Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group

An analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different th...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de Medellín
Repositorio:
Repositorio UDEM
Idioma:
eng
OAI Identifier:
oai:repository.udem.edu.co:11407/4571
Acceso en línea:
http://hdl.handle.net/11407/4571
Palabra clave:
Rights
License
http://purl.org/coar/access_right/c_16ec
id REPOUDEM2_171ea27345fe1680966f61f2a9bb8820
oai_identifier_str oai:repository.udem.edu.co:11407/4571
network_acronym_str REPOUDEM2
network_name_str Repositorio UDEM
repository_id_str
dc.title.spa.fl_str_mv Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
title Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
spellingShingle Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
title_short Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
title_full Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
title_fullStr Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
title_full_unstemmed Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
title_sort Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
dc.contributor.affiliation.spa.fl_str_mv Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Zaragoza, Spain
description An analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology. © 2017 the Owner Societies.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-04-13T16:35:04Z
dc.date.available.none.fl_str_mv 2018-04-13T16:35:04Z
dc.date.created.none.fl_str_mv 2018
dc.type.eng.fl_str_mv Article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 14639076
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11407/4571
dc.identifier.doi.none.fl_str_mv 10.1039/c7cp07453k
identifier_str_mv 14639076
10.1039/c7cp07453k
url http://hdl.handle.net/11407/4571
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.isversionof.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241118&doi=10.1039%2fc7cp07453k&partnerID=40&md5=435348b35bb1efcbe6b3face1e11fe22
dc.relation.ispartofes.spa.fl_str_mv Physical Chemistry Chemical Physics
dc.relation.references.spa.fl_str_mv Braun, T., (2005) Angew. Chem., Int. Ed., 44, pp. 5012-5014; Van Der Vlugt, J.I., (2010) Chem. Soc. Rev., 39, pp. 2302-2322; Klinkenberg, J.L., Hartwig, J.F., (2011) Angew. Chem., Int. Ed., 50, pp. 86-95; Kim, J., Kim, H.J., Chang, S., (2013) Eur. J. Org. Chem., pp. 3201-3213; Hillhouse, G.L., Bercaw, J.E., (1984) J. Am. Chem. Soc., 106, pp. 5472-5478; Casalnuovo, A.L., Calabrese, J.C., Milstein, D., (1987) Inorg. Chem., 26, pp. 971-973; Nakajima, Y., Kameo, H., Suzuki, H., (2006) Angew. Chem., Int. Ed., 45, pp. 950-952; Mena, I., Casado, M.A., García-Orduña, P., Polo, V., Lahoz, F.J., Fazal, A., Oro, L.A., (2011) Angew. Chem., Int. Ed., 50, pp. 11735-11738; Velez, E., Betoré, M.P., Casado, M.A., Polo, V., (2015) Organometallics, 34, pp. 3959-3966; Álvarez, M., Álvarez, E., Fructos, M.R., Urbano, J., Pérez, P.J., (2016) Dalton Trans., 45, pp. 14628-14633; Margulieux, G.W., Bezdek, M.J., Turner, Z.R., Chirik, P.J., (2017) J. Am. Chem. Soc., 139, pp. 6110-6113; Khaskin, E., Iron, M.A., Shimon, L.J.W., Zhang, J., Milstein, D., (2010) J. Am. Chem. Soc., 132, pp. 8542-8543; Chang, Y.H., Nakajima, Y., Tanaka, H., Yoshizawa, K., Ozawa, F., (2013) J. Am. Chem. Soc., 135, pp. 11791-11794; Taguchi, H.O., Sasaki, D., Takeuchi, K., Tsujimoto, S., Matsuo, T., Tanaka, H., Yoshizawa, K., Ozawa, F., (2016) Organometallics, 35, pp. 1526-1533; Gutsulyak, D.V., Piers, W.E., Borau-Garcia, J., Parvez, M., (2013) J. Am. Chem. Soc., 135, pp. 11776-11779; Brown, R.M., Garcia, J.B., Valjus, J., Roberts, C.J., Tuononen, H.M., Parvez, M., Roesler, R., (2015) Angew. Chem., Int. Ed., 54, pp. 6274-6277; Kim, Y., Park, S., (2016) C. R. Chim., 19, pp. 614-629; Cámpora, J., Palma, P., Del Río, D., Conejo, M.M., Alvarez, E., (2004) Organometallics, 23, pp. 5653-5655; Fox, D.J., Bergman, R.G., (2003) J. Am. Chem. Soc., 125, pp. 8984-8985; Kaplan, A.W., Ritter, J.C.M., Bergman, R.G., (1998) J. Am. Chem. Soc., 120, pp. 6828-6829; Conner, D., Jayaprakash, K.N., Cundari, T.R., Gunnoe, T.B., (2004) Organometallics, 23, pp. 2724-2733; Holland, A.W., Bergman, R.G., (2002) J. Am. Chem. Soc., 124, pp. 14684-14695; Jayaprakash, K.N., Conner, D., Gunnoe, T.B., (2001) Organometallics, 20, pp. 5254-5256; Zhao, J., Goldman, A.S., Hartwig, J.F., (2005) Science, 307, pp. 1080-1082; Morgan, E., MacLean, D.F., McDonald, R., Turculet, L., (2009) J. Am. Chem. Soc., 131, pp. 14234-14236; Uhe, A., Hölscher, M., Leitner, W., (2013) Chem.-Eur. J., 19, pp. 1020-1027; Collman, J.P., (1968) Acc. Chem. Res., 1, pp. 136-143; Labinger, J.A., (2015) Organometallics, 34, pp. 4784-4795; Low, J.J., Goddard, W.A., (1986) J. Am. Chem. Soc., 108, pp. 6115-6128; Saillard, J., Hoffmann, R., (1984) J. Am. Chem. Soc., 106, pp. 2006-2026; Koga, N., Morokuma, K., (1990) J. Phys. Chem., 94, pp. 5454-5462; Crabtree, R.H., Quirk, J.M., (1980) J. Organomet. Chem., 199, pp. 99-106; Su, M.D., Chu, S.Y., (1998) J. Phys. Chem. A, 102, pp. 10159-10166; Su, M.D., Chu, S.Y., (1998) Inorg. Chem., 37, pp. 3400-3406; Fazaeli, R., Ariafard, A., Jamshidi, S., Tabatabaie, E.S., Pishro, K.A., (2007) J. Organomet. Chem., 692, pp. 3984-3993; Hartwig, J.F., (2007) Inorg. Chem., 46, pp. 1936-1947; Ariafard, A., Yates, B.F., (2009) J. Organomet. Chem., 694, pp. 2075-2084; Yamashita, M., Vicario, J.V.C., Hartwig, J.F., (2003) J. Am. Chem. Soc., 125, pp. 16347-16360; Krogh-Jespersen, K., Goldman, A.S., (1999) Transition State Modeling for Catalysis, pp. 151-162. , ed. D. G. Truhlar and K. Morokuma, American Chemical Society, Washington DC; Su, M.D., Chu, S.Y., (1997) J. Am. Chem. Soc., 119, pp. 10178-10185; Macgregor, S.A., (2001) Organometallics, 20, pp. 1860-1874; Diggle, R.A., Macgregor, S.A., Whittlesey, M.K., (2004) Organometallics, 23, pp. 1857-1865; Cundari, T.R., (1994) J. Am. Chem. Soc., 116, pp. 340-347; Wang, D.Y., Choliy, Y., Haibach, M.C., Hartwig, J.F., Krogh-Jespersen, K., Goldman, A.S., (2016) J. Am. Chem. Soc., 138, pp. 149-163; Schultz, M., Milstein, D., (1993) J. Chem. Soc., Chem. Commun., pp. 318-319; Knizia, G., Klein, J.E.M.N., (2015) Angew. Chem., Int. Ed., 54, pp. 5518-5522; Andres, J., Berski, S., Silvi, B., (2016) Chem. Commun., 52, pp. 8183-8195; Silvi, B., Savin, A., (1994) Nature, 371, pp. 683-686; Krokidis, X., Noury, S., Silvi, B., (1997) J. Phys. Chem. A, 101, pp. 7277-7282; Polo, V., Andres, J., Berski, S., Domingo, L.R., Silvi, B., (2008) J. Phys. Chem. A, 112, pp. 7128-7136; Gonzalez-Navarrete, P., Andres, J., Berski, S., (2012) J. Phys. Chem. Lett., 3, pp. 2500-2505; Nizovtsev, A.S., (2013) J. Comput. Chem., 34, pp. 1917-1924; Viciano, I., Gonzalez-Navarrete, P., Andres, J., Marti, S., (2015) J. Chem. Theory Comput., 11, pp. 1470-1480; Phipps, M.J.S., Fox, T., Tautermann, C.S., Skylaris, C.K., (2015) Chem. Soc. Rev., 44, pp. 3177-3211; Kitaura, K., Morokuma, K., (1976) Int. J. Quantum Chem., 10, pp. 325-331; Blanco, M.A., Pendas, A.M., Francisco, E., (2005) J. Chem. Theory Comput., 1, pp. 1096-1109; Maxwell, P., Pendás, A.M., Popelier, P.L.A., (2016) Phys. Chem. Chem. Phys., 18, pp. 20986-21000; Tiana, D., Francisco, E., Blanco, M.A., Macchi, P., Sironi, A., Pendas, A.M., (2010) J. Chem. Theory Comput., 6, pp. 1064-1074; Cukrowski, I., De Lange, J.H., Mitoraj, M., (2014) Chem.-Eur. J., 20, pp. 1-13; Guevara-Vela, J.M., Chavez-Calvillo, R., Garcia-Revilla, J., Hernandez-Trujillo, J., Christiansen, O., Francisco, E., Pendas, A.M., Rocha-Rinza, T., (2013) Chem.-Eur. J., 19, pp. 14304-14315; Ferro-Costas, D., Mosquera, R.A., (2015) Phys. Chem. Chem. Phys., 17, pp. 7424-7434; Pendas, A.M., Blanco, M.A., Franco, E., (2009) J. Comput. Chem., 30, pp. 98-109; Mitoraj, M.P., Zhu, H., Michalak, A., Ziegler, T., (2009) Int. J. Quantum Chem., 109, pp. 3379-3386; Frenking, G., Sola, M., Vyboishchikov, S.F., (2005) J. Organomet. Chem., 680, pp. 6178-6204; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford CT; Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 37, pp. 785-789; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 1372-1377; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132, p. 154104; Johnson, E.R., Becke, A.D., (2005) J. Chem. Phys., 123, p. 024101; Weigend, F., Ahlrichs, R., (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305; Noury, S., Krokidis, X., Fuster, F., Silvi, B., (1999) Comput. Chem., 23, p. 597; Keith, T.A., (2017) AIMAll (Version 17. 01.25), , TK Gristmill Software, Overland Park KS, USA; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., (2004) J. Comput. Chem., 25, pp. 1605-1612; Goddard, T.D., Huang, C.C., Ferrin, T.E., (2007) J. Struct. Biol., 157, pp. 281-287
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.publisher.spa.fl_str_mv Royal Society of Chemistry
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.source.spa.fl_str_mv Scopus
institution Universidad de Medellín
repository.name.fl_str_mv Repositorio Institucional Universidad de Medellin
repository.mail.fl_str_mv repositorio@udem.edu.co
_version_ 1814159245926465536
spelling 2018-04-13T16:35:04Z2018-04-13T16:35:04Z201814639076http://hdl.handle.net/11407/457110.1039/c7cp07453kAn analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology. © 2017 the Owner Societies.engRoyal Society of ChemistryFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241118&doi=10.1039%2fc7cp07453k&partnerID=40&md5=435348b35bb1efcbe6b3face1e11fe22Physical Chemistry Chemical PhysicsBraun, T., (2005) Angew. Chem., Int. Ed., 44, pp. 5012-5014; Van Der Vlugt, J.I., (2010) Chem. Soc. Rev., 39, pp. 2302-2322; Klinkenberg, J.L., Hartwig, J.F., (2011) Angew. Chem., Int. Ed., 50, pp. 86-95; Kim, J., Kim, H.J., Chang, S., (2013) Eur. J. Org. Chem., pp. 3201-3213; Hillhouse, G.L., Bercaw, J.E., (1984) J. Am. Chem. Soc., 106, pp. 5472-5478; Casalnuovo, A.L., Calabrese, J.C., Milstein, D., (1987) Inorg. Chem., 26, pp. 971-973; Nakajima, Y., Kameo, H., Suzuki, H., (2006) Angew. Chem., Int. Ed., 45, pp. 950-952; Mena, I., Casado, M.A., García-Orduña, P., Polo, V., Lahoz, F.J., Fazal, A., Oro, L.A., (2011) Angew. Chem., Int. Ed., 50, pp. 11735-11738; Velez, E., Betoré, M.P., Casado, M.A., Polo, V., (2015) Organometallics, 34, pp. 3959-3966; Álvarez, M., Álvarez, E., Fructos, M.R., Urbano, J., Pérez, P.J., (2016) Dalton Trans., 45, pp. 14628-14633; Margulieux, G.W., Bezdek, M.J., Turner, Z.R., Chirik, P.J., (2017) J. Am. Chem. Soc., 139, pp. 6110-6113; Khaskin, E., Iron, M.A., Shimon, L.J.W., Zhang, J., Milstein, D., (2010) J. Am. Chem. Soc., 132, pp. 8542-8543; Chang, Y.H., Nakajima, Y., Tanaka, H., Yoshizawa, K., Ozawa, F., (2013) J. Am. Chem. Soc., 135, pp. 11791-11794; Taguchi, H.O., Sasaki, D., Takeuchi, K., Tsujimoto, S., Matsuo, T., Tanaka, H., Yoshizawa, K., Ozawa, F., (2016) Organometallics, 35, pp. 1526-1533; Gutsulyak, D.V., Piers, W.E., Borau-Garcia, J., Parvez, M., (2013) J. Am. Chem. Soc., 135, pp. 11776-11779; Brown, R.M., Garcia, J.B., Valjus, J., Roberts, C.J., Tuononen, H.M., Parvez, M., Roesler, R., (2015) Angew. Chem., Int. Ed., 54, pp. 6274-6277; Kim, Y., Park, S., (2016) C. R. Chim., 19, pp. 614-629; Cámpora, J., Palma, P., Del Río, D., Conejo, M.M., Alvarez, E., (2004) Organometallics, 23, pp. 5653-5655; Fox, D.J., Bergman, R.G., (2003) J. Am. Chem. Soc., 125, pp. 8984-8985; Kaplan, A.W., Ritter, J.C.M., Bergman, R.G., (1998) J. Am. Chem. Soc., 120, pp. 6828-6829; Conner, D., Jayaprakash, K.N., Cundari, T.R., Gunnoe, T.B., (2004) Organometallics, 23, pp. 2724-2733; Holland, A.W., Bergman, R.G., (2002) J. Am. Chem. Soc., 124, pp. 14684-14695; Jayaprakash, K.N., Conner, D., Gunnoe, T.B., (2001) Organometallics, 20, pp. 5254-5256; Zhao, J., Goldman, A.S., Hartwig, J.F., (2005) Science, 307, pp. 1080-1082; Morgan, E., MacLean, D.F., McDonald, R., Turculet, L., (2009) J. Am. Chem. Soc., 131, pp. 14234-14236; Uhe, A., Hölscher, M., Leitner, W., (2013) Chem.-Eur. J., 19, pp. 1020-1027; Collman, J.P., (1968) Acc. Chem. Res., 1, pp. 136-143; Labinger, J.A., (2015) Organometallics, 34, pp. 4784-4795; Low, J.J., Goddard, W.A., (1986) J. Am. Chem. Soc., 108, pp. 6115-6128; Saillard, J., Hoffmann, R., (1984) J. Am. Chem. Soc., 106, pp. 2006-2026; Koga, N., Morokuma, K., (1990) J. Phys. Chem., 94, pp. 5454-5462; Crabtree, R.H., Quirk, J.M., (1980) J. Organomet. Chem., 199, pp. 99-106; Su, M.D., Chu, S.Y., (1998) J. Phys. Chem. A, 102, pp. 10159-10166; Su, M.D., Chu, S.Y., (1998) Inorg. Chem., 37, pp. 3400-3406; Fazaeli, R., Ariafard, A., Jamshidi, S., Tabatabaie, E.S., Pishro, K.A., (2007) J. Organomet. Chem., 692, pp. 3984-3993; Hartwig, J.F., (2007) Inorg. Chem., 46, pp. 1936-1947; Ariafard, A., Yates, B.F., (2009) J. Organomet. Chem., 694, pp. 2075-2084; Yamashita, M., Vicario, J.V.C., Hartwig, J.F., (2003) J. Am. Chem. Soc., 125, pp. 16347-16360; Krogh-Jespersen, K., Goldman, A.S., (1999) Transition State Modeling for Catalysis, pp. 151-162. , ed. D. G. Truhlar and K. Morokuma, American Chemical Society, Washington DC; Su, M.D., Chu, S.Y., (1997) J. Am. Chem. Soc., 119, pp. 10178-10185; Macgregor, S.A., (2001) Organometallics, 20, pp. 1860-1874; Diggle, R.A., Macgregor, S.A., Whittlesey, M.K., (2004) Organometallics, 23, pp. 1857-1865; Cundari, T.R., (1994) J. Am. Chem. Soc., 116, pp. 340-347; Wang, D.Y., Choliy, Y., Haibach, M.C., Hartwig, J.F., Krogh-Jespersen, K., Goldman, A.S., (2016) J. Am. Chem. Soc., 138, pp. 149-163; Schultz, M., Milstein, D., (1993) J. Chem. Soc., Chem. Commun., pp. 318-319; Knizia, G., Klein, J.E.M.N., (2015) Angew. Chem., Int. Ed., 54, pp. 5518-5522; Andres, J., Berski, S., Silvi, B., (2016) Chem. Commun., 52, pp. 8183-8195; Silvi, B., Savin, A., (1994) Nature, 371, pp. 683-686; Krokidis, X., Noury, S., Silvi, B., (1997) J. Phys. Chem. A, 101, pp. 7277-7282; Polo, V., Andres, J., Berski, S., Domingo, L.R., Silvi, B., (2008) J. Phys. Chem. A, 112, pp. 7128-7136; Gonzalez-Navarrete, P., Andres, J., Berski, S., (2012) J. Phys. Chem. Lett., 3, pp. 2500-2505; Nizovtsev, A.S., (2013) J. Comput. Chem., 34, pp. 1917-1924; Viciano, I., Gonzalez-Navarrete, P., Andres, J., Marti, S., (2015) J. Chem. Theory Comput., 11, pp. 1470-1480; Phipps, M.J.S., Fox, T., Tautermann, C.S., Skylaris, C.K., (2015) Chem. Soc. Rev., 44, pp. 3177-3211; Kitaura, K., Morokuma, K., (1976) Int. J. Quantum Chem., 10, pp. 325-331; Blanco, M.A., Pendas, A.M., Francisco, E., (2005) J. Chem. Theory Comput., 1, pp. 1096-1109; Maxwell, P., Pendás, A.M., Popelier, P.L.A., (2016) Phys. Chem. Chem. Phys., 18, pp. 20986-21000; Tiana, D., Francisco, E., Blanco, M.A., Macchi, P., Sironi, A., Pendas, A.M., (2010) J. Chem. Theory Comput., 6, pp. 1064-1074; Cukrowski, I., De Lange, J.H., Mitoraj, M., (2014) Chem.-Eur. J., 20, pp. 1-13; Guevara-Vela, J.M., Chavez-Calvillo, R., Garcia-Revilla, J., Hernandez-Trujillo, J., Christiansen, O., Francisco, E., Pendas, A.M., Rocha-Rinza, T., (2013) Chem.-Eur. J., 19, pp. 14304-14315; Ferro-Costas, D., Mosquera, R.A., (2015) Phys. Chem. Chem. Phys., 17, pp. 7424-7434; Pendas, A.M., Blanco, M.A., Franco, E., (2009) J. Comput. Chem., 30, pp. 98-109; Mitoraj, M.P., Zhu, H., Michalak, A., Ziegler, T., (2009) Int. J. Quantum Chem., 109, pp. 3379-3386; Frenking, G., Sola, M., Vyboishchikov, S.F., (2005) J. Organomet. Chem., 680, pp. 6178-6204; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford CT; Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 37, pp. 785-789; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 1372-1377; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132, p. 154104; Johnson, E.R., Becke, A.D., (2005) J. Chem. Phys., 123, p. 024101; Weigend, F., Ahlrichs, R., (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305; Noury, S., Krokidis, X., Fuster, F., Silvi, B., (1999) Comput. Chem., 23, p. 597; Keith, T.A., (2017) AIMAll (Version 17. 01.25), , TK Gristmill Software, Overland Park KS, USA; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., (2004) J. Comput. Chem., 25, pp. 1605-1612; Goddard, T.D., Huang, C.C., Ferrin, T.E., (2007) J. Struct. Biol., 157, pp. 281-287ScopusUnderstanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X groupArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Zaragoza, SpainMunarriz J., Velez E., Casado M.A., Polo V.Munarriz, J., Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Velez, E., Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Casado, M.A., Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Zaragoza, Spain; Polo, V., Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, SpainAn analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology. © 2017 the Owner Societies.http://purl.org/coar/access_right/c_16ec11407/4571oai:repository.udem.edu.co:11407/45712020-05-27 19:09:34.203Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co