus Time Delay System (2019) Chem. Prod. Process. Model, 14
Xu, G., Wu, T., Zhang, J., Yue, G., The two-degree-of-freedom parallel control for inverse response plus time delay (2019) Syst. Sci. Control. Eng, 7, pp. 90-95
Kaya, I., Integral-Proportional Derivative tuning for optimal closed loop responses to control integrating processes with inverse response (2020) Trans. Inst. Meas. Control, pp. 1-12
Siddiqui, M.A., Anwar, M.N., Laskar, S.H., Tuning of PIDF Controller in Parallel Control Structure for Integrating Process with Time Delay and Inverse Response Characteristic (2020) J. Control. Autom. Electr. Syst, 31, pp. 829-841
Nagarsheth, S.H., Sharma, S.N., Control of non-minimum phase systems with dead time: a fractional system viewpoint (2020) Int. J. Syst. Sci, 51, pp. 1905-1928
Herrera, M., Camacho, O., Leiva, H., Smith, C., An approach of dynamic sliding mode control for chemical processes (2020) J. Process. Control, 85, pp. 112-120
Luyben, W.L., Identification and tuning of integrating processes with deadtime and inverse response (2003) Ind. Eng. Chem. Res, 42, pp. 3030-3035
Rivera, D.E., Morari, M., Skogestad, S., Internal model control: PID controller design (1986) Ind. Eng. Chem. Process. Des. Dev, 25, pp. 252-265
Alfaro, V.M., Balaguer, P., Arrieta, O., Robustness Considerations on PID Tuning for Regulatory Control of Inverse Response Processes (2012) IFAC Proc. Vol, 45, pp. 193-198
Ionescu, C., Alfredo Cajo Diaz, R., Zhao, S., Ghita, M., Ghita, M., Copot, D., A Low Computational Cost, Prioritized, Multi-Objective Optimization Procedure for Predictive Control Towards Cyber Physical Systems (2020) IEEE Access, 8, pp. 128152-128166
Shamsuzzoha, M., Lee, M., IMC-PID Controller Design for Improved Disturbance Rejection of Time-Delayed Processes (2007) Ind. Eng. Chem. Res, 46, pp. 2077-2091
Lee, H., Na, G., Eun, Y., Extension of simplified internal model control for systems with double integrators (2017) In Proceedings of the 2017 17th International Conference on Control, pp. 1212-1217. , Automation and Systems (ICCAS), Jeju, Korea, 18-21 October
Paulusová, J., Paulus, M., Internal model control of thermo-optical plant (2017) In Proceedings of the 2017 21st International Conference on Process Control (PC), pp. 179-184. , Štrbské Pleso, Slovakia, 6-9 June
Tran, C.D., Ibrahim, R., Asirvadam, V.S., Saad, N., Miya, H.S., Internal model control for industrial wireless plant using WirelessHART hardware-in-the-loop simulator (2018) ISA Trans, 75, pp. 236-246
Leva, A., Papadopoulos, A.V., Seva, S., Cimino, C., Explicit Model-Based Real PID Tuning for Efficient Load Disturbance Rejection (2019) Ind. Eng. Chem. Res, 58, pp. 23211-23224
Tasoujian, S., Salavati, S., Franchek, M., Grigoriadis, K., Robust IMC-PID and Parameter-varying Control Strategies for Automated Blood Pressure Regulation (2019) Int. J. Control. Autom. Syst, 17, pp. 1803-1813
Vasu, G., Sivakumar, M., Ramalingaraju, M., Optimal IMC-PID controller design for large-scale power systems via EDE algorithm-based model approximation method (2020) Trans. Inst. Meas. Control, pp. 1-19
Ranganayakulu, R., Rao, A.S., Babu, G.U.B., Analytical design of fractional IMC filter-PID control strategy for performance enhancement of cascade control systems (2020) Int. J. Syst. Sci, 51, pp. 1699-1713
Jain, S., Hote, Y.V., Weighted Internal Model Control-Proportional Integral Derivative Control Scheme Via Fractional Gradient Descent Algorithm (2020) J. Dyn. Syst. Meas. Control, 142
Zeng, W., Zhu, W., Hui, T., Chen, L., Xie, J., Yu, T., An IMC-PID controller with Particle Swarm Optimization algorithm for MSBR core power control (2020) Nucl. Eng. Des, 360, pp. 1-7
Wang, P., Chen, Z., Liao, L., Wan, J., Wu, S., A multiple-model based internal model control method for power control of small pressurized water reactors (2020) Energy, 210, pp. 1-15
Cirtoaje, V., A Practical Unified Algorithm of P-IMC Type (2020) Processes, 8, p. 165
Chien, I., Fruehauf, P., Consider IMC tuning to improve controller performance (1990) Chem. Eng. Prog, 86, pp. 33-41
Irshad, M., Ali, A., A review on PID tuning rules for SOPTD inverse response processes (2017) In Proceedings of the 2017 International Conference on Intelligent Computing, pp. 17-22. , Instrumentation and Control Technologies (ICICICT), Manipal, India, 13-16 September
Roffel, B., Bettlem, B., Process Dynamics and Control (2006) Modeling for Control and Prediction, , Wiley: West Sussex, UK
Alcántara, S., Pedret, C., Vilanova, R., Zhang, W., Analytical Hinf design for a Smith-type inverse-response compensator (2009) In Proceedings of the 2009 American Control Conference, , Saint Louis, MO, USA, 10-12 June
Balaguer, P., Alfaro, V., Arrieta, O., Second order inverse response process identification from transient step response (2011) ISA Trans, 50, pp. 231-238
Sánchez, H.S., Visioli, A., Vilanova, R., Optimal Nash tuning rules for robust PID controllers (2017) J. Frankl. Inst, 354, pp. 3945-3970
Mehta, U., Rojas, R., Smith predictor based sliding mode control for a class of unstable processes (2017) Trans. Inst. Meas. Control, 39, pp. 706-714
López, R., Sanjuán, M.E., Tuning equations for cascaded control systems based on the first order plus dead time approach (2004) Symp. Ser. Mechatronics, 1, pp. 223-232
Iglesias, E.J., Using Fuzzy Logic to Enhance Control Performance of Sliding Mode Control and Dynamic Matrix Control (2006) Ph.D. Thesis, , University of South Florida, Tampa, FL, USA
Astrom, K., Hagglund, T., (1995) PID Controllers: Theory, Design and Tuning, 2nd ed., , The Instrumentation, Systems, and Automation Society (ISA): Research Triangle Park, NC, USA
Box, G.E., Hunter, J.S., Hunter, W.G., Statistics for Experimenters Design (2005) Innovation and Discovery, , 2nd ed.
Wiley-Interscience: New York, NY, USA
Gutiérrez, H., de la Vara, R., (2012) Análisis y Diseño de Experimentos, 3rd ed., , McGraw Hill: New York, NY, USA
Castellanos, D., Castrillón, F., New tuning rules for PID controllers based on IMC with minimum IAE for inverse response processes (2015) Dyna, 82, pp. 111-118
Montgomery, D.C., Runger, G.C., Hubele, N.F., (2011) Engineering Statistics, 5th ed., , Wiley: New York, NY, USA
O'Dwyer, A., (2006) Handbook of PI and PID Controller Tuning Rules, 2nd ed, , Imperial College Press: London UK
Pedret, C., Alcántara, S., Vilanova, R., Ibeas, A., Observer-Controller Design for a Class of Stable/Unstable Inverse Response Processes (2009) Ind. Eng. Chem. Res, 48, pp. 10986-10993
Kaya, I., PI-PD controllers for controlling stable processes with inverse response and dead time (2016) Electr. Eng, 98, pp. 55-65
Amoura, K., Mansouri, R., Bettayeb, M., Al-Saggaf, U.M., Closed-loop step response for tuning PID-fractional-order-filter controllers (2016) ISA Trans, 64, pp. 247-257
Díaz-Rodríguez, I.D., Han, S., Keel, L., Bhattacharyya, S., Advanced Tuning for Ziegler-Nichols Plants (2017) IFAC PapersOnLine, 50, pp. 1805-1810
Dincel, E., Soylemez, M.T., Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach (2018) ISA Trans, 79, pp. 189-201
Visioli, A., Improving the load disturbance rejection performances of IMC-tuned PID controllers (2002) IFAC Proc. Vol, 35, pp. 295-300
Shinskey, F., PID-Deadtime Control of Distributed Processes (2000) IFAC Proc. Vol, 33, pp. 13-17
Arbogast, J.E., Beauregard, B.M., Cooper, D.J., Intuitive robust stability metric for PID control of self-regulating processes (2008) ISA Trans, 47, pp. 420-428
Corripio, A.B., Newell, M., (2015) Tuning of Industrial Control Systems, 3rd ed, , ISA: Research Triangle Park, NC, USA
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.none.fl_str_mv MDPI AG
dc.publisher.program.spa.fl_str_mv Ingeniería de Telecomunicaciones
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv Processes
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159176557920256
spelling 20202021-02-05T14:58:29Z2021-02-05T14:58:29Z22279717http://hdl.handle.net/11407/599310.3390/PR8091183This work addresses a set of tuning rules for PID controllers based on Internal Model Control (IMC) for inverse-response second-order systems with dead time. The transfer function, and some time-response characteristics for such systems are first described. Then, the IMC-based methodology is developed by using an optimization objective function that mixes performance and robustness. A correlation that minimizes the objective function and that allows the user to compute the controller's tuning parameter is found. The obtained expressions are mathematically simple, which facilitate their application in a ten-step systematic methodology. Finally, the proposed tuning method is compared to other well-known tuning rules that have been reported in literature, for a wide range of parameters of the process. The performance achieved with the proposed method is very good not only for disturbance rejection but for set-point tracking, when considering a wide-range of parameters of the process' transfer function. © 2020 by the authors.engMDPI AGIngeniería de TelecomunicacionesFacultad de Ingenieríashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092254988&doi=10.3390%2fPR8091183&partnerID=40&md5=6da49fd2e39b725be558db30bb9d8b5b89Camacho, O., Rojas, R., García, W., Variable structure control applied to chemical processes with inverse response (1999) ISA Trans, 38, pp. 55-72Zhang, W., Xu, X., Sun, Y., Quantitative Performance Design for Inverse-Response Processes (2000) Ind. Eng. Chem. Res, 39, pp. 2056-2061Stephanopoulos, G., Chemical Process Control (1984) An Introduction to Theory and Practice, , Prentice Hall: New York, NY, USAOgunnaike, B.A., Ray, W.H., Process Dynamics Modeling and Control (1994) Topics in Chemical Engineering, p. 1260. , Oxford University Press: Don Mills, ON, CanadaDe Castro, P., Fernández, E., (2006) Control e Instrumentación de Procesos Químicos, , Editorial Síntesis: Madrid SpainRomagnoli, J.A., Palazoglu, A., (2012) Introduction to Process Control, , 2nd ed.CRC Press: Boca Raton, FL, USAJoshi, M., Uniyal, J., Juneja, P.K., Design of inverse response compensator for complex process (2016) In Proceedings of the 2016 International Conference on Advances in Computing, pp. 1-6. , Communication, Automation (ICACCA), Dehradun, India, 29-30 AprilMuresan, C.I., Ionescu, C.M., Generalization of the FOPDT Model for Identification and Control Purposes (2020) Processes, 8, p. 682Pai, N., Chang, S., Huangb, C., Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations (2010) J. Process. Control, 20, pp. 726-733Jeng, J., Lin, S., PID controller tuning based on Smith-type compensator for second-order process with inverse response and time delay (2011) In Proceedings of the 2011 8th Asian Control Conference (ASCC), , Kaohsiung, Taiwan, 15-18 MayCastellanos, D., Castrillón, F., Controladores PI/PID en procesos con respuesta inversa evaluación de la robustez (2012) Ing.QuíMica, 502, pp. 48-52Ocampo, J.E., Castrillón, F., Control de sistemas con respuesta inversa (2010) Ing.QuíMica, 42, pp. 76-85Waller, K.V., Nygardas, C., On inverse response in process control (1975) Ind. Eng. Chem. Fundam, 14, pp. 221-223Ziegler, J., Nichols, N., Optimum Settings for Automatic Controllers (1993) J. Dyn. Syst. Meas. Control, 115, pp. 220-222Scali, C., Rachid, A., Analytical design of Proportional-Integral-Derivative controllers for inverse response process (1998) Ind. Eng. Chem. Res, 37, pp. 1372-1379Luyben, W.L., Tuning Proportional-Integral controllers for processes with both inverse response and deadtime (2000) Ind. Eng. Chem. Res, 39, pp. 973-976Chien, I.L., Chung, Y.C., Chen, B.S., Chuang, C.Y., Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time (2003) Ind. Eng. Chem. Res, 42, pp. 4461-4477Sree, R.P., Chidambaram, M., Simple method of tuning PI controller for stable inverse response systems (2003) J. Indian Inst. Sci, 83, pp. 73-85Chen, D., Seborg, D.E., PI/PID Controller design based on direct synthesis and disturbance rejection (2002) Ind. Eng. Chem. Res, 41, pp. 4807-4822Shamsuzzoha, M., Lee, M., PID controller design for integrating processes with time delay (2008) Korean J. Chem. Eng, 25, pp. 637-645Begum, K.G., Rao, A.S., Radhakrishnan, T., Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays (2017) ISA Trans, 68, pp. 223-234Irshad, M., Ali, A., Optimal tuning rules for PI/PID controllers for inverse response processes (2018) IFAC PapersOnLine, 51, pp. 413-418Patil, P., Rao, C.S., Enhanced PID Controller for Non-Minimum Phase Second Order Plus Time Delay System (2019) Chem. Prod. Process. Model, 14Xu, G., Wu, T., Zhang, J., Yue, G., The two-degree-of-freedom parallel control for inverse response plus time delay (2019) Syst. Sci. Control. Eng, 7, pp. 90-95Kaya, I., Integral-Proportional Derivative tuning for optimal closed loop responses to control integrating processes with inverse response (2020) Trans. Inst. Meas. Control, pp. 1-12Siddiqui, M.A., Anwar, M.N., Laskar, S.H., Tuning of PIDF Controller in Parallel Control Structure for Integrating Process with Time Delay and Inverse Response Characteristic (2020) J. Control. Autom. Electr. Syst, 31, pp. 829-841Nagarsheth, S.H., Sharma, S.N., Control of non-minimum phase systems with dead time: a fractional system viewpoint (2020) Int. J. Syst. Sci, 51, pp. 1905-1928Herrera, M., Camacho, O., Leiva, H., Smith, C., An approach of dynamic sliding mode control for chemical processes (2020) J. Process. Control, 85, pp. 112-120Luyben, W.L., Identification and tuning of integrating processes with deadtime and inverse response (2003) Ind. Eng. Chem. Res, 42, pp. 3030-3035Rivera, D.E., Morari, M., Skogestad, S., Internal model control: PID controller design (1986) Ind. Eng. Chem. Process. Des. Dev, 25, pp. 252-265Alfaro, V.M., Balaguer, P., Arrieta, O., Robustness Considerations on PID Tuning for Regulatory Control of Inverse Response Processes (2012) IFAC Proc. Vol, 45, pp. 193-198Ionescu, C., Alfredo Cajo Diaz, R., Zhao, S., Ghita, M., Ghita, M., Copot, D., A Low Computational Cost, Prioritized, Multi-Objective Optimization Procedure for Predictive Control Towards Cyber Physical Systems (2020) IEEE Access, 8, pp. 128152-128166Shamsuzzoha, M., Lee, M., IMC-PID Controller Design for Improved Disturbance Rejection of Time-Delayed Processes (2007) Ind. Eng. Chem. Res, 46, pp. 2077-2091Lee, H., Na, G., Eun, Y., Extension of simplified internal model control for systems with double integrators (2017) In Proceedings of the 2017 17th International Conference on Control, pp. 1212-1217. , Automation and Systems (ICCAS), Jeju, Korea, 18-21 OctoberPaulusová, J., Paulus, M., Internal model control of thermo-optical plant (2017) In Proceedings of the 2017 21st International Conference on Process Control (PC), pp. 179-184. , Štrbské Pleso, Slovakia, 6-9 JuneTran, C.D., Ibrahim, R., Asirvadam, V.S., Saad, N., Miya, H.S., Internal model control for industrial wireless plant using WirelessHART hardware-in-the-loop simulator (2018) ISA Trans, 75, pp. 236-246Leva, A., Papadopoulos, A.V., Seva, S., Cimino, C., Explicit Model-Based Real PID Tuning for Efficient Load Disturbance Rejection (2019) Ind. Eng. Chem. Res, 58, pp. 23211-23224Tasoujian, S., Salavati, S., Franchek, M., Grigoriadis, K., Robust IMC-PID and Parameter-varying Control Strategies for Automated Blood Pressure Regulation (2019) Int. J. Control. Autom. Syst, 17, pp. 1803-1813Vasu, G., Sivakumar, M., Ramalingaraju, M., Optimal IMC-PID controller design for large-scale power systems via EDE algorithm-based model approximation method (2020) Trans. Inst. Meas. Control, pp. 1-19Ranganayakulu, R., Rao, A.S., Babu, G.U.B., Analytical design of fractional IMC filter-PID control strategy for performance enhancement of cascade control systems (2020) Int. J. Syst. Sci, 51, pp. 1699-1713Jain, S., Hote, Y.V., Weighted Internal Model Control-Proportional Integral Derivative Control Scheme Via Fractional Gradient Descent Algorithm (2020) J. Dyn. Syst. Meas. Control, 142Zeng, W., Zhu, W., Hui, T., Chen, L., Xie, J., Yu, T., An IMC-PID controller with Particle Swarm Optimization algorithm for MSBR core power control (2020) Nucl. Eng. Des, 360, pp. 1-7Wang, P., Chen, Z., Liao, L., Wan, J., Wu, S., A multiple-model based internal model control method for power control of small pressurized water reactors (2020) Energy, 210, pp. 1-15Cirtoaje, V., A Practical Unified Algorithm of P-IMC Type (2020) Processes, 8, p. 165Chien, I., Fruehauf, P., Consider IMC tuning to improve controller performance (1990) Chem. Eng. Prog, 86, pp. 33-41Irshad, M., Ali, A., A review on PID tuning rules for SOPTD inverse response processes (2017) In Proceedings of the 2017 International Conference on Intelligent Computing, pp. 17-22. , Instrumentation and Control Technologies (ICICICT), Manipal, India, 13-16 SeptemberRoffel, B., Bettlem, B., Process Dynamics and Control (2006) Modeling for Control and Prediction, , Wiley: West Sussex, UKAlcántara, S., Pedret, C., Vilanova, R., Zhang, W., Analytical Hinf design for a Smith-type inverse-response compensator (2009) In Proceedings of the 2009 American Control Conference, , Saint Louis, MO, USA, 10-12 JuneBalaguer, P., Alfaro, V., Arrieta, O., Second order inverse response process identification from transient step response (2011) ISA Trans, 50, pp. 231-238Sánchez, H.S., Visioli, A., Vilanova, R., Optimal Nash tuning rules for robust PID controllers (2017) J. Frankl. Inst, 354, pp. 3945-3970Mehta, U., Rojas, R., Smith predictor based sliding mode control for a class of unstable processes (2017) Trans. Inst. Meas. Control, 39, pp. 706-714López, R., Sanjuán, M.E., Tuning equations for cascaded control systems based on the first order plus dead time approach (2004) Symp. Ser. Mechatronics, 1, pp. 223-232Iglesias, E.J., Using Fuzzy Logic to Enhance Control Performance of Sliding Mode Control and Dynamic Matrix Control (2006) Ph.D. Thesis, , University of South Florida, Tampa, FL, USAAstrom, K., Hagglund, T., (1995) PID Controllers: Theory, Design and Tuning, 2nd ed., , The Instrumentation, Systems, and Automation Society (ISA): Research Triangle Park, NC, USABox, G.E., Hunter, J.S., Hunter, W.G., Statistics for Experimenters Design (2005) Innovation and Discovery, , 2nd ed.Wiley-Interscience: New York, NY, USAGutiérrez, H., de la Vara, R., (2012) Análisis y Diseño de Experimentos, 3rd ed., , McGraw Hill: New York, NY, USACastellanos, D., Castrillón, F., New tuning rules for PID controllers based on IMC with minimum IAE for inverse response processes (2015) Dyna, 82, pp. 111-118Montgomery, D.C., Runger, G.C., Hubele, N.F., (2011) Engineering Statistics, 5th ed., , Wiley: New York, NY, USAO'Dwyer, A., (2006) Handbook of PI and PID Controller Tuning Rules, 2nd ed, , Imperial College Press: London UKPedret, C., Alcántara, S., Vilanova, R., Ibeas, A., Observer-Controller Design for a Class of Stable/Unstable Inverse Response Processes (2009) Ind. Eng. Chem. Res, 48, pp. 10986-10993Kaya, I., PI-PD controllers for controlling stable processes with inverse response and dead time (2016) Electr. Eng, 98, pp. 55-65Amoura, K., Mansouri, R., Bettayeb, M., Al-Saggaf, U.M., Closed-loop step response for tuning PID-fractional-order-filter controllers (2016) ISA Trans, 64, pp. 247-257Díaz-Rodríguez, I.D., Han, S., Keel, L., Bhattacharyya, S., Advanced Tuning for Ziegler-Nichols Plants (2017) IFAC PapersOnLine, 50, pp. 1805-1810Dincel, E., Soylemez, M.T., Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach (2018) ISA Trans, 79, pp. 189-201Visioli, A., Improving the load disturbance rejection performances of IMC-tuned PID controllers (2002) IFAC Proc. Vol, 35, pp. 295-300Shinskey, F., PID-Deadtime Control of Distributed Processes (2000) IFAC Proc. Vol, 33, pp. 13-17Arbogast, J.E., Beauregard, B.M., Cooper, D.J., Intuitive robust stability metric for PID control of self-regulating processes (2008) ISA Trans, 47, pp. 420-428Corripio, A.B., Newell, M., (2015) Tuning of Industrial Control Systems, 3rd ed, , ISA: Research Triangle Park, NC, USAProcessesInternal model controlInverse responsePID tuningProcess controlSecond order plus dead time)PID tuning method based on IMC for inverse-response second-order plus dead time processesArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Castellanos-Cárdenas, D., Program of Telecommunications Engineering, Universidad de Medellín, Medellín, 050026, ColombiaCastrillón, F., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, ColombiaVásquez, R.E., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, ColombiaSmith, C., Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United Stateshttp://purl.org/coar/access_right/c_16ecCastellanos-Cárdenas D.Castrillón F.Vásquez R.E.Smith C.11407/5993oai:repository.udem.edu.co:11407/59932021-02-05 09:58:29.425Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co