Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group
An analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different th...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Medellín
- Repositorio:
- Repositorio UDEM
- Idioma:
- eng
- OAI Identifier:
- oai:repository.udem.edu.co:11407/4571
- Acceso en línea:
- http://hdl.handle.net/11407/4571
- Palabra clave:
- Rights
- License
- http://purl.org/coar/access_right/c_16ec
id |
REPOUDEM2_171ea27345fe1680966f61f2a9bb8820 |
---|---|
oai_identifier_str |
oai:repository.udem.edu.co:11407/4571 |
network_acronym_str |
REPOUDEM2 |
network_name_str |
Repositorio UDEM |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group |
title |
Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group |
spellingShingle |
Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group |
title_short |
Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group |
title_full |
Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group |
title_fullStr |
Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group |
title_full_unstemmed |
Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group |
title_sort |
Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X group |
dc.contributor.affiliation.spa.fl_str_mv |
Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Zaragoza, Spain |
description |
An analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology. © 2017 the Owner Societies. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-04-13T16:35:04Z |
dc.date.available.none.fl_str_mv |
2018-04-13T16:35:04Z |
dc.date.created.none.fl_str_mv |
2018 |
dc.type.eng.fl_str_mv |
Article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
14639076 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11407/4571 |
dc.identifier.doi.none.fl_str_mv |
10.1039/c7cp07453k |
identifier_str_mv |
14639076 10.1039/c7cp07453k |
url |
http://hdl.handle.net/11407/4571 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.isversionof.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241118&doi=10.1039%2fc7cp07453k&partnerID=40&md5=435348b35bb1efcbe6b3face1e11fe22 |
dc.relation.ispartofes.spa.fl_str_mv |
Physical Chemistry Chemical Physics |
dc.relation.references.spa.fl_str_mv |
Braun, T., (2005) Angew. Chem., Int. Ed., 44, pp. 5012-5014; Van Der Vlugt, J.I., (2010) Chem. Soc. Rev., 39, pp. 2302-2322; Klinkenberg, J.L., Hartwig, J.F., (2011) Angew. Chem., Int. Ed., 50, pp. 86-95; Kim, J., Kim, H.J., Chang, S., (2013) Eur. J. Org. Chem., pp. 3201-3213; Hillhouse, G.L., Bercaw, J.E., (1984) J. Am. Chem. Soc., 106, pp. 5472-5478; Casalnuovo, A.L., Calabrese, J.C., Milstein, D., (1987) Inorg. Chem., 26, pp. 971-973; Nakajima, Y., Kameo, H., Suzuki, H., (2006) Angew. Chem., Int. Ed., 45, pp. 950-952; Mena, I., Casado, M.A., García-Orduña, P., Polo, V., Lahoz, F.J., Fazal, A., Oro, L.A., (2011) Angew. Chem., Int. Ed., 50, pp. 11735-11738; Velez, E., Betoré, M.P., Casado, M.A., Polo, V., (2015) Organometallics, 34, pp. 3959-3966; Álvarez, M., Álvarez, E., Fructos, M.R., Urbano, J., Pérez, P.J., (2016) Dalton Trans., 45, pp. 14628-14633; Margulieux, G.W., Bezdek, M.J., Turner, Z.R., Chirik, P.J., (2017) J. Am. Chem. Soc., 139, pp. 6110-6113; Khaskin, E., Iron, M.A., Shimon, L.J.W., Zhang, J., Milstein, D., (2010) J. Am. Chem. Soc., 132, pp. 8542-8543; Chang, Y.H., Nakajima, Y., Tanaka, H., Yoshizawa, K., Ozawa, F., (2013) J. Am. Chem. Soc., 135, pp. 11791-11794; Taguchi, H.O., Sasaki, D., Takeuchi, K., Tsujimoto, S., Matsuo, T., Tanaka, H., Yoshizawa, K., Ozawa, F., (2016) Organometallics, 35, pp. 1526-1533; Gutsulyak, D.V., Piers, W.E., Borau-Garcia, J., Parvez, M., (2013) J. Am. Chem. Soc., 135, pp. 11776-11779; Brown, R.M., Garcia, J.B., Valjus, J., Roberts, C.J., Tuononen, H.M., Parvez, M., Roesler, R., (2015) Angew. Chem., Int. Ed., 54, pp. 6274-6277; Kim, Y., Park, S., (2016) C. R. Chim., 19, pp. 614-629; Cámpora, J., Palma, P., Del Río, D., Conejo, M.M., Alvarez, E., (2004) Organometallics, 23, pp. 5653-5655; Fox, D.J., Bergman, R.G., (2003) J. Am. Chem. Soc., 125, pp. 8984-8985; Kaplan, A.W., Ritter, J.C.M., Bergman, R.G., (1998) J. Am. Chem. Soc., 120, pp. 6828-6829; Conner, D., Jayaprakash, K.N., Cundari, T.R., Gunnoe, T.B., (2004) Organometallics, 23, pp. 2724-2733; Holland, A.W., Bergman, R.G., (2002) J. Am. Chem. Soc., 124, pp. 14684-14695; Jayaprakash, K.N., Conner, D., Gunnoe, T.B., (2001) Organometallics, 20, pp. 5254-5256; Zhao, J., Goldman, A.S., Hartwig, J.F., (2005) Science, 307, pp. 1080-1082; Morgan, E., MacLean, D.F., McDonald, R., Turculet, L., (2009) J. Am. Chem. Soc., 131, pp. 14234-14236; Uhe, A., Hölscher, M., Leitner, W., (2013) Chem.-Eur. J., 19, pp. 1020-1027; Collman, J.P., (1968) Acc. Chem. Res., 1, pp. 136-143; Labinger, J.A., (2015) Organometallics, 34, pp. 4784-4795; Low, J.J., Goddard, W.A., (1986) J. Am. Chem. Soc., 108, pp. 6115-6128; Saillard, J., Hoffmann, R., (1984) J. Am. Chem. Soc., 106, pp. 2006-2026; Koga, N., Morokuma, K., (1990) J. Phys. Chem., 94, pp. 5454-5462; Crabtree, R.H., Quirk, J.M., (1980) J. Organomet. Chem., 199, pp. 99-106; Su, M.D., Chu, S.Y., (1998) J. Phys. Chem. A, 102, pp. 10159-10166; Su, M.D., Chu, S.Y., (1998) Inorg. Chem., 37, pp. 3400-3406; Fazaeli, R., Ariafard, A., Jamshidi, S., Tabatabaie, E.S., Pishro, K.A., (2007) J. Organomet. Chem., 692, pp. 3984-3993; Hartwig, J.F., (2007) Inorg. Chem., 46, pp. 1936-1947; Ariafard, A., Yates, B.F., (2009) J. Organomet. Chem., 694, pp. 2075-2084; Yamashita, M., Vicario, J.V.C., Hartwig, J.F., (2003) J. Am. Chem. Soc., 125, pp. 16347-16360; Krogh-Jespersen, K., Goldman, A.S., (1999) Transition State Modeling for Catalysis, pp. 151-162. , ed. D. G. Truhlar and K. Morokuma, American Chemical Society, Washington DC; Su, M.D., Chu, S.Y., (1997) J. Am. Chem. Soc., 119, pp. 10178-10185; Macgregor, S.A., (2001) Organometallics, 20, pp. 1860-1874; Diggle, R.A., Macgregor, S.A., Whittlesey, M.K., (2004) Organometallics, 23, pp. 1857-1865; Cundari, T.R., (1994) J. Am. Chem. Soc., 116, pp. 340-347; Wang, D.Y., Choliy, Y., Haibach, M.C., Hartwig, J.F., Krogh-Jespersen, K., Goldman, A.S., (2016) J. Am. Chem. Soc., 138, pp. 149-163; Schultz, M., Milstein, D., (1993) J. Chem. Soc., Chem. Commun., pp. 318-319; Knizia, G., Klein, J.E.M.N., (2015) Angew. Chem., Int. Ed., 54, pp. 5518-5522; Andres, J., Berski, S., Silvi, B., (2016) Chem. Commun., 52, pp. 8183-8195; Silvi, B., Savin, A., (1994) Nature, 371, pp. 683-686; Krokidis, X., Noury, S., Silvi, B., (1997) J. Phys. Chem. A, 101, pp. 7277-7282; Polo, V., Andres, J., Berski, S., Domingo, L.R., Silvi, B., (2008) J. Phys. Chem. A, 112, pp. 7128-7136; Gonzalez-Navarrete, P., Andres, J., Berski, S., (2012) J. Phys. Chem. Lett., 3, pp. 2500-2505; Nizovtsev, A.S., (2013) J. Comput. Chem., 34, pp. 1917-1924; Viciano, I., Gonzalez-Navarrete, P., Andres, J., Marti, S., (2015) J. Chem. Theory Comput., 11, pp. 1470-1480; Phipps, M.J.S., Fox, T., Tautermann, C.S., Skylaris, C.K., (2015) Chem. Soc. Rev., 44, pp. 3177-3211; Kitaura, K., Morokuma, K., (1976) Int. J. Quantum Chem., 10, pp. 325-331; Blanco, M.A., Pendas, A.M., Francisco, E., (2005) J. Chem. Theory Comput., 1, pp. 1096-1109; Maxwell, P., Pendás, A.M., Popelier, P.L.A., (2016) Phys. Chem. Chem. Phys., 18, pp. 20986-21000; Tiana, D., Francisco, E., Blanco, M.A., Macchi, P., Sironi, A., Pendas, A.M., (2010) J. Chem. Theory Comput., 6, pp. 1064-1074; Cukrowski, I., De Lange, J.H., Mitoraj, M., (2014) Chem.-Eur. J., 20, pp. 1-13; Guevara-Vela, J.M., Chavez-Calvillo, R., Garcia-Revilla, J., Hernandez-Trujillo, J., Christiansen, O., Francisco, E., Pendas, A.M., Rocha-Rinza, T., (2013) Chem.-Eur. J., 19, pp. 14304-14315; Ferro-Costas, D., Mosquera, R.A., (2015) Phys. Chem. Chem. Phys., 17, pp. 7424-7434; Pendas, A.M., Blanco, M.A., Franco, E., (2009) J. Comput. Chem., 30, pp. 98-109; Mitoraj, M.P., Zhu, H., Michalak, A., Ziegler, T., (2009) Int. J. Quantum Chem., 109, pp. 3379-3386; Frenking, G., Sola, M., Vyboishchikov, S.F., (2005) J. Organomet. Chem., 680, pp. 6178-6204; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford CT; Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 37, pp. 785-789; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 1372-1377; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132, p. 154104; Johnson, E.R., Becke, A.D., (2005) J. Chem. Phys., 123, p. 024101; Weigend, F., Ahlrichs, R., (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305; Noury, S., Krokidis, X., Fuster, F., Silvi, B., (1999) Comput. Chem., 23, p. 597; Keith, T.A., (2017) AIMAll (Version 17. 01.25), , TK Gristmill Software, Overland Park KS, USA; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., (2004) J. Comput. Chem., 25, pp. 1605-1612; Goddard, T.D., Huang, C.C., Ferrin, T.E., (2007) J. Struct. Biol., 157, pp. 281-287 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Royal Society of Chemistry |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Básicas |
dc.source.spa.fl_str_mv |
Scopus |
institution |
Universidad de Medellín |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Medellin |
repository.mail.fl_str_mv |
repositorio@udem.edu.co |
_version_ |
1814159245926465536 |
spelling |
2018-04-13T16:35:04Z2018-04-13T16:35:04Z201814639076http://hdl.handle.net/11407/457110.1039/c7cp07453kAn analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology. © 2017 the Owner Societies.engRoyal Society of ChemistryFacultad de Ciencias Básicashttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241118&doi=10.1039%2fc7cp07453k&partnerID=40&md5=435348b35bb1efcbe6b3face1e11fe22Physical Chemistry Chemical PhysicsBraun, T., (2005) Angew. Chem., Int. Ed., 44, pp. 5012-5014; Van Der Vlugt, J.I., (2010) Chem. Soc. Rev., 39, pp. 2302-2322; Klinkenberg, J.L., Hartwig, J.F., (2011) Angew. Chem., Int. Ed., 50, pp. 86-95; Kim, J., Kim, H.J., Chang, S., (2013) Eur. J. Org. Chem., pp. 3201-3213; Hillhouse, G.L., Bercaw, J.E., (1984) J. Am. Chem. Soc., 106, pp. 5472-5478; Casalnuovo, A.L., Calabrese, J.C., Milstein, D., (1987) Inorg. Chem., 26, pp. 971-973; Nakajima, Y., Kameo, H., Suzuki, H., (2006) Angew. Chem., Int. Ed., 45, pp. 950-952; Mena, I., Casado, M.A., García-Orduña, P., Polo, V., Lahoz, F.J., Fazal, A., Oro, L.A., (2011) Angew. Chem., Int. Ed., 50, pp. 11735-11738; Velez, E., Betoré, M.P., Casado, M.A., Polo, V., (2015) Organometallics, 34, pp. 3959-3966; Álvarez, M., Álvarez, E., Fructos, M.R., Urbano, J., Pérez, P.J., (2016) Dalton Trans., 45, pp. 14628-14633; Margulieux, G.W., Bezdek, M.J., Turner, Z.R., Chirik, P.J., (2017) J. Am. Chem. Soc., 139, pp. 6110-6113; Khaskin, E., Iron, M.A., Shimon, L.J.W., Zhang, J., Milstein, D., (2010) J. Am. Chem. Soc., 132, pp. 8542-8543; Chang, Y.H., Nakajima, Y., Tanaka, H., Yoshizawa, K., Ozawa, F., (2013) J. Am. Chem. Soc., 135, pp. 11791-11794; Taguchi, H.O., Sasaki, D., Takeuchi, K., Tsujimoto, S., Matsuo, T., Tanaka, H., Yoshizawa, K., Ozawa, F., (2016) Organometallics, 35, pp. 1526-1533; Gutsulyak, D.V., Piers, W.E., Borau-Garcia, J., Parvez, M., (2013) J. Am. Chem. Soc., 135, pp. 11776-11779; Brown, R.M., Garcia, J.B., Valjus, J., Roberts, C.J., Tuononen, H.M., Parvez, M., Roesler, R., (2015) Angew. Chem., Int. Ed., 54, pp. 6274-6277; Kim, Y., Park, S., (2016) C. R. Chim., 19, pp. 614-629; Cámpora, J., Palma, P., Del Río, D., Conejo, M.M., Alvarez, E., (2004) Organometallics, 23, pp. 5653-5655; Fox, D.J., Bergman, R.G., (2003) J. Am. Chem. Soc., 125, pp. 8984-8985; Kaplan, A.W., Ritter, J.C.M., Bergman, R.G., (1998) J. Am. Chem. Soc., 120, pp. 6828-6829; Conner, D., Jayaprakash, K.N., Cundari, T.R., Gunnoe, T.B., (2004) Organometallics, 23, pp. 2724-2733; Holland, A.W., Bergman, R.G., (2002) J. Am. Chem. Soc., 124, pp. 14684-14695; Jayaprakash, K.N., Conner, D., Gunnoe, T.B., (2001) Organometallics, 20, pp. 5254-5256; Zhao, J., Goldman, A.S., Hartwig, J.F., (2005) Science, 307, pp. 1080-1082; Morgan, E., MacLean, D.F., McDonald, R., Turculet, L., (2009) J. Am. Chem. Soc., 131, pp. 14234-14236; Uhe, A., Hölscher, M., Leitner, W., (2013) Chem.-Eur. J., 19, pp. 1020-1027; Collman, J.P., (1968) Acc. Chem. Res., 1, pp. 136-143; Labinger, J.A., (2015) Organometallics, 34, pp. 4784-4795; Low, J.J., Goddard, W.A., (1986) J. Am. Chem. Soc., 108, pp. 6115-6128; Saillard, J., Hoffmann, R., (1984) J. Am. Chem. Soc., 106, pp. 2006-2026; Koga, N., Morokuma, K., (1990) J. Phys. Chem., 94, pp. 5454-5462; Crabtree, R.H., Quirk, J.M., (1980) J. Organomet. Chem., 199, pp. 99-106; Su, M.D., Chu, S.Y., (1998) J. Phys. Chem. A, 102, pp. 10159-10166; Su, M.D., Chu, S.Y., (1998) Inorg. Chem., 37, pp. 3400-3406; Fazaeli, R., Ariafard, A., Jamshidi, S., Tabatabaie, E.S., Pishro, K.A., (2007) J. Organomet. Chem., 692, pp. 3984-3993; Hartwig, J.F., (2007) Inorg. Chem., 46, pp. 1936-1947; Ariafard, A., Yates, B.F., (2009) J. Organomet. Chem., 694, pp. 2075-2084; Yamashita, M., Vicario, J.V.C., Hartwig, J.F., (2003) J. Am. Chem. Soc., 125, pp. 16347-16360; Krogh-Jespersen, K., Goldman, A.S., (1999) Transition State Modeling for Catalysis, pp. 151-162. , ed. D. G. Truhlar and K. Morokuma, American Chemical Society, Washington DC; Su, M.D., Chu, S.Y., (1997) J. Am. Chem. Soc., 119, pp. 10178-10185; Macgregor, S.A., (2001) Organometallics, 20, pp. 1860-1874; Diggle, R.A., Macgregor, S.A., Whittlesey, M.K., (2004) Organometallics, 23, pp. 1857-1865; Cundari, T.R., (1994) J. Am. Chem. Soc., 116, pp. 340-347; Wang, D.Y., Choliy, Y., Haibach, M.C., Hartwig, J.F., Krogh-Jespersen, K., Goldman, A.S., (2016) J. Am. Chem. Soc., 138, pp. 149-163; Schultz, M., Milstein, D., (1993) J. Chem. Soc., Chem. Commun., pp. 318-319; Knizia, G., Klein, J.E.M.N., (2015) Angew. Chem., Int. Ed., 54, pp. 5518-5522; Andres, J., Berski, S., Silvi, B., (2016) Chem. Commun., 52, pp. 8183-8195; Silvi, B., Savin, A., (1994) Nature, 371, pp. 683-686; Krokidis, X., Noury, S., Silvi, B., (1997) J. Phys. Chem. A, 101, pp. 7277-7282; Polo, V., Andres, J., Berski, S., Domingo, L.R., Silvi, B., (2008) J. Phys. Chem. A, 112, pp. 7128-7136; Gonzalez-Navarrete, P., Andres, J., Berski, S., (2012) J. Phys. Chem. Lett., 3, pp. 2500-2505; Nizovtsev, A.S., (2013) J. Comput. Chem., 34, pp. 1917-1924; Viciano, I., Gonzalez-Navarrete, P., Andres, J., Marti, S., (2015) J. Chem. Theory Comput., 11, pp. 1470-1480; Phipps, M.J.S., Fox, T., Tautermann, C.S., Skylaris, C.K., (2015) Chem. Soc. Rev., 44, pp. 3177-3211; Kitaura, K., Morokuma, K., (1976) Int. J. Quantum Chem., 10, pp. 325-331; Blanco, M.A., Pendas, A.M., Francisco, E., (2005) J. Chem. Theory Comput., 1, pp. 1096-1109; Maxwell, P., Pendás, A.M., Popelier, P.L.A., (2016) Phys. Chem. Chem. Phys., 18, pp. 20986-21000; Tiana, D., Francisco, E., Blanco, M.A., Macchi, P., Sironi, A., Pendas, A.M., (2010) J. Chem. Theory Comput., 6, pp. 1064-1074; Cukrowski, I., De Lange, J.H., Mitoraj, M., (2014) Chem.-Eur. J., 20, pp. 1-13; Guevara-Vela, J.M., Chavez-Calvillo, R., Garcia-Revilla, J., Hernandez-Trujillo, J., Christiansen, O., Francisco, E., Pendas, A.M., Rocha-Rinza, T., (2013) Chem.-Eur. J., 19, pp. 14304-14315; Ferro-Costas, D., Mosquera, R.A., (2015) Phys. Chem. Chem. Phys., 17, pp. 7424-7434; Pendas, A.M., Blanco, M.A., Franco, E., (2009) J. Comput. Chem., 30, pp. 98-109; Mitoraj, M.P., Zhu, H., Michalak, A., Ziegler, T., (2009) Int. J. Quantum Chem., 109, pp. 3379-3386; Frenking, G., Sola, M., Vyboishchikov, S.F., (2005) J. Organomet. Chem., 680, pp. 6178-6204; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford CT; Lee, C.T., Yang, W.T., Parr, R.G., (1988) Phys. Rev. B: Condens. Matter Mater. Phys., 37, pp. 785-789; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 1372-1377; Becke, A.D., (1993) J. Chem. Phys., 98, pp. 5648-5652; Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132, p. 154104; Johnson, E.R., Becke, A.D., (2005) J. Chem. Phys., 123, p. 024101; Weigend, F., Ahlrichs, R., (2005) Phys. Chem. Chem. Phys., 7, pp. 3297-3305; Noury, S., Krokidis, X., Fuster, F., Silvi, B., (1999) Comput. Chem., 23, p. 597; Keith, T.A., (2017) AIMAll (Version 17. 01.25), , TK Gristmill Software, Overland Park KS, USA; Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., (2004) J. Comput. Chem., 25, pp. 1605-1612; Goddard, T.D., Huang, C.C., Ferrin, T.E., (2007) J. Struct. Biol., 157, pp. 281-287ScopusUnderstanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(i) complexes: The role of the X groupArticleinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Zaragoza, SpainMunarriz J., Velez E., Casado M.A., Polo V.Munarriz, J., Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain; Velez, E., Departamento de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia; Casado, M.A., Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, Zaragoza, Spain; Polo, V., Departamento de Química Física, Instituto de Biocomputación y Física de Los Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, SpainAn analysis of the electronic rearrangements for the oxidative addition of ammonia to a set of five representative (PXP)Ir pincer complexes (X = B, CH, O, N, SiH) is performed. We aim to understand the factors controlling the activation and reaction energies of this process by combining different theoretical strategies based on DFT calculations. Interestingly, complexes featuring higher activation barriers yield more exothermic reactions. The analysis of the reaction path using the bonding evolution theory shows that the main chemical events, N-H bond cleavage and Ir-H bond formation, take place before the transition structure is reached. Metal oxidation implies an electron density transfer from non-shared Ir pairs to the Ir-N bond. This decrement in the atomic charge of the metal provokes different effects in the ionic contribution of the Ir-X bonding depending on the nature of the X atom as shown by the interacting quantum atoms methodology. © 2017 the Owner Societies.http://purl.org/coar/access_right/c_16ec11407/4571oai:repository.udem.edu.co:11407/45712020-05-27 19:09:34.203Repositorio Institucional Universidad de Medellinrepositorio@udem.edu.co |