Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum

This work proposes the slope of the phase spectrum as a signal processing parameter for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 ◦C, 25 ◦C, and 30 ◦C, were carried...

Full description

Autores:
Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Lemos Durán, Alberto
Buiochi, Flávio
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14754
Acceso en línea:
https://hdl.handle.net/10614/14754
https://red.uao.edu.co/
Palabra clave:
Mezclas
Mixtures
Ultrasound
Backscattering
Phase slope
Volume fraction
Water–petroleum emulsion
Rights
openAccess
License
Derechos reservados - MDPI, 2022
id REPOUAO2_cfcb2d862b63e3db29fe3b848cdbf98e
oai_identifier_str oai:red.uao.edu.co:10614/14754
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
title Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
spellingShingle Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
Mezclas
Mixtures
Ultrasound
Backscattering
Phase slope
Volume fraction
Water–petroleum emulsion
title_short Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
title_full Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
title_fullStr Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
title_full_unstemmed Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
title_sort Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrum
dc.creator.fl_str_mv Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Lemos Durán, Alberto
Buiochi, Flávio
dc.contributor.author.none.fl_str_mv Franco Guzmán, Ediguer Enrique
Reyna, Carlos A. B.
Lemos Durán, Alberto
Buiochi, Flávio
dc.subject.armarc.spa.fl_str_mv Mezclas
topic Mezclas
Mixtures
Ultrasound
Backscattering
Phase slope
Volume fraction
Water–petroleum emulsion
dc.subject.armarc.eng.fl_str_mv Mixtures
dc.subject.proposal.eng.fl_str_mv Ultrasound
Backscattering
Phase slope
Volume fraction
Water–petroleum emulsion
description This work proposes the slope of the phase spectrum as a signal processing parameter for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 ◦C, 25 ◦C, and 30 ◦C, were carried out using ultrasonic measurement devices operating in transmission–reception and backscattering modes. The results show the phase slope depends on the water volume fraction and, to a lesser extent, on the size of the emulsion droplets, leading to a stable behavior over time. Conversely, the behavior of the phase slope as a function of the volume fraction is monotonic with low dispersion. Fitting a power function to the experimental data provides calibration curves that can be used to determine the water content with percentage relative error up to 70% for a water volume fraction of 0.06, but less than 10% for water volume fractions greater than 0.06. Furthermore, the methodology works over a wide range of volume fractions.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09
dc.date.accessioned.none.fl_str_mv 2023-05-17T16:44:34Z
dc.date.available.none.fl_str_mv 2023-05-17T16:44:34Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 14248220
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14754
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 14248220
Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
url https://hdl.handle.net/10614/14754
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 19
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 22
dc.relation.cites.spa.fl_str_mv Franco, E.E.; Reyna, C.A.B.; Durán, A.L.; Buiochi, F. Ultrasonic Monitoring of the Water Content in Concentrated Water–Petroleum Emulsions Using the Slope of the Phase Spectrum. Sensors, 22(19), 1-11. https://hdl.handle.net/10614/14754
dc.relation.ispartofjournal.eng.fl_str_mv Sensors
dc.relation.references.none.fl_str_mv Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690.
Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; Van den Mooter, G. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195
Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil-Water Interfaces. Langmuir 2009, 25, 3985–3990
Åbro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108
Harhira, A.; Haddad, J.E.; Sabsabi, M.; Blouin, A. Evaluation of LIBS technique for rapid determination of total clays in oil sands ores. In Proceedings of the OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), Washington, DC, USA, 19–23 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. AM5D.5. [
Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127
Pinfield, V.J. Advances in ultrasonic monitoring of oil-in-water emulsions. Food Hydrocoll. 2014, 42, 48–55.
Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714.
Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088
Wormley, S.J.; Forouraghi, K.; Li, Y.; Thompson, R.B.; Papadakis, E.P. Application of a fourier transform-phase-slope technique to the design of an instrument for the ultrasonic measurement of texture and stress. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1990; pp. 951–958
Fariñas, M.D.; Sancho-Knapik, D.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T.E. Contact-less, non-resonant and high-frequency ultrasonic technique: Towards a universal tool for plant leaf study. Comput. Electron. Agric. 2022, 199, 107160.
Amioka, N.; Takaya, Y.; Nakamura, K.; Kondo, M.; Akazawa, K.; Ohno, Y.; Ichikawa, K.; Nakayama, R.; Saito, Y.; Akagi, S.; et al. Impact of shear wave dispersion slope analysis for assessing the severity of myocarditis. Sci. Rep. 2022, 12, 8776
Oppenheim, A.V.; Willsky, A.S. Signals and Systems, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 1996
Hart, A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J. Pet. Explor. Prod. Technol. 2014, 4, 327–336
Ashrafizadeh, S.; Kamran, M. Emulsification of heavy crude oil in water for pipeline transportation. J. Pet. Sci. Eng. 2010, 71, 205–211.
dc.rights.spa.fl_str_mv Derechos reservados - MDPI, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - MDPI, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Basel, Suiza
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/492b9f0e-2733-44f5-b2f6-927f7da03b36/download
https://red.uao.edu.co/bitstreams/58b9f855-9094-4101-bb90-0a2cd27c43a0/download
https://red.uao.edu.co/bitstreams/d1c616a0-a07f-4e3d-bbd6-6782b558dc82/download
https://red.uao.edu.co/bitstreams/e7c7ff2a-9be8-438a-bc70-c56e9f0fb602/download
bitstream.checksum.fl_str_mv 01b514bc8ca9f74cadf19e63d6302862
20b5ba22b1117f71589c7318baa2c560
2a3e6d10dd87b12f7b2c4062dbafc6b7
2a0b89131ec78265148638d0cb929ef9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260209300799488
spelling Franco Guzmán, Ediguer Enriquevirtual::1800-1Reyna, Carlos A. B.7463ba4df51ebf5d1196d3e38f8eb0e8Lemos Durán, Albertofbf4ad7894fb45118f72b654eba42e17Buiochi, Fláviob1bdb982d63e34285277106ac50141c52023-05-17T16:44:34Z2023-05-17T16:44:34Z2022-0914248220https://hdl.handle.net/10614/14754Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/This work proposes the slope of the phase spectrum as a signal processing parameter for the ultrasonic monitoring of the water content of water-in-crude oil emulsions. Experimental measurements, with water volume fractions from 0 to 0.48 and test temperatures of 20 ◦C, 25 ◦C, and 30 ◦C, were carried out using ultrasonic measurement devices operating in transmission–reception and backscattering modes. The results show the phase slope depends on the water volume fraction and, to a lesser extent, on the size of the emulsion droplets, leading to a stable behavior over time. Conversely, the behavior of the phase slope as a function of the volume fraction is monotonic with low dispersion. Fitting a power function to the experimental data provides calibration curves that can be used to determine the water content with percentage relative error up to 70% for a water volume fraction of 0.06, but less than 10% for water volume fractions greater than 0.06. Furthermore, the methodology works over a wide range of volume fractions.11 páginasapplication/pdfengMDPIBasel, SuizaDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Ultrasonic monitoring of the water content in concentrated water–petroleum emulsions using the slope of the phase spectrumArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85MezclasMixturesUltrasoundBackscatteringPhase slopeVolume fractionWater–petroleum emulsion1119122Franco, E.E.; Reyna, C.A.B.; Durán, A.L.; Buiochi, F. Ultrasonic Monitoring of the Water Content in Concentrated Water–Petroleum Emulsions Using the Slope of the Phase Spectrum. Sensors, 22(19), 1-11. https://hdl.handle.net/10614/14754SensorsUmar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018, 165, 673–690.Goddeeris, C.; Cuppo, F.; Reynaers, H.; Bouwman, W.; Van den Mooter, G. Light scattering measurements on microemulsions: Estimation of droplet sizes. Int. J. Pharm. 2006, 312, 187–195Alvarez, G.; Jestin, J.; Argillier, J.F.; Langevin, D. Small-Angle Neutron Scattering Study of Crude Oil Emulsions: Structure of the Oil-Water Interfaces. Langmuir 2009, 25, 3985–3990Åbro, E.; Johansen, G. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108Harhira, A.; Haddad, J.E.; Sabsabi, M.; Blouin, A. Evaluation of LIBS technique for rapid determination of total clays in oil sands ores. In Proceedings of the OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), Washington, DC, USA, 19–23 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. AM5D.5. [Jaworski, A.J.; Dyakowski, T. Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors. Flow Meas. Instrum. 2005, 16, 113–127Pinfield, V.J. Advances in ultrasonic monitoring of oil-in-water emulsions. Food Hydrocoll. 2014, 42, 48–55.Shah, A.; Fishwick, R.; Wood, J.; Leeke, G.; Rigby, S.; Greaves, M. A review of novel techniques for heavy oil and bitumen extraction and upgrading. Energy Environ. Sci. 2010, 3, 700–714.Durán, A.L.; Franco, E.E.; Reyna, C.A.B.; Pérez, N.; Tsuzuki, M.S.G.; Buiochi, F. Water Content Monitoring in Water-in-Crude-Oil Emulsions Using an Ultrasonic Multiple-Backscattering Sensor. Sensors 2021, 21, 5088Wormley, S.J.; Forouraghi, K.; Li, Y.; Thompson, R.B.; Papadakis, E.P. Application of a fourier transform-phase-slope technique to the design of an instrument for the ultrasonic measurement of texture and stress. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1990; pp. 951–958Fariñas, M.D.; Sancho-Knapik, D.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T.E. Contact-less, non-resonant and high-frequency ultrasonic technique: Towards a universal tool for plant leaf study. Comput. Electron. Agric. 2022, 199, 107160.Amioka, N.; Takaya, Y.; Nakamura, K.; Kondo, M.; Akazawa, K.; Ohno, Y.; Ichikawa, K.; Nakayama, R.; Saito, Y.; Akagi, S.; et al. Impact of shear wave dispersion slope analysis for assessing the severity of myocarditis. Sci. Rep. 2022, 12, 8776Oppenheim, A.V.; Willsky, A.S. Signals and Systems, 2nd ed.; Pearson: Upper Saddle River, NJ, USA, 1996Hart, A. A review of technologies for transporting heavy crude oil and bitumen via pipelines. J. Pet. Explor. Prod. Technol. 2014, 4, 327–336Ashrafizadeh, S.; Kamran, M. Emulsification of heavy crude oil in water for pipeline transportation. J. Pet. Sci. Eng. 2010, 71, 205–211.Comunidad universitaria en generalPublicationff78380a-274b-4973-8760-dee857b38a0dvirtual::1800-1ff78380a-274b-4973-8760-dee857b38a0dvirtual::1800-1https://scholar.google.com/citations?user=4paPIoAAAAAJ&hl=esvirtual::1800-10000-0001-7518-704Xvirtual::1800-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001243730virtual::1800-1ORIGINALUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdfUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdftexto completo del artículoapplication/pdf583793https://red.uao.edu.co/bitstreams/492b9f0e-2733-44f5-b2f6-927f7da03b36/download01b514bc8ca9f74cadf19e63d6302862MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/58b9f855-9094-4101-bb90-0a2cd27c43a0/download20b5ba22b1117f71589c7318baa2c560MD52TEXTUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdf.txtUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdf.txtExtracted texttext/plain37690https://red.uao.edu.co/bitstreams/d1c616a0-a07f-4e3d-bbd6-6782b558dc82/download2a3e6d10dd87b12f7b2c4062dbafc6b7MD53THUMBNAILUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdf.jpgUltrasonic_Monitoring_of_the_Water_Content_in_Concentrated_Water_Petroleum_Emulsions.pdf.jpgGenerated Thumbnailimage/jpeg16065https://red.uao.edu.co/bitstreams/e7c7ff2a-9be8-438a-bc70-c56e9f0fb602/download2a0b89131ec78265148638d0cb929ef9MD5410614/14754oai:red.uao.edu.co:10614/147542024-04-08 15:09:09.396https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - MDPI, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K