Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations
In this study, we have investigated the effect of bi-axial, ?ab, and uni-axial, ?c, strains on the optoelectronic properties of chalcopyrite semiconductor CuGaSe2 through first-principles full potential linearized augmented plane wave method. These materials have recently attracted much interest wit...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/5791
- Acceso en línea:
- http://hdl.handle.net/11407/5791
- Palabra clave:
- Copper gallium selenide
Density functional theory
Electronic properties
First-principle calculations
Optical properties
Strain effect
Calculations
Copper compounds
Deformation
Electronic properties
Energy gap
Layered semiconductors
Optical lattices
Optical properties
Refractive index
Selenium compounds
Semiconducting gallium compounds
Semiconducting selenium compounds
Strain
Direct band gap semiconductors
Electronic and optical properties
Exchange-correlation potential
First principle calculations
Full potential linearized augmented plane wave method
Gallium selenides
Generalized gradient approximations
Strain effect
Density functional theory
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_32b777e96df5612f3c12d9307f64f931 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/5791 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.none.fl_str_mv |
Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations |
title |
Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations |
spellingShingle |
Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations Copper gallium selenide Density functional theory Electronic properties First-principle calculations Optical properties Strain effect Calculations Copper compounds Deformation Electronic properties Energy gap Layered semiconductors Optical lattices Optical properties Refractive index Selenium compounds Semiconducting gallium compounds Semiconducting selenium compounds Strain Direct band gap semiconductors Electronic and optical properties Exchange-correlation potential First principle calculations Full potential linearized augmented plane wave method Gallium selenides Generalized gradient approximations Strain effect Density functional theory |
title_short |
Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations |
title_full |
Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations |
title_fullStr |
Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations |
title_full_unstemmed |
Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations |
title_sort |
Effect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculations |
dc.subject.none.fl_str_mv |
Copper gallium selenide Density functional theory Electronic properties First-principle calculations Optical properties Strain effect Calculations Copper compounds Deformation Electronic properties Energy gap Layered semiconductors Optical lattices Optical properties Refractive index Selenium compounds Semiconducting gallium compounds Semiconducting selenium compounds Strain Direct band gap semiconductors Electronic and optical properties Exchange-correlation potential First principle calculations Full potential linearized augmented plane wave method Gallium selenides Generalized gradient approximations Strain effect Density functional theory |
topic |
Copper gallium selenide Density functional theory Electronic properties First-principle calculations Optical properties Strain effect Calculations Copper compounds Deformation Electronic properties Energy gap Layered semiconductors Optical lattices Optical properties Refractive index Selenium compounds Semiconducting gallium compounds Semiconducting selenium compounds Strain Direct band gap semiconductors Electronic and optical properties Exchange-correlation potential First principle calculations Full potential linearized augmented plane wave method Gallium selenides Generalized gradient approximations Strain effect Density functional theory |
description |
In this study, we have investigated the effect of bi-axial, ?ab, and uni-axial, ?c, strains on the optoelectronic properties of chalcopyrite semiconductor CuGaSe2 through first-principles full potential linearized augmented plane wave method. These materials have recently attracted much interest within the materials science community. The results are obtained in the framework of Density Functional Theory (DFT), using the Generalized Gradient Approximation based on the minimization of total energy, together with the modified Becke-Johnson exchange-correlation potential, as implemented in the WIEN2k code. Our results show that unstrained CuGaSe2 is a direct band gap semiconductor with a energy of 1.16 eV, thus improving the results of some previous DFT calculations, but still below the accepted experimental data. The incorporation of biaxial and uniaxial strain results in a monotonous decreasing behavior of the energy band gap when both ?ab and ?c change between -8% and +8%, with unstrained value being, approximately, at the middle of the variation range. It is also found that strain causes modifications in the index of refraction of the material, with modifications of its static value that rank above 10% over the entire range of deformations considered. © 2019 Elsevier B.V. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-29T14:54:01Z |
dc.date.available.none.fl_str_mv |
2020-04-29T14:54:01Z |
dc.date.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
406090 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/5791 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.tsf.2019.137783 |
identifier_str_mv |
406090 10.1016/j.tsf.2019.137783 |
url |
http://hdl.handle.net/11407/5791 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077507438&doi=10.1016%2fj.tsf.2019.137783&partnerID=40&md5=071c6b7c2e38e26006b05d729ca94e4e |
dc.relation.citationvolume.none.fl_str_mv |
696 |
dc.relation.references.none.fl_str_mv |
Zunger, A., Jaffe, J.E., Structural origin of optical bowing in semiconductor alloys (1983) Phys. Rev. Lett., 51, pp. 662-665 Alonso, M.I., Wakita, K., Pascual, J., Garriga, M., Yamamoto, N., Optical functions and electronic structure of cuinse2, cugase2, cuins2, and cugas2 (2001) Phys. Rev. B, 63, p. 075203 Parlak, C., Eryi?it, R., Ab initio volume-dependent elastic and lattice dynamical properties of chalcopyrite cugase2 (2006) Phys. Rev. B, 73, p. 245217 Liu, F., Yang, J., Zhou, J., Lai, Y., Jia, M., Li, J., Liu, Y., One-step electrodeposition of cugase2 thin films (2012) Thin Sol. Films, 520, pp. 2781-2784 Shay, J., Wernick, J., Ternary Chalcopyrite Crystals: Growth, Electronic Structure, and Applications (1975), Elsevier Oxford Reshak, A.H., Linear, nonlinear optical properties and birefringence of aggax2 (x= s, se, te) compounds (2005) Physica B, 369, pp. 243-253 Kumar, V., Tripathy, S.K., Jha, V., Second order nonlinear optical properties of aIbIIIc2 VI chalcopyrite semiconductors (2012) Appl. Phys. Lett., 101, p. 192105 Samanta, L., Ghosh, D., Bhar, G., Optical nonlinearity, band-structure parameters, and refractive indices of some mixed chalcopyrite crystals (1986) Phys. Rev. B, 33, p. 4145 Tinoco, T., Quintero, M., Rincón, C., Variation of the energy gap with composition in aIbIIIc2 VI chalcopyrite-structure alloys (1991) Phys. Rev. B, 44, p. 1613 Wei, S.-H., Zunger, A., Band offsets and optical bowings of chalcopyrites and zn-based II-VI alloys (1995) J. Appl. Phys., 78, pp. 3846-3856 Wu, J., Hirai, Y., Kato, T., Sugimoto, H., Bermudez, V., New world record efficiency up to 22.9% for cu(in,ga)(se,s)2 thin-film solar cells (2018) 7th World Conference on Photovoltaic Energy Conversion (WCPEC-7), pp. 10-15 Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W., Solar cell efficiency tables (version 53) (2019) Prog Photovolt Res Appl., 27, pp. 3-12 Salomé, P.M., Fjällström, V., Szaniawski, P., Leitão, J.P., Hultqvist, A., Fernandes, P.A., Teixeira, J.P., Edoff, M., A comparison between thin film solar cells made from co-evaporated cuin(1-x)ga(x)se2 using a one-stage process versus a three-stage process (2015) Prog. Photovolt. Res. Appl., 23, pp. 470-478 Chiril?, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Fella, C., Tiwari, A.N., Highly efficient cu(in,ga)se2 solar cells grown on flexible polymer films (2011) Nat. Mater., 10 (11), p. 857 Chopra, K., Paulson, P., Dutta, V., Thin-film solar cells: an overview (2004) Prog. Photovolt. Res. Appl., 12, pp. 69-92 Harvey, T.B., Mori, I., Stolle, C.J., Bogart, T.D., Ostrowski, D.P., Glaz, M.S., Du, J., Korgel, B.A., Copper indium gallium selenide (cigs) photovoltaic devices made using multistep selenization of nanocrystal films (2013) ACS Appl. Mater. Interfaces, 5, pp. 9134-9140 Ojajarvi, J., Rasanen, E., Sadewasser, S., Lehmann, S., Wagner, P., Lux-Steiner, M.C., Tetrahedral chalcopyrite quantum dots for solar-cell applications (2011) Appl. Phys. Lett., 99, p. 111907 Stolle, C.J., Harvey, T.B., Pernik, D.R., Hibbert, J.I., Du, J., Rhee, D.J., Akhavan, V.A., Korgel, B.A., Multiexciton solar cells of cuinse2 nanocrystals (2014) J. Phys. Chem. Lett., 5, pp. 304-309 Panthani, M.G., Stolle, C.J., Reid, D.K., Rhee, D.J., Harvey, T.B., Akhavan, V.A., Yu, Y., Korgel, B.A., Cuinse2 quantum dot solar cells with high open-circuit voltage (2013) J. Phys. Chem. Lett., 4, pp. 2030-2034 Xin, B., Wu, Y., Zhang, N., Yu, H., Feng, W., High performance UV photodetector based on 2d non-layered cugas2 nanosheets (2019) Semicond. Sci. Technol., 34, p. 055007 Soni, A., Dashora, A., Gupta, V., Arora, C.M., Rérat, M., Ahuja, B.L., Pandey, R., Electronic and optical modeling of solar cell compounds cugase2 and cuinse2 (2011) J. Electron. Mater., 40, pp. 2197-2208 Nayebi, P., Mirabbaszadeh, K., Shamshirsaz, M., Density functional theory of structural, electronic and optical properties of cuXY2 (x=in, ga and y=s,se) chacopyrite semiconductors (2013) Physica B, 416, pp. 55-63 Xue, H.-T., Tang, F.-L., Lu, W.-J., Feng, Y.-D., Wang, Z.-M., Wang, Y., First-principles investigation of structural phase transitions and electronic properties of cugase2 up to 100?GPa (2013) Comput. Mater. Sci., 67, pp. 21-26 Pluengphon, P., Bovornratanaraks, T., Phase stability and elastic properties of cugase2 under high pressure (2015) Solid State Commun., 218, pp. 1-5 Zhao, Z., Zhou, D., Yi, J., Analysis of the electronic structures of 3d transition metals doped cugas2 based on DFT calculations (2014) J. Semicond., 35, p. 013002 Schwarz, K., Blaha, P., Madsen, G.K., Electronic structure calculations of solids using the wien2k package for material sciences (2002) Comput. Phys. Commun., 147, pp. 71-76 Blaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., Marks, L.D., Wien2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (revised edition) (2018), Vienna University of Technology, Austria Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces (2008) Phys. Rev. Lett., 100, p. 136406 Tran, F., Blaha, P., Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential (2009) Phys. Rev. Lett., 102, p. 226401 Geilhufe, M., Nayak, S.K., Thomas, S., Däne, M., Tripathi, G.S., Entel, P., Hergert, W., Ernst, A., Effect of hydrostatic pressure and uniaxial strain on the electronic properties of pb1?xsnxte (2015) Phys. Rev. B, 92, p. 235203 Sakata, K., Magyari-Köpe, B., Gupta, S., Nishi, Y., Blom, A., Deák, P., The effects of uniaxial and biaxial strain on the electronic structure of germanium (2016) Comput. Mater. Sci., 112 (A), pp. 263-268 Delin, A., Ravindran, P., Eriksson, O., Wills, J.M., Full-potential optical calculations of lead chalcogenides (1998) Int. J. Quantum Chem., 69, pp. 349-358 Garbato, L., Ledda, F., Rucci, A., Structural distortions and polymorphic behaviour in ABC2 and AB2c4 tetrahedral compounds (1987) Prog. Cryst. Growth Charact., 15, pp. 1-41 Abrahams, S.C., Bernstein, J.L., Piezoelectric nonlinear optic cugase2 and cdgeas2: crystal structure, chalcopyrite microhardness, and sublattice distortion (1974) J. Chem. Phys., 61, pp. 1140-1146 Chen, S., Gong, X.G., Wei, S.H., Band-structure anomalies of the chalcopyrite semiconductors cugax2 versus aggax2 (x=s and se) and their alloys (2007) Phys. Rev. B, 75, p. 205209 Belhadj, M., Tadjer, A., Abbar, B., Bousahla, Z., Bouhafs, B., Aourag, H., Structural, electronic and optical calculations of cu(in,ga)se2 ternary chalcopyrites (2004) Phys. Status Solidi B, 241, pp. 2516-2528 Spiess, H.W., Haeberlen, U., Brandt, G., Räuber, A., Schneider, J., Nuclear magnetic resonance in ib-III-VI2 semiconductors (1974) Phys. Status Solidi B, 62, pp. 183-192 Gonzalez, J., Rincón, C., Optical absorption and phase transitions in cu-III-VI2 compounds semiconductors at high pressure (1990) J. Phys. Chem. Solids, 51, pp. 1093-1097 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.program.none.fl_str_mv |
Facultad de Ciencias Básicas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Básicas |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Thin Solid Films |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159230150639616 |
spelling |
20202020-04-29T14:54:01Z2020-04-29T14:54:01Z406090http://hdl.handle.net/11407/579110.1016/j.tsf.2019.137783In this study, we have investigated the effect of bi-axial, ?ab, and uni-axial, ?c, strains on the optoelectronic properties of chalcopyrite semiconductor CuGaSe2 through first-principles full potential linearized augmented plane wave method. These materials have recently attracted much interest within the materials science community. The results are obtained in the framework of Density Functional Theory (DFT), using the Generalized Gradient Approximation based on the minimization of total energy, together with the modified Becke-Johnson exchange-correlation potential, as implemented in the WIEN2k code. Our results show that unstrained CuGaSe2 is a direct band gap semiconductor with a energy of 1.16 eV, thus improving the results of some previous DFT calculations, but still below the accepted experimental data. The incorporation of biaxial and uniaxial strain results in a monotonous decreasing behavior of the energy band gap when both ?ab and ?c change between -8% and +8%, with unstrained value being, approximately, at the middle of the variation range. It is also found that strain causes modifications in the index of refraction of the material, with modifications of its static value that rank above 10% over the entire range of deformations considered. © 2019 Elsevier B.V.engElsevier B.V.Facultad de Ciencias BásicasFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077507438&doi=10.1016%2fj.tsf.2019.137783&partnerID=40&md5=071c6b7c2e38e26006b05d729ca94e4e696Zunger, A., Jaffe, J.E., Structural origin of optical bowing in semiconductor alloys (1983) Phys. Rev. Lett., 51, pp. 662-665Alonso, M.I., Wakita, K., Pascual, J., Garriga, M., Yamamoto, N., Optical functions and electronic structure of cuinse2, cugase2, cuins2, and cugas2 (2001) Phys. Rev. B, 63, p. 075203Parlak, C., Eryi?it, R., Ab initio volume-dependent elastic and lattice dynamical properties of chalcopyrite cugase2 (2006) Phys. Rev. B, 73, p. 245217Liu, F., Yang, J., Zhou, J., Lai, Y., Jia, M., Li, J., Liu, Y., One-step electrodeposition of cugase2 thin films (2012) Thin Sol. Films, 520, pp. 2781-2784Shay, J., Wernick, J., Ternary Chalcopyrite Crystals: Growth, Electronic Structure, and Applications (1975), Elsevier OxfordReshak, A.H., Linear, nonlinear optical properties and birefringence of aggax2 (x= s, se, te) compounds (2005) Physica B, 369, pp. 243-253Kumar, V., Tripathy, S.K., Jha, V., Second order nonlinear optical properties of aIbIIIc2 VI chalcopyrite semiconductors (2012) Appl. Phys. Lett., 101, p. 192105Samanta, L., Ghosh, D., Bhar, G., Optical nonlinearity, band-structure parameters, and refractive indices of some mixed chalcopyrite crystals (1986) Phys. Rev. B, 33, p. 4145Tinoco, T., Quintero, M., Rincón, C., Variation of the energy gap with composition in aIbIIIc2 VI chalcopyrite-structure alloys (1991) Phys. Rev. B, 44, p. 1613Wei, S.-H., Zunger, A., Band offsets and optical bowings of chalcopyrites and zn-based II-VI alloys (1995) J. Appl. Phys., 78, pp. 3846-3856Wu, J., Hirai, Y., Kato, T., Sugimoto, H., Bermudez, V., New world record efficiency up to 22.9% for cu(in,ga)(se,s)2 thin-film solar cells (2018) 7th World Conference on Photovoltaic Energy Conversion (WCPEC-7), pp. 10-15Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W., Solar cell efficiency tables (version 53) (2019) Prog Photovolt Res Appl., 27, pp. 3-12Salomé, P.M., Fjällström, V., Szaniawski, P., Leitão, J.P., Hultqvist, A., Fernandes, P.A., Teixeira, J.P., Edoff, M., A comparison between thin film solar cells made from co-evaporated cuin(1-x)ga(x)se2 using a one-stage process versus a three-stage process (2015) Prog. Photovolt. Res. Appl., 23, pp. 470-478Chiril?, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Fella, C., Tiwari, A.N., Highly efficient cu(in,ga)se2 solar cells grown on flexible polymer films (2011) Nat. Mater., 10 (11), p. 857Chopra, K., Paulson, P., Dutta, V., Thin-film solar cells: an overview (2004) Prog. Photovolt. Res. Appl., 12, pp. 69-92Harvey, T.B., Mori, I., Stolle, C.J., Bogart, T.D., Ostrowski, D.P., Glaz, M.S., Du, J., Korgel, B.A., Copper indium gallium selenide (cigs) photovoltaic devices made using multistep selenization of nanocrystal films (2013) ACS Appl. Mater. Interfaces, 5, pp. 9134-9140Ojajarvi, J., Rasanen, E., Sadewasser, S., Lehmann, S., Wagner, P., Lux-Steiner, M.C., Tetrahedral chalcopyrite quantum dots for solar-cell applications (2011) Appl. Phys. Lett., 99, p. 111907Stolle, C.J., Harvey, T.B., Pernik, D.R., Hibbert, J.I., Du, J., Rhee, D.J., Akhavan, V.A., Korgel, B.A., Multiexciton solar cells of cuinse2 nanocrystals (2014) J. Phys. Chem. Lett., 5, pp. 304-309Panthani, M.G., Stolle, C.J., Reid, D.K., Rhee, D.J., Harvey, T.B., Akhavan, V.A., Yu, Y., Korgel, B.A., Cuinse2 quantum dot solar cells with high open-circuit voltage (2013) J. Phys. Chem. Lett., 4, pp. 2030-2034Xin, B., Wu, Y., Zhang, N., Yu, H., Feng, W., High performance UV photodetector based on 2d non-layered cugas2 nanosheets (2019) Semicond. Sci. Technol., 34, p. 055007Soni, A., Dashora, A., Gupta, V., Arora, C.M., Rérat, M., Ahuja, B.L., Pandey, R., Electronic and optical modeling of solar cell compounds cugase2 and cuinse2 (2011) J. Electron. Mater., 40, pp. 2197-2208Nayebi, P., Mirabbaszadeh, K., Shamshirsaz, M., Density functional theory of structural, electronic and optical properties of cuXY2 (x=in, ga and y=s,se) chacopyrite semiconductors (2013) Physica B, 416, pp. 55-63Xue, H.-T., Tang, F.-L., Lu, W.-J., Feng, Y.-D., Wang, Z.-M., Wang, Y., First-principles investigation of structural phase transitions and electronic properties of cugase2 up to 100?GPa (2013) Comput. Mater. Sci., 67, pp. 21-26Pluengphon, P., Bovornratanaraks, T., Phase stability and elastic properties of cugase2 under high pressure (2015) Solid State Commun., 218, pp. 1-5Zhao, Z., Zhou, D., Yi, J., Analysis of the electronic structures of 3d transition metals doped cugas2 based on DFT calculations (2014) J. Semicond., 35, p. 013002Schwarz, K., Blaha, P., Madsen, G.K., Electronic structure calculations of solids using the wien2k package for material sciences (2002) Comput. Phys. Commun., 147, pp. 71-76Blaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., Marks, L.D., Wien2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (revised edition) (2018), Vienna University of Technology, AustriaPerdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces (2008) Phys. Rev. Lett., 100, p. 136406Tran, F., Blaha, P., Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential (2009) Phys. Rev. Lett., 102, p. 226401Geilhufe, M., Nayak, S.K., Thomas, S., Däne, M., Tripathi, G.S., Entel, P., Hergert, W., Ernst, A., Effect of hydrostatic pressure and uniaxial strain on the electronic properties of pb1?xsnxte (2015) Phys. Rev. B, 92, p. 235203Sakata, K., Magyari-Köpe, B., Gupta, S., Nishi, Y., Blom, A., Deák, P., The effects of uniaxial and biaxial strain on the electronic structure of germanium (2016) Comput. Mater. Sci., 112 (A), pp. 263-268Delin, A., Ravindran, P., Eriksson, O., Wills, J.M., Full-potential optical calculations of lead chalcogenides (1998) Int. J. Quantum Chem., 69, pp. 349-358Garbato, L., Ledda, F., Rucci, A., Structural distortions and polymorphic behaviour in ABC2 and AB2c4 tetrahedral compounds (1987) Prog. Cryst. Growth Charact., 15, pp. 1-41Abrahams, S.C., Bernstein, J.L., Piezoelectric nonlinear optic cugase2 and cdgeas2: crystal structure, chalcopyrite microhardness, and sublattice distortion (1974) J. Chem. Phys., 61, pp. 1140-1146Chen, S., Gong, X.G., Wei, S.H., Band-structure anomalies of the chalcopyrite semiconductors cugax2 versus aggax2 (x=s and se) and their alloys (2007) Phys. Rev. B, 75, p. 205209Belhadj, M., Tadjer, A., Abbar, B., Bousahla, Z., Bouhafs, B., Aourag, H., Structural, electronic and optical calculations of cu(in,ga)se2 ternary chalcopyrites (2004) Phys. Status Solidi B, 241, pp. 2516-2528Spiess, H.W., Haeberlen, U., Brandt, G., Räuber, A., Schneider, J., Nuclear magnetic resonance in ib-III-VI2 semiconductors (1974) Phys. Status Solidi B, 62, pp. 183-192Gonzalez, J., Rincón, C., Optical absorption and phase transitions in cu-III-VI2 compounds semiconductors at high pressure (1990) J. Phys. Chem. Solids, 51, pp. 1093-1097Thin Solid FilmsCopper gallium selenideDensity functional theoryElectronic propertiesFirst-principle calculationsOptical propertiesStrain effectCalculationsCopper compoundsDeformationElectronic propertiesEnergy gapLayered semiconductorsOptical latticesOptical propertiesRefractive indexSelenium compoundsSemiconducting gallium compoundsSemiconducting selenium compoundsStrainDirect band gap semiconductorsElectronic and optical propertiesExchange-correlation potentialFirst principle calculationsFull potential linearized augmented plane wave methodGallium selenidesGeneralized gradient approximationsStrain effectDensity functional theoryEffect of lattice deformation on electronic and optical properties of CuGaSe2: Ab-initio calculationsArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Bikerouin, M., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco, Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Balli, M., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco; Farkous, M., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco, Laboratoire des Systèmes Electriques et Télécommunications, Université Ibn Tofail, Kenitra, Morocco; El-Yadri, M., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Dujardin, F., LCP-A2MC, Université de Lorraine, Metz, France; Abdellah, A.B., Renewable Energy and Advanced Materials Laboratory, International University of Rabat, Morocco, Laboratory of Engineering, Innovation and Management of Industrial Systems (LEIMIS), FST of Tangier, Abdelmalek Essaadi University, Morocco; Feddi, E., Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco; Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, Morelos, Mexicohttp://purl.org/coar/access_right/c_16ecBikerouin M.Balli M.Farkous M.El-Yadri M.Dujardin F.Abdellah A.B.Feddi E.Correa J.D.Mora-Ramos M.E.11407/5791oai:repository.udem.edu.co:11407/57912020-05-27 18:33:15.307Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |