Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
This work proposes the slope of the phase spectrum as a signal processing parameter for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 ◦C, 25 ◦C, and 30 ◦C, were carried...
- Autores:
-
Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Lemos Durán, Alberto
Buiochi, Flávio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/14754
- Acceso en línea:
- https://hdl.handle.net/10614/14754
https://red.uao.edu.co/
- Palabra clave:
- Mezclas
Mixtures
Ultrasound
Backscattering
Phase slope
Volume fraction
Water–petroleum emulsion
- Rights
- openAccess
- License
- Derechos reservados - MDPI, 2022
id |
REPOUAO2_cfcb2d862b63e3db29fe3b848cdbf98e |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/14754 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum |
title |
Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum |
spellingShingle |
Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum Mezclas Mixtures Ultrasound Backscattering Phase slope Volume fraction Water–petroleum emulsion |
title_short |
Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum |
title_full |
Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum |
title_fullStr |
Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum |
title_full_unstemmed |
Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum |
title_sort |
Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum |
dc.creator.fl_str_mv |
Franco Guzmán, Ediguer Enrique Reyna, Carlos A. B. Lemos Durán, Alberto Buiochi, Flávio |
dc.contributor.author.none.fl_str_mv |
Franco Guzmán, Ediguer Enrique Reyna, Carlos A. B. Lemos Durán, Alberto Buiochi, Flávio |
dc.subject.armarc.spa.fl_str_mv |
Mezclas |
topic |
Mezclas Mixtures Ultrasound Backscattering Phase slope Volume fraction Water–petroleum emulsion |
dc.subject.armarc.eng.fl_str_mv |
Mixtures |
dc.subject.proposal.eng.fl_str_mv |
Ultrasound Backscattering Phase slope Volume fraction Water–petroleum emulsion |
description |
This work proposes the slope of the phase spectrum as a signal processing parameter for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 ◦C, 25 ◦C, and 30 ◦C, were carried out using ultrasonic measurement devices operating in transmission–reception and backscattering modes. The results show the phase slope depends on the water volume fraction and, to a lesser extent, on the size of the emulsion droplets, leading to a stable behavior over time. Conversely, the behavior of the phase slope as a function of the volume fraction is monotonic with low dispersion. Fitting a power function to the experimental data provides calibration curves that can be used to determine the water content with percentage relative error up to 70% for a water volume fraction of 0.06, but less than 10% for water volume fractions greater than 0.06. Furthermore, the methodology works over a wide range of volume fractions. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-09 |
dc.date.accessioned.none.fl_str_mv |
2023-05-17T16:44:34Z |
dc.date.available.none.fl_str_mv |
2023-05-17T16:44:34Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
14248220 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/14754 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital UAO |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
14248220 Universidad Autónoma de Occidente Repositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/14754 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
19 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
22 |
dc.relation.cites.spa.fl_str_mv |
Franco, E.E.; Reyna, C.A.B.; Durán, A.L.; Buiochi, F. Ultrasonic Monitoring of the Water Content in Concentrated Water–Petroleum Emulsions Using the Slope of the Phase Spectrum. Sensors, 22(19), 1-11. https://hdl.handle.net/10614/14754 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Sensors |
dc.relation.references.none.fl_str_mv |
Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690. Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; Van den Mooter, G. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195 Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil-Water Interfaces. Langmuir 2009, 25, 3985–3990 Åbro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108 Harhira, A.; Haddad, J.E.; Sabsabi, M.; Blouin, A. Evaluation of LIBS technique for rapid determination of total clays in oil sands ores. In Proceedings of the OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), Washington, DC, USA, 19–23 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. AM5D.5. [ Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127 Pinfield, V.J. Advances in ultrasonic monitoring of oil-in-water emulsions. Food Hydrocoll. 2014, 42, 48–55. Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714. Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088 Wormley, S.J.; Forouraghi, K.; Li, Y.; Thompson, R.B.; Papadakis, E.P. Application of a fourier transform-phase-slope technique to the design of an instrument for the ultrasonic measurement of texture and stress. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1990; pp. 951–958 Fariñas, M.D.; Sancho-Knapik, D.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T.E. Contact-less, non-resonant and high-frequency ultrasonic technique: Towards a universal tool for plant leaf study. Comput. Electron. Agric. 2022, 199, 107160. Amioka, N.; Takaya, Y.; Nakamura, K.; Kondo, M.; Akazawa, K.; Ohno, Y.; Ichikawa, K.; Nakayama, R.; Saito, Y.; Akagi, S.; et al. Impact of shear wave dispersion slope analysis for assessing the severity of myocarditis. Sci. Rep. 2022, 12, 8776 Oppenheim, A.V.; Willsky, A.S. Signals and Systems, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 1996 Hart, A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J. Pet. Explor. Prod. Technol. 2014, 4, 327–336 Ashrafizadeh, S.; Kamran, M. Emulsification of heavy crude oil in water for pipeline transportation. J. Pet. Sci. Eng. 2010, 71, 205–211. |
dc.rights.spa.fl_str_mv |
Derechos reservados - MDPI, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - MDPI, 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.spa.fl_str_mv |
Basel, Suiza |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/492b9f0e-2733-44f5-b2f6-927f7da03b36/download https://red.uao.edu.co/bitstreams/58b9f855-9094-4101-bb90-0a2cd27c43a0/download https://red.uao.edu.co/bitstreams/d1c616a0-a07f-4e3d-bbd6-6782b558dc82/download https://red.uao.edu.co/bitstreams/e7c7ff2a-9be8-438a-bc70-c56e9f0fb602/download |
bitstream.checksum.fl_str_mv |
01b514bc8ca9f74cadf19e63d6302862 20b5ba22b1117f71589c7318baa2c560 2a3e6d10dd87b12f7b2c4062dbafc6b7 2a0b89131ec78265148638d0cb929ef9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260209300799488 |
spelling |
Franco Guzmán, Ediguer Enriquevirtual::1800-1Reyna, Carlos A. B.7463ba4df51ebf5d1196d3e38f8eb0e8Lemos Durán, Albertofbf4ad7894fb45118f72b654eba42e17Buiochi, Fláviob1bdb982d63e34285277106ac50141c52023-05-17T16:44:34Z2023-05-17T16:44:34Z2022-0914248220https://hdl.handle.net/10614/14754Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/This work proposes the slope of the phase spectrum as a signal processing parameter for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 ◦C, 25 ◦C, and 30 ◦C, were carried out using ultrasonic measurement devices operating in transmission–reception and backscattering modes. The results show the phase slope depends on the water volume fraction and, to a lesser extent, on the size of the emulsion droplets, leading to a stable behavior over time. Conversely, the behavior of the phase slope as a function of the volume fraction is monotonic with low dispersion. Fitting a power function to the experimental data provides calibration curves that can be used to determine the water content with percentage relative error up to 70% for a water volume fraction of 0.06, but less than 10% for water volume fractions greater than 0.06. Furthermore, the methodology works over a wide range of volume fractions.11 páginasapplication/pdfengMDPIBasel, SuizaDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrumArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85MezclasMixturesUltrasoundBackscatteringPhase slopeVolume fractionWater–petroleum emulsion1119122Franco, E.E.; Reyna, C.A.B.; Durán, A.L.; Buiochi, F. Ultrasonic Monitoring of the Water Content in Concentrated Water–Petroleum Emulsions Using the Slope of the Phase Spectrum. Sensors, 22(19), 1-11. https://hdl.handle.net/10614/14754SensorsUmar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690.Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; Van den Mooter, G. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil-Water Interfaces. Langmuir 2009, 25, 3985–3990Åbro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108Harhira, A.; Haddad, J.E.; Sabsabi, M.; Blouin, A. Evaluation of LIBS technique for rapid determination of total clays in oil sands ores. In Proceedings of the OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), Washington, DC, USA, 19–23 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. AM5D.5. [Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127Pinfield, V.J. Advances in ultrasonic monitoring of oil-in-water emulsions. Food Hydrocoll. 2014, 42, 48–55.Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714.Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088Wormley, S.J.; Forouraghi, K.; Li, Y.; Thompson, R.B.; Papadakis, E.P. Application of a fourier transform-phase-slope technique to the design of an instrument for the ultrasonic measurement of texture and stress. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1990; pp. 951–958Fariñas, M.D.; Sancho-Knapik, D.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T.E. Contact-less, non-resonant and high-frequency ultrasonic technique: Towards a universal tool for plant leaf study. Comput. Electron. Agric. 2022, 199, 107160.Amioka, N.; Takaya, Y.; Nakamura, K.; Kondo, M.; Akazawa, K.; Ohno, Y.; Ichikawa, K.; Nakayama, R.; Saito, Y.; Akagi, S.; et al. Impact of shear wave dispersion slope analysis for assessing the severity of myocarditis. Sci. Rep. 2022, 12, 8776Oppenheim, A.V.; Willsky, A.S. Signals and Systems, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 1996Hart, A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J. Pet. Explor. Prod. Technol. 2014, 4, 327–336Ashrafizadeh, S.; Kamran, M. Emulsification of heavy crude oil in water for pipeline transportation. J. Pet. Sci. Eng. 2010, 71, 205–211.Comunidad universitaria en generalPublicationff78380a-274b-4973-8760-dee857b38a0dvirtual::1800-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1800-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1800-10000-0001-7518-704Xvirtual::1800-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1800-1ORIGINALUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdfUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdftexto completo del artículoapplication/pdf583793https://red.uao.edu.co/bitstreams/492b9f0e-2733-44f5-b2f6-927f7da03b36/download01b514bc8ca9f74cadf19e63d6302862MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/58b9f855-9094-4101-bb90-0a2cd27c43a0/download20b5ba22b1117f71589c7318baa2c560MD52TEXTUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdf.txtUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdf.txtExtracted texttext/plain37690https://red.uao.edu.co/bitstreams/d1c616a0-a07f-4e3d-bbd6-6782b558dc82/download2a3e6d10dd87b12f7b2c4062dbafc6b7MD53THUMBNAILUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdf.jpgUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdf.jpgGenerated Thumbnailimage/jpeg16065https://red.uao.edu.co/bitstreams/e7c7ff2a-9be8-438a-bc70-c56e9f0fb602/download2a0b89131ec78265148638d0cb929ef9MD5410614/14754oai:red.uao.edu.co:10614/147542024-04-08 15:09:09.396https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |