Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products
The surface temperature of the mold is a critical processing parameter that significantly influences the quality of composites during injection molding. Therefore, this study aimed to investigate the effect of mold surface temperature on the properties of hybrid biocomposite materials prepared by in...
- Autores:
-
Correa-Aguirre, Juan P.
García-Navarro, Serafín
Roca-Blay, Luis
Hidalgo Salazar, Miguel Ángel
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15887
- Acceso en línea:
- https://hdl.handle.net/10614/15887
https://doi.org/10.1177/07316844231210404
https://red.uao.edu.co/
- Palabra clave:
- Agro-industrial by-products
Dynamic Mechanical Analysis
Hybrid biocomposites
Mold surface temperature
Semicrystalline polymers
Two-way ANOVA
- Rights
- openAccess
- License
- Derechos reservados - Sage, 2023
id |
REPOUAO2_dfcb16008e1b194c08436e8b48e568f8 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15887 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products |
title |
Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products |
spellingShingle |
Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products Agro-industrial by-products Dynamic Mechanical Analysis Hybrid biocomposites Mold surface temperature Semicrystalline polymers Two-way ANOVA |
title_short |
Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products |
title_full |
Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products |
title_fullStr |
Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products |
title_full_unstemmed |
Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products |
title_sort |
Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products |
dc.creator.fl_str_mv |
Correa-Aguirre, Juan P. García-Navarro, Serafín Roca-Blay, Luis Hidalgo Salazar, Miguel Ángel |
dc.contributor.author.none.fl_str_mv |
Correa-Aguirre, Juan P. García-Navarro, Serafín Roca-Blay, Luis Hidalgo Salazar, Miguel Ángel |
dc.subject.proposal.eng.fl_str_mv |
Agro-industrial by-products Dynamic Mechanical Analysis Hybrid biocomposites Mold surface temperature Semicrystalline polymers Two-way ANOVA |
topic |
Agro-industrial by-products Dynamic Mechanical Analysis Hybrid biocomposites Mold surface temperature Semicrystalline polymers Two-way ANOVA |
description |
The surface temperature of the mold is a critical processing parameter that significantly influences the quality of composites during injection molding. Therefore, this study aimed to investigate the effect of mold surface temperature on the properties of hybrid biocomposite materials prepared by incorporating polypropylene-PP with agro-industrial by-products such as rice husks-RH and fique powder-FP using co-rotating twin-screw extrusion and injection molding. While this article focuses on PP as the polymeric matrix, the methodology employed in this study can also be applied to investigate the effect of mold surface temperature on the properties of other polymers used in the production of hybrid composites via injection molding as biobased or biodegradable plastics. The mechanical characterization reveals that the utilization of higher mold temperatures and the hybridization of RH and FP result in an increase in the elastic modulus of up to 30% compared to PP. Also, thermal, viscoelastic, morphological, and HDT characterization revealed that higher surface mold temperature led to changes in PP crystallinity, and a better hybrid biocomposites performance. This study highlights the potential of mold surface temperature controlling and agro-industrial by-products hybridization for the design and production of higher quality and sustainable products using injection molding |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-11-13T12:44:43Z |
dc.date.available.none.fl_str_mv |
2024-11-13T12:44:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.eng.fl_str_mv |
Hidalgo-Salazar, M. A.; Correa-Aguirre, J. P.; García-Navarro, S. y Roca-Blay, L. (2023). Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products. Journal of Reinforced Plastics and Composites. 0(0). 22 p. https://doi.org/10.1177/07316844231210404 |
dc.identifier.issn.spa.fl_str_mv |
15307964 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15887 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1177/07316844231210404 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Hidalgo-Salazar, M. A.; Correa-Aguirre, J. P.; García-Navarro, S. y Roca-Blay, L. (2023). Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products. Journal of Reinforced Plastics and Composites. 0(0). 22 p. https://doi.org/10.1177/07316844231210404 15307964 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15887 https://doi.org/10.1177/07316844231210404 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
22 |
dc.relation.citationissue.spa.fl_str_mv |
0 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
0 |
dc.relation.ispartofjournal.eng.fl_str_mv |
The Journal of Reinforced Plastics and Composites |
dc.relation.references.none.fl_str_mv |
1. Farahani S, Khade V, Basu S, et al. A data-driven predictive maintenance framework for injection molding process. J Manuf Process 2022; 80: 887–897. 2. Catoen B and Rees H. 5-Factors affecting the design of an injection mold. In: Catoen B, Rees H and BT-IMDH (eds) Munich, Germany: Hanser, 2021, pp. 151–169. 3. Lerma V, JR. Chapter 2 - thermodynamic behavior of plastics: PVT graphs. In: Lerma V, JR and BT-PIM (eds). Munich, Germany: Hanser, 2020, pp. 25–34. 4. Catoen B and Rees H. 15-selection of mold materials. In: Catoen B, Rees H and BT-IMDH (eds) Munich, Germany: Hanser, 2014, pp. 549–563. 5. Annicchiarico D and Alcock JR. Review of factors that affect shrinkage of molded part in injection molding. Mater Manuf Process 2014; 29: 662–682. 6. Kuram E, Timur G, Ozcelik B, et al. Influences of injection conditions on strength properties of recycled and virgin PBT/ PC/ABS. Mater Manuf Process 2014; 29: 1260–1268. 7. Chen S-C, Chang Y, Chang Y-P, et al. Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts. Int Commun Heat Mass Tran 2009; 36: 1030–1035. 8. Feldmann M. The effects of the injection moulding temperature on the mechanical properties and morphology of polypropylene man-made cellulose fibre composites. Compos Part A Appl Sci Manuf 2016; 87: 146–152. 9. Chen S-C, Lin Y-W, Chien R-D, et al. Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology. Adv Polym Technol 2008; 27: 224–232. 10. Berger GR, Pacher GA, Pichler A, et al. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding. In Proceedings of PPS 2013 - 29th International Conference of the Polymer Processing Society, Conference Papers. Vol. 1593. American Institute of Physics Inc. 2014. p. 189-194 11. Karagoz¨ ˙I. An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials. Polym Bull 2021; 78: 2627–2644. 12. Liparoti S, Speranza V, Sorrentino A, et al. Mechanical properties distribution within polypropylene injection molded samples: effect of mold temperature under uneven thermal conditions. Polymers 2017; 9. Epub ahead of print 2017. DOI: 10.3390/polym9110585. 13. Lucchetta G, Fiorotto M and Bariani PF. Influence of rapid mold temperature variation on surface topography replication and appearance of injection-molded parts. CIRPAnn 2012; 61: 539–542. 14. Guilong W, Guoqun Z, Huiping L, et al. Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process. Mater Des 2010; 31: 3426–3441. 15. Gurunathan T, Mohanty S and Nayak SK. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Appl Sci Manuf 2015; 77: 1–25. 16. Hidalgo-Salazar MA and Salinas E. Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Compos Part B Eng 2019; 176: 107135. 17. Hidalgo-Salazar MA, Correa-Aguirre JP, Garc´ıa-Navarro S, et al. Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and threedimensional microscopy study. Polymers 2020; 12: 1507. 18. Burgstaller C. A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Compos Part B Eng 2014; 67: 192–198. 19. Gigante V, Cinelli P, Sandroni M, et al. On the use of paper sludge as filler in biocomposites for injection moulding. Materials 2021; 14: 2688. 20. Chaitanya S, Singh I and Song JI. Recyclability analysis of PLA/sisal fiber biocomposites. Compos Part B Eng 2019; 173: 106895. 21. Chaitanya S and Singh I. Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Mater Manuf Process 2017; 32: 468–474. 22. Pawłowska A, Stepczynska M and Walczak M. Flax ´ fibres modified with a natural plant agent used as a reinforcement for the polylactide-based biocomposites. Ind Crops Prod 2022; 184: 115061. 23. Correa JP, Montalvo-Navarrete JM and Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2019; 208: 785–794. Epub ahead of print 12 October 2018. DOI: 10. 1016/J.JCLEPRO.2018.10.099. 24. Lewis R, Weldekidan H, Rodriguez AU, et al. Design and engineering of sustainable biocomposites from ocean-recycled polypropylene-based polyolefins reinforced with almond shell and hull. Compos Part C Open Access 2023; 12: 100373. Epub ahead of print 2023. DOI: 10.1016/j.jcomc.2023.100373. 25. Root KP, Pal AK, Pesaranhajiabbas E, et al. Injection moulded composites from high biomass filled biodegradable plastic: properties and performance evaluation for single-use applications. Compos Part C Open Access 2023; 11: 100358. Epub ahead of print 2023. DOI: 10.1016/j. jcomc.2023.100358. 26. Ben Hamou K, Kaddami H, Elisabete F, et al. Synergistic association of wood/hemp fibers reinforcements on mechanical, physical and thermal properties of polypropylene-based hybrid composites. Ind Crops Prod 2023; 192: 116052. Epub ahead of print 2023. DOI: 10.1016/j.indcrop.2022.116052. 27. Hidalgo-Salazar MA and Correa JP. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results Phys 2018; 8: 461–467. 28. Montalvo Navarrete JI, Hidalgo-Salazar MA, Escobar Nunez E, et al. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf 2018; 12: 449–458. 29. Centeno-Mesa N, Lombana-Toro O, Correa-Aguirre JP, et al. Effect of fique fibers and its processing by-products on morphology, thermal and mechanical properties of epoxy based biocomposites. Sci Rep 2022; 12: 1–11. 30. Ramesh M, Palanikumar K and Reddy KH. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 2017; 79: 558–584. 31. Mochane MJ, Mokhena TC, Mokhothu TH, et al. Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 2019; 13: 159–198. 32. Vais ¨ anen T, Das O and Tomppo L. A review on new bio-based ¨ constituents for natural fiber-polymer composites. J Clean Prod 2017; 149: 582–596. 33. Andrzejewski J, Barczewski M and Szostak M. Injection molding of highly filled polypropylene-based biocomposites. Buckwheat husk and wood flour filler: a comparison of agricultural and wood industry waste utilization. Polymers 2019; 11: 1881. 34. Correa-Aguirre JP, Luna-Vera F, Caicedo C, et al. The effects of reprocessing and fiber treatments on the properties of polypropylene-sugarcane bagasse biocomposites. Polymers 2020; 12: 1440. 35. ASTM D5857-17. standard specification for polypropylene injection and extrusion materials using ISO protocol and methodology. ASTM, 2017. 36. Keyence. Wide-area 3D measurement system VR-3000 series features. Osaka, Japan: Keyence, 2023. https://www.keyence. eu/ss/products/microscope/vr/feature/ 37. ASTM D638-14 standard test method for tensile properties of plastics, ASTM 2014. 38. ASTM D790 -17.standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM, 2017. 39. ASTM. D648-18 standard test method for deflection temperature of plastics under flexural load in the edgewise position. ASTM. 2018. 40. ASTM. D5023-15 standard test method for plastics: dynamic mechanical properties: in flexure (three-point bending). ASTM. 2015. 41. Franciszczak P, Wojnowski J, Kalnin¸s K, et al. The in ˇ fluence of matrix crystallinity on the mechanical performance of short-fibre composites – based on homo-polypropylene and a random polypropylene copolymer reinforced with man-made cellulose and glass fibres. Compos Part B Eng 2019; 166: 516–526. 42. Lascano D, Aljaro C, Fages E, et al. Study of the mechanical properties of polylactide composites with jute reinforcements. Green Mater 2023; 11: 69–78. Epub ahead of print 2022. DOI: 10.1680/jgrma.21.00060. 43. Xu H, Liu CY, Chen C, et al. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Biopolymers 2012; 97: 825–839. 44. Neto JSS, de Queiroz HFM, Aguiar RAA, et al. A review on the thermal characterisation of natural and hybrid fiber composites. Polymers 2021; 13. Epub ahead of print 2021. DOI: 10.3390/polym13244425. 45. TA Instruments. Using the DMA Q800 for ASTM international D 648 deflection temperature under load. New Castle, DE: TA Instruments. https://www.tainstruments.com/pdf/literature/RH086 _Using_Q800_for_ASTM_D468.pdf 46. Stevens M. Polymer chemistry: an introduction. New York, NY: Oxford University Press, 1999. 47. Saba N, Jawaid M, Alothman OY, et al. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 2016; 106: 149–159. |
dc.rights.eng.fl_str_mv |
Derechos reservados - Sage, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Sage, 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
22 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Sage |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/af265d33-0c2c-4a1d-9e13-429bc370b33e/download https://red.uao.edu.co/bitstreams/04ba3fc0-a0c8-45ea-ac77-3272ed6eb963/download https://red.uao.edu.co/bitstreams/d45bf48d-07d4-4326-a5b5-2426f63f180d/download https://red.uao.edu.co/bitstreams/26b894f0-1a6d-4402-b33d-33e5cb462fb6/download |
bitstream.checksum.fl_str_mv |
7d22e8296619f28f83094d0272e18949 6987b791264a2b5525252450f99b10d1 7a21a6188a7a89631156a05dd0a09dc1 2f9ffb7c015fe745f387a096f352f91a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1831928800761348096 |
spelling |
Correa-Aguirre, Juan P.García-Navarro, SerafínRoca-Blay, LuisHidalgo Salazar, Miguel Ángelvirtual::5759-12024-11-13T12:44:43Z2024-11-13T12:44:43Z2023Hidalgo-Salazar, M. A.; Correa-Aguirre, J. P.; García-Navarro, S. y Roca-Blay, L. (2023). Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-products. Journal of Reinforced Plastics and Composites. 0(0). 22 p. https://doi.org/10.1177/0731684423121040415307964https://hdl.handle.net/10614/15887https://doi.org/10.1177/07316844231210404Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/The surface temperature of the mold is a critical processing parameter that significantly influences the quality of composites during injection molding. Therefore, this study aimed to investigate the effect of mold surface temperature on the properties of hybrid biocomposite materials prepared by incorporating polypropylene-PP with agro-industrial by-products such as rice husks-RH and fique powder-FP using co-rotating twin-screw extrusion and injection molding. While this article focuses on PP as the polymeric matrix, the methodology employed in this study can also be applied to investigate the effect of mold surface temperature on the properties of other polymers used in the production of hybrid composites via injection molding as biobased or biodegradable plastics. The mechanical characterization reveals that the utilization of higher mold temperatures and the hybridization of RH and FP result in an increase in the elastic modulus of up to 30% compared to PP. Also, thermal, viscoelastic, morphological, and HDT characterization revealed that higher surface mold temperature led to changes in PP crystallinity, and a better hybrid biocomposites performance. This study highlights the potential of mold surface temperature controlling and agro-industrial by-products hybridization for the design and production of higher quality and sustainable products using injection molding22 páginasapplication/pdfengSageDerechos reservados - Sage, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Effect of mold temperature on properties of hybrid biocomposites from semicrystalline polymers and agro-industrial by-productsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8522010The Journal of Reinforced Plastics and Composites1. Farahani S, Khade V, Basu S, et al. A data-driven predictive maintenance framework for injection molding process. J Manuf Process 2022; 80: 887–897. 2. Catoen B and Rees H. 5-Factors affecting the design of an injection mold. In: Catoen B, Rees H and BT-IMDH (eds) Munich, Germany: Hanser, 2021, pp. 151–169. 3. Lerma V, JR. Chapter 2 - thermodynamic behavior of plastics: PVT graphs. In: Lerma V, JR and BT-PIM (eds). Munich, Germany: Hanser, 2020, pp. 25–34. 4. Catoen B and Rees H. 15-selection of mold materials. In: Catoen B, Rees H and BT-IMDH (eds) Munich, Germany: Hanser, 2014, pp. 549–563. 5. Annicchiarico D and Alcock JR. Review of factors that affect shrinkage of molded part in injection molding. Mater Manuf Process 2014; 29: 662–682. 6. Kuram E, Timur G, Ozcelik B, et al. Influences of injection conditions on strength properties of recycled and virgin PBT/ PC/ABS. Mater Manuf Process 2014; 29: 1260–1268. 7. Chen S-C, Chang Y, Chang Y-P, et al. Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts. Int Commun Heat Mass Tran 2009; 36: 1030–1035. 8. Feldmann M. The effects of the injection moulding temperature on the mechanical properties and morphology of polypropylene man-made cellulose fibre composites. Compos Part A Appl Sci Manuf 2016; 87: 146–152. 9. Chen S-C, Lin Y-W, Chien R-D, et al. Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology. Adv Polym Technol 2008; 27: 224–232. 10. Berger GR, Pacher GA, Pichler A, et al. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding. In Proceedings of PPS 2013 - 29th International Conference of the Polymer Processing Society, Conference Papers. Vol. 1593. American Institute of Physics Inc. 2014. p. 189-194 11. Karagoz¨ ˙I. An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials. Polym Bull 2021; 78: 2627–2644. 12. Liparoti S, Speranza V, Sorrentino A, et al. Mechanical properties distribution within polypropylene injection molded samples: effect of mold temperature under uneven thermal conditions. Polymers 2017; 9. Epub ahead of print 2017. DOI: 10.3390/polym9110585. 13. Lucchetta G, Fiorotto M and Bariani PF. Influence of rapid mold temperature variation on surface topography replication and appearance of injection-molded parts. CIRPAnn 2012; 61: 539–542. 14. Guilong W, Guoqun Z, Huiping L, et al. Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process. Mater Des 2010; 31: 3426–3441. 15. Gurunathan T, Mohanty S and Nayak SK. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Appl Sci Manuf 2015; 77: 1–25. 16. Hidalgo-Salazar MA and Salinas E. Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Compos Part B Eng 2019; 176: 107135. 17. Hidalgo-Salazar MA, Correa-Aguirre JP, Garc´ıa-Navarro S, et al. Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and threedimensional microscopy study. Polymers 2020; 12: 1507. 18. Burgstaller C. A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Compos Part B Eng 2014; 67: 192–198. 19. Gigante V, Cinelli P, Sandroni M, et al. On the use of paper sludge as filler in biocomposites for injection moulding. Materials 2021; 14: 2688. 20. Chaitanya S, Singh I and Song JI. Recyclability analysis of PLA/sisal fiber biocomposites. Compos Part B Eng 2019; 173: 106895. 21. Chaitanya S and Singh I. Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Mater Manuf Process 2017; 32: 468–474. 22. Pawłowska A, Stepczynska M and Walczak M. Flax ´ fibres modified with a natural plant agent used as a reinforcement for the polylactide-based biocomposites. Ind Crops Prod 2022; 184: 115061. 23. Correa JP, Montalvo-Navarrete JM and Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2019; 208: 785–794. Epub ahead of print 12 October 2018. DOI: 10. 1016/J.JCLEPRO.2018.10.099. 24. Lewis R, Weldekidan H, Rodriguez AU, et al. Design and engineering of sustainable biocomposites from ocean-recycled polypropylene-based polyolefins reinforced with almond shell and hull. Compos Part C Open Access 2023; 12: 100373. Epub ahead of print 2023. DOI: 10.1016/j.jcomc.2023.100373. 25. Root KP, Pal AK, Pesaranhajiabbas E, et al. Injection moulded composites from high biomass filled biodegradable plastic: properties and performance evaluation for single-use applications. Compos Part C Open Access 2023; 11: 100358. Epub ahead of print 2023. DOI: 10.1016/j. jcomc.2023.100358. 26. Ben Hamou K, Kaddami H, Elisabete F, et al. Synergistic association of wood/hemp fibers reinforcements on mechanical, physical and thermal properties of polypropylene-based hybrid composites. Ind Crops Prod 2023; 192: 116052. Epub ahead of print 2023. DOI: 10.1016/j.indcrop.2022.116052. 27. Hidalgo-Salazar MA and Correa JP. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results Phys 2018; 8: 461–467. 28. Montalvo Navarrete JI, Hidalgo-Salazar MA, Escobar Nunez E, et al. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf 2018; 12: 449–458. 29. Centeno-Mesa N, Lombana-Toro O, Correa-Aguirre JP, et al. Effect of fique fibers and its processing by-products on morphology, thermal and mechanical properties of epoxy based biocomposites. Sci Rep 2022; 12: 1–11. 30. Ramesh M, Palanikumar K and Reddy KH. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 2017; 79: 558–584. 31. Mochane MJ, Mokhena TC, Mokhothu TH, et al. Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 2019; 13: 159–198. 32. Vais ¨ anen T, Das O and Tomppo L. A review on new bio-based ¨ constituents for natural fiber-polymer composites. J Clean Prod 2017; 149: 582–596. 33. Andrzejewski J, Barczewski M and Szostak M. Injection molding of highly filled polypropylene-based biocomposites. Buckwheat husk and wood flour filler: a comparison of agricultural and wood industry waste utilization. Polymers 2019; 11: 1881. 34. Correa-Aguirre JP, Luna-Vera F, Caicedo C, et al. The effects of reprocessing and fiber treatments on the properties of polypropylene-sugarcane bagasse biocomposites. Polymers 2020; 12: 1440. 35. ASTM D5857-17. standard specification for polypropylene injection and extrusion materials using ISO protocol and methodology. ASTM, 2017. 36. Keyence. Wide-area 3D measurement system VR-3000 series features. Osaka, Japan: Keyence, 2023. https://www.keyence. eu/ss/products/microscope/vr/feature/ 37. ASTM D638-14 standard test method for tensile properties of plastics, ASTM 2014. 38. ASTM D790 -17.standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM, 2017. 39. ASTM. D648-18 standard test method for deflection temperature of plastics under flexural load in the edgewise position. ASTM. 2018. 40. ASTM. D5023-15 standard test method for plastics: dynamic mechanical properties: in flexure (three-point bending). ASTM. 2015. 41. Franciszczak P, Wojnowski J, Kalnin¸s K, et al. The in ˇ fluence of matrix crystallinity on the mechanical performance of short-fibre composites – based on homo-polypropylene and a random polypropylene copolymer reinforced with man-made cellulose and glass fibres. Compos Part B Eng 2019; 166: 516–526. 42. Lascano D, Aljaro C, Fages E, et al. Study of the mechanical properties of polylactide composites with jute reinforcements. Green Mater 2023; 11: 69–78. Epub ahead of print 2022. DOI: 10.1680/jgrma.21.00060. 43. Xu H, Liu CY, Chen C, et al. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Biopolymers 2012; 97: 825–839. 44. Neto JSS, de Queiroz HFM, Aguiar RAA, et al. A review on the thermal characterisation of natural and hybrid fiber composites. Polymers 2021; 13. Epub ahead of print 2021. DOI: 10.3390/polym13244425. 45. TA Instruments. Using the DMA Q800 for ASTM international D 648 deflection temperature under load. New Castle, DE: TA Instruments. https://www.tainstruments.com/pdf/literature/RH086 _Using_Q800_for_ASTM_D468.pdf 46. Stevens M. Polymer chemistry: an introduction. New York, NY: Oxford University Press, 1999. 47. Saba N, Jawaid M, Alothman OY, et al. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 2016; 106: 149–159.Agro-industrial by-productsDynamic Mechanical AnalysisHybrid biocompositesMold surface temperatureSemicrystalline polymersTwo-way ANOVAComunidad generalPublication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::5759-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::5759-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::5759-10000-0002-6907-2091virtual::5759-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::5759-1ORIGINALEffect_of_mold_temperature_on_properties_of_hybrid_biocomposites_from_semicrystalline_polymers_and_agro-industrial_by-products.pdfEffect_of_mold_temperature_on_properties_of_hybrid_biocomposites_from_semicrystalline_polymers_and_agro-industrial_by-products.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf4536913https://red.uao.edu.co/bitstreams/af265d33-0c2c-4a1d-9e13-429bc370b33e/download7d22e8296619f28f83094d0272e18949MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/04ba3fc0-a0c8-45ea-ac77-3272ed6eb963/download6987b791264a2b5525252450f99b10d1MD52TEXTEffect_of_mold_temperature_on_properties_of_hybrid_biocomposites_from_semicrystalline_polymers_and_agro-industrial_by-products.pdf.txtEffect_of_mold_temperature_on_properties_of_hybrid_biocomposites_from_semicrystalline_polymers_and_agro-industrial_by-products.pdf.txtExtracted texttext/plain74496https://red.uao.edu.co/bitstreams/d45bf48d-07d4-4326-a5b5-2426f63f180d/download7a21a6188a7a89631156a05dd0a09dc1MD53THUMBNAILEffect_of_mold_temperature_on_properties_of_hybrid_biocomposites_from_semicrystalline_polymers_and_agro-industrial_by-products.pdf.jpgEffect_of_mold_temperature_on_properties_of_hybrid_biocomposites_from_semicrystalline_polymers_and_agro-industrial_by-products.pdf.jpgGenerated Thumbnailimage/jpeg16162https://red.uao.edu.co/bitstreams/26b894f0-1a6d-4402-b33d-33e5cb462fb6/download2f9ffb7c015fe745f387a096f352f91aMD5410614/15887oai:red.uao.edu.co:10614/158872024-11-16 03:01:55.929https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Sage, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |