Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
This research evaluated the effect of different delignification pretreatments (enzymatic and organosolv), on the crystallinity and enzymatic hydrolysis of harvested sugar cane residues. The Crystallinity Index (CrI), the Relative Number of Intensity (Ir), the degree of cellulose mercerization (IIC-%...
- Autores:
-
Flórez Pardo, Luz Marina
López Galán, Jorge Enrique
Salcedo Mendoza, Jairo G.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11573
- Acceso en línea:
- http://hdl.handle.net/10614/11573
https://doi.org/10.1590/0104-6632.20190361s20180093
- Palabra clave:
- Hidrólisis
Hydrolysis
Crystallinity index
Sugar cane
Organosolv pretreatment
Enzymatic hydrolysis
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_90fdd11ab0624c8c82a4473a7f09cf41 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11573 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues |
title |
Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues |
spellingShingle |
Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues Hidrólisis Hydrolysis Crystallinity index Sugar cane Organosolv pretreatment Enzymatic hydrolysis |
title_short |
Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues |
title_full |
Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues |
title_fullStr |
Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues |
title_full_unstemmed |
Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues |
title_sort |
Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues |
dc.creator.fl_str_mv |
Flórez Pardo, Luz Marina López Galán, Jorge Enrique Salcedo Mendoza, Jairo G. |
dc.contributor.author.none.fl_str_mv |
Flórez Pardo, Luz Marina López Galán, Jorge Enrique Salcedo Mendoza, Jairo G. |
dc.subject.armarc.spa.fl_str_mv |
Hidrólisis |
topic |
Hidrólisis Hydrolysis Crystallinity index Sugar cane Organosolv pretreatment Enzymatic hydrolysis |
dc.subject.armarc.eng.fl_str_mv |
Hydrolysis |
dc.subject.proposal.eng.fl_str_mv |
Crystallinity index Sugar cane Organosolv pretreatment Enzymatic hydrolysis |
description |
This research evaluated the effect of different delignification pretreatments (enzymatic and organosolv), on the crystallinity and enzymatic hydrolysis of harvested sugar cane residues. The Crystallinity Index (CrI), the Relative Number of Intensity (Ir), the degree of cellulose mercerization (IIC-%), and the Global Index of Saccharification (GIS) were used as measurement parameters for six different substrates obtained from sugar cane residues (tops and leaves) by different processes. In this characterization, the spectroscopic ty Techniques of Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction and scanning eElectron microscopy (SEM) were used. Substrates to which only organosolv pretreatment was applied, without any further treatment, presented good behavior for the enzymatic hydrolysis and a high CrI, possibly due to the increase of the crystallinity by elimination of amorphous material |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-26T15:39:08Z |
dc.date.available.none.fl_str_mv |
2019-11-26T15:39:08Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0104-6632 (en línea) 1678-4383 (impresa) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11573 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1590/0104-6632.20190361s20180093 |
identifier_str_mv |
0104-6632 (en línea) 1678-4383 (impresa) |
url |
http://hdl.handle.net/10614/11573 https://doi.org/10.1590/0104-6632.20190361s20180093 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
141 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
131 |
dc.relation.citationvolume.none.fl_str_mv |
36 |
dc.relation.cites.none.fl_str_mv |
Flórez Pardo, L. M., Salcedo Mendoza, J. G., & López Galán, J. E. (2019). Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues. Brazilian Journal of Chemical Engineering, 36(1), 131-141. dx.doi.org/10.1590/0104-6632.20190361s20180093 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Brazilian Journal of Chemical Engineering |
dc.relation.references.none.fl_str_mv |
Alves, L. V., Gurgel, M., Ramos, K., Da Silva, L.A., and Curvelo, A.P., Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products. 36, 560-571 (2012). https://doi.org/10.1016/j.indcrop.2011.11.009 Aro, N., Pakula, T., and Penttilä, M., Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. 29, 719-739 (2012). https://doi.org/10.1016/j.femsre.2004.11.006 Atalla, R.H., and Vanderhart, D.L., Native cellulose: A composite of two distinct crystalline forms. Science. 223, 283-285 (1984). https://doi.org/10.1126/science.223.4633.283 Bian, J., Peng, F., Peng, X-P., Xiao, X., Peng, P., and Xu, F., Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydrate Polymers, 100, 211-217 (2014). https://doi.org/10.1016/j.carbpol.2013.02.059 Bourbonnais, R., Paice, M.G., Reid, I.D., and Lanthier, R., Lignin Oxidation by Laccase Isozymes from Trametes versicolor and Role of the Mediator 2,2’-Azinobis(3-Ethylbenzthiazoline-6-Sulfonate) in Kraft Lignin Depolymerizatio. Applied and Environmental Microbiology. 65, p. 1876-1880 (1995) Cardona, C.A., Quintero, J.A., and Paz, I.C., Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology. 101, 4754-4766 (2010). https://doi.org/10.1016/j.biortech.2009.10.097 Carballo-Abreu, L.R., Orea-Igarza, U., and Cordero-Manchado, E. Composición química de tres maderas en la provincia de Pinar del Rio, Cuba a tres alturas del fuste comercial. Revista chapingo parte 2 y 3, serie forestales y ambiente, 57-52 (2004) Collard, F.X., and Blin, J. A., Review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev. 38, 594-608 (2014). https://doi.org/10.1016/j.rser.2014.06.013 Colom, X., Carrillo, F., Nogues, F., and Garriga, P., Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability, 80, 543-549 (2003). https://doi.org/10.1016/S0141-3910(03)00051-X Claassen, P. A. M., van Lier, J. B., López Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., de Vries, S. S., and Weusthuis, R. A., Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741-755 (1999). https://doi.org/10.1007/s002530051586 Cenicaña. Boletines diarios de la red meteorológica automatizada-RMA. Recuperado de http://www.cenicana.org/clima_/boletin_meteoro_diario.php. (2010) Ghose, T.K., Measure cellulose activities, Pure & Applied Chemistry. 59, 257-268 (1987). https://doi.org/10.1351/pac198759020257 Gupta, A., and Verma, J.P., Sustainable bioethanol production from agro-residues: a review renew. Sustain. Energ. Rev. 41, 550-567 (2015). https://doi.org/10.1016/j.rser.2014.08.032 Hall, M., Bansal, P., Lee, J.H., Realff, M.J., and Bommarius, A.S., Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS Journal. 277, 1571-1582 (2010). https://doi.org/10.1111/j.1742-4658.2010.07585.x Hall, M., Bansal, P., Lee, J.H., Realff, M. J., and Bommarius, A. S. Biological pretreatment of cellulose: Enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresource Technology . 102, 2910-2915 (2011). https://doi.org/10.1016/j.biortech.2010.11.010 Hsu, T-C., Guo, G-L., Chen, W-H., and Hwang, W.-S., Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology . 101, 4907-4913 (2010). https://doi.org/10.1016/j.biortech.2009.10.009 International Energy Agency. Sustainable Production of Second-Generation Biofuels. Paris. Of http://www.iea.org/books (2010) International Energy Agency. Key World Energy Statistics. Retrieved at ( Retrieved at (https://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_ 2015.pdf ), 9th September (2016) Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E., and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Applied Microbiology and Biotechnology . 81, 783-790 (2008). https://doi.org/10.1007/s00253-008-1753-2 Koo, B.-W., Min, B.-Ch., Gwak, K.-S., Lee, S.-M., Choi, J.-W., Yeo, H., and Choi, I.-G., Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy. 42, 24-32 (2012). https://doi.org/10.1016/j.biombioe.2012.03.012 Kumar, R., Singh, S., and Singh, O. V., Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology. 35, 377-391 (2008). https://doi.org/10.1007/s10295-008-0327-8 Langan, P., Nishiyama, Y., and Chanzy, H., X-ray structure of mercerized cellulose II at 1Å resolution. Biomacromolecules. 2, 410-416 (2001). https://doi.org/10.1021/bm005612q Laureano-Pérez, L., Teymouri, F., Alizadeh, H., and Dale, B. E., Understanding factors that limit enzymatic hydrolysis of biomass. Characterization of pretreated corn stover. Applied Biochemistry and Biotechnology. 121, 1081-1099 (2005). https://doi.org/10.1385/ABAB:124:1-3:1081 Manssikkamaki, P., Lahtinen, M., and Rissanen, K., The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: An X-ray powder diffraction study. Carbohydrate Polymers , 68, 35-43 (2007). https://doi.org/10.1016/j.carbpol.2006.07.010 Mesa, L., Gonzáles, E., Romero, E., Cara, I., Felissia, C., and Castro, E., Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Applied Energy. 87, 109-114 (2010). https://doi.org/10.1016/j.apenergy.2009.07.016 Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry. 31, 426- 428 (1959). https://doi.org/10.1021/ac60147a030 Mittal, A., Katahira, R., Himmel, M.E., and Johnson, D.K., Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnology for Biofuels. 4, 41-57 (2011). https://doi.org/10.1186/1754-6834-4-41 Mutis D., Deslignificación de los residuos de cosecha de la caña de azúcar usando alcohol y soda como catalizador. Cali: Universidad del Valle (Trabajo de Grado para optar al Título de Ingeniero Químico), Escuela de Ingeniería Química, 53 p., (2010) Park, S., Baker, J., Himmel, M., Parilla, P., and Johnson, D. K., Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels . 3, 1-10 (2010). https://doi.org/10.1186/1754-6834-3-10 Poletto, M., Pistor, V., Zeni, M., and Zattera, A., Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradability and Stability. 96, 679-685 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.12.007 Ranby B.G., The mercerization of cellulose. Acta Chemical Scandinavica, 6, 116-127 (1952) Rose J., The plant cell wall. Annual plant reviews. New York, USA: Blackwell publishing. CRC press. Cornell University Ithaca, 8, p.381 (2003) Salcedo M., J. G., López-Galán, J.E., and Flórez-Pardo, L.M., Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha de caña de azúcar. Dyna. 168, 182-190 (2011) Salcedo M., J. G., López-Galán, J.E., and Flórez-Pardo, L.M., Hidrólisis enzimática de la cosecha de caña de azúcar. Rev. Colomb. Biotecnol. 14, 171-181 (2012) Sánchez, A.M., Gütierrez, A.I., Muñoz, J.A., and Rivera, C. A., Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 5, 61-91 (2010) Sannigrahi, P., Miller, S. J., and Ragauskas, A. J., Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research. 345, 965-970 (2010). https://doi.org/10.1016/j.carres.2010.02.010 Segal, L., Creely, J.J., Martin, A.E., and Conrad, C.M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, Princeton. 29, 786-794 (1959). https://doi.org/10.1177/004051755902901003 Sharma, H.K., Xu, C. and Qin, W., Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valorization. 8, 1-17 (2017) Silva, R., Gonzáles, A., and Villar, J., Delignificación enzimática de pasta al sulfato de E. Globulus empleando lacasas fúngicas. Ciudad: Congreso Iberoamericano de Investigación en Celulosa y Papel, CIADICYP (2002) Sun, J.X., Sun, X.F., Zhao, H., and Sun, R.C., Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability . 84, 331-339 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.02.008 TAPPI, Technical Association of the Pulp and Paper Industries. The Permanganate Consumption of Pulp Materials. Tappi, p. 40, 691 (1957) Van Soest, P., Use of detergents in the Analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. Journal of the AOAC. 46, 829-835 (1983) Viera, R.G.P., Rodríguez, G.F., De Assuncao, R.M.N., Meireles, C., and De Oliveira, G., Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers 67, 182-18 (2007). https://doi.org/10.1016/j.carbpol.2006.05.007 Wada, M., Heux, L., and Sugiyama, J., Polymorphism of Cellulose I Family: Reinvestigation of Cellulose IVI. Biomacromolecules. 5, 1385-1391 (2004). https://doi.org/10.1021/bm0345357 Wen, F., Nair, U.N., and Zhao, H., Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Current Opinion in Biotechnology. 20, 412-419 (2009). https://doi.org/10.1016/j.copbio.2009.07.001 Zhang, J., Dongli, L., Zhang, X., and Yuguan, S., Solvent effect on carboxymethylation of cellulose. Journal of Applied Polymer Science. 49, 741-746 (1993). https://doi.org/10.1002/app.1993.070490420 Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., and Holladay, J. H., Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy & Fuels. 20, 807-811 (2006). https://doi.org/10.1021/ef050319a Zhu, L., O’Dwyer, J. P., Chang, V. S., Granda, C. B., and Holtzapple, M. T., Structural features affecting biomass enzymatic digestibility. Bioresource Technology . 99, 3817-3828 (2008). https://doi.org/10.1016/j.biortech.2007.07.033 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
páginas 131-141 |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí Valle del Cauca, Colombia |
dc.publisher.eng.fl_str_mv |
Brazilian Society of Chemical Engineering |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/317f6769-bc2b-4cc6-8426-63643c3273a4/download https://red.uao.edu.co/bitstreams/c89c496b-d5b2-4bfb-bae5-769b411dd65d/download https://red.uao.edu.co/bitstreams/cc85da14-0ef6-43a6-95e9-136a0f3a1842/download https://red.uao.edu.co/bitstreams/d488bbeb-9ac0-4d6d-a908-794830ba7a68/download https://red.uao.edu.co/bitstreams/ea0478ed-44ed-4007-818c-1f9324acce7c/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 a22e5819e9cf909341f9ee046c5e3ed3 6bcba79f71e86fcbfc00637264aabf4b 8f1ac933aa18d15bce5dcbfe666a8feb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259948987613184 |
spelling |
Flórez Pardo, Luz Marinavirtual::1693-1López Galán, Jorge Enriquec28f842fdc151536a90f2149d7bd6b1fSalcedo Mendoza, Jairo G.a559e9a130563ee161366aed485c1368Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-JamundíValle del Cauca, Colombia2019-11-26T15:39:08Z2019-11-26T15:39:08Z20190104-6632 (en línea)1678-4383 (impresa)http://hdl.handle.net/10614/11573https://doi.org/10.1590/0104-6632.20190361s20180093This research evaluated the effect of different delignification pretreatments (enzymatic and organosolv), on the crystallinity and enzymatic hydrolysis of harvested sugar cane residues. The Crystallinity Index (CrI), the Relative Number of Intensity (Ir), the degree of cellulose mercerization (IIC-%), and the Global Index of Saccharification (GIS) were used as measurement parameters for six different substrates obtained from sugar cane residues (tops and leaves) by different processes. In this characterization, the spectroscopic ty Techniques of Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction and scanning eElectron microscopy (SEM) were used. Substrates to which only organosolv pretreatment was applied, without any further treatment, presented good behavior for the enzymatic hydrolysis and a high CrI, possibly due to the increase of the crystallinity by elimination of amorphous materialapplication/pdfpáginas 131-141engBrazilian Society of Chemical EngineeringDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residuesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85HidrólisisHydrolysisCrystallinity indexSugar caneOrganosolv pretreatmentEnzymatic hydrolysis141113136Flórez Pardo, L. M., Salcedo Mendoza, J. G., & López Galán, J. E. (2019). Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues. Brazilian Journal of Chemical Engineering, 36(1), 131-141. dx.doi.org/10.1590/0104-6632.20190361s20180093Brazilian Journal of Chemical EngineeringAlves, L. V., Gurgel, M., Ramos, K., Da Silva, L.A., and Curvelo, A.P., Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products. 36, 560-571 (2012). https://doi.org/10.1016/j.indcrop.2011.11.009Aro, N., Pakula, T., and Penttilä, M., Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. 29, 719-739 (2012). https://doi.org/10.1016/j.femsre.2004.11.006Atalla, R.H., and Vanderhart, D.L., Native cellulose: A composite of two distinct crystalline forms. Science. 223, 283-285 (1984). https://doi.org/10.1126/science.223.4633.283Bian, J., Peng, F., Peng, X-P., Xiao, X., Peng, P., and Xu, F., Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydrate Polymers, 100, 211-217 (2014). https://doi.org/10.1016/j.carbpol.2013.02.059Bourbonnais, R., Paice, M.G., Reid, I.D., and Lanthier, R., Lignin Oxidation by Laccase Isozymes from Trametes versicolor and Role of the Mediator 2,2’-Azinobis(3-Ethylbenzthiazoline-6-Sulfonate) in Kraft Lignin Depolymerizatio. Applied and Environmental Microbiology. 65, p. 1876-1880 (1995)Cardona, C.A., Quintero, J.A., and Paz, I.C., Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology. 101, 4754-4766 (2010). https://doi.org/10.1016/j.biortech.2009.10.097Carballo-Abreu, L.R., Orea-Igarza, U., and Cordero-Manchado, E. Composición química de tres maderas en la provincia de Pinar del Rio, Cuba a tres alturas del fuste comercial. Revista chapingo parte 2 y 3, serie forestales y ambiente, 57-52 (2004)Collard, F.X., and Blin, J. A., Review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev. 38, 594-608 (2014). https://doi.org/10.1016/j.rser.2014.06.013Colom, X., Carrillo, F., Nogues, F., and Garriga, P., Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability, 80, 543-549 (2003). https://doi.org/10.1016/S0141-3910(03)00051-XClaassen, P. A. M., van Lier, J. B., López Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., de Vries, S. S., and Weusthuis, R. A., Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741-755 (1999). https://doi.org/10.1007/s002530051586Cenicaña. Boletines diarios de la red meteorológica automatizada-RMA. Recuperado de http://www.cenicana.org/clima_/boletin_meteoro_diario.php. (2010)Ghose, T.K., Measure cellulose activities, Pure & Applied Chemistry. 59, 257-268 (1987). https://doi.org/10.1351/pac198759020257Gupta, A., and Verma, J.P., Sustainable bioethanol production from agro-residues: a review renew. Sustain. Energ. Rev. 41, 550-567 (2015). https://doi.org/10.1016/j.rser.2014.08.032Hall, M., Bansal, P., Lee, J.H., Realff, M.J., and Bommarius, A.S., Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS Journal. 277, 1571-1582 (2010). https://doi.org/10.1111/j.1742-4658.2010.07585.xHall, M., Bansal, P., Lee, J.H., Realff, M. J., and Bommarius, A. S. Biological pretreatment of cellulose: Enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresource Technology . 102, 2910-2915 (2011). https://doi.org/10.1016/j.biortech.2010.11.010Hsu, T-C., Guo, G-L., Chen, W-H., and Hwang, W.-S., Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology . 101, 4907-4913 (2010). https://doi.org/10.1016/j.biortech.2009.10.009International Energy Agency. Sustainable Production of Second-Generation Biofuels. Paris. Of http://www.iea.org/books (2010)International Energy Agency. Key World Energy Statistics. Retrieved at ( Retrieved at (https://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_ 2015.pdf ), 9th September (2016)Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E., and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Applied Microbiology and Biotechnology . 81, 783-790 (2008). https://doi.org/10.1007/s00253-008-1753-2Koo, B.-W., Min, B.-Ch., Gwak, K.-S., Lee, S.-M., Choi, J.-W., Yeo, H., and Choi, I.-G., Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy. 42, 24-32 (2012). https://doi.org/10.1016/j.biombioe.2012.03.012Kumar, R., Singh, S., and Singh, O. V., Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology. 35, 377-391 (2008). https://doi.org/10.1007/s10295-008-0327-8Langan, P., Nishiyama, Y., and Chanzy, H., X-ray structure of mercerized cellulose II at 1Å resolution. Biomacromolecules. 2, 410-416 (2001). https://doi.org/10.1021/bm005612qLaureano-Pérez, L., Teymouri, F., Alizadeh, H., and Dale, B. E., Understanding factors that limit enzymatic hydrolysis of biomass. Characterization of pretreated corn stover. Applied Biochemistry and Biotechnology. 121, 1081-1099 (2005). https://doi.org/10.1385/ABAB:124:1-3:1081Manssikkamaki, P., Lahtinen, M., and Rissanen, K., The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: An X-ray powder diffraction study. Carbohydrate Polymers , 68, 35-43 (2007). https://doi.org/10.1016/j.carbpol.2006.07.010Mesa, L., Gonzáles, E., Romero, E., Cara, I., Felissia, C., and Castro, E., Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Applied Energy. 87, 109-114 (2010). https://doi.org/10.1016/j.apenergy.2009.07.016Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry. 31, 426- 428 (1959). https://doi.org/10.1021/ac60147a030Mittal, A., Katahira, R., Himmel, M.E., and Johnson, D.K., Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnology for Biofuels. 4, 41-57 (2011). https://doi.org/10.1186/1754-6834-4-41Mutis D., Deslignificación de los residuos de cosecha de la caña de azúcar usando alcohol y soda como catalizador. Cali: Universidad del Valle (Trabajo de Grado para optar al Título de Ingeniero Químico), Escuela de Ingeniería Química, 53 p., (2010)Park, S., Baker, J., Himmel, M., Parilla, P., and Johnson, D. K., Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels . 3, 1-10 (2010). https://doi.org/10.1186/1754-6834-3-10Poletto, M., Pistor, V., Zeni, M., and Zattera, A., Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradability and Stability. 96, 679-685 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.12.007Ranby B.G., The mercerization of cellulose. Acta Chemical Scandinavica, 6, 116-127 (1952)Rose J., The plant cell wall. Annual plant reviews. New York, USA: Blackwell publishing. CRC press. Cornell University Ithaca, 8, p.381 (2003)Salcedo M., J. G., López-Galán, J.E., and Flórez-Pardo, L.M., Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha de caña de azúcar. Dyna. 168, 182-190 (2011)Salcedo M., J. G., López-Galán, J.E., and Flórez-Pardo, L.M., Hidrólisis enzimática de la cosecha de caña de azúcar. Rev. Colomb. Biotecnol. 14, 171-181 (2012)Sánchez, A.M., Gütierrez, A.I., Muñoz, J.A., and Rivera, C. A., Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 5, 61-91 (2010)Sannigrahi, P., Miller, S. J., and Ragauskas, A. J., Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research. 345, 965-970 (2010). https://doi.org/10.1016/j.carres.2010.02.010Segal, L., Creely, J.J., Martin, A.E., and Conrad, C.M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, Princeton. 29, 786-794 (1959). https://doi.org/10.1177/004051755902901003Sharma, H.K., Xu, C. and Qin, W., Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valorization. 8, 1-17 (2017)Silva, R., Gonzáles, A., and Villar, J., Delignificación enzimática de pasta al sulfato de E. Globulus empleando lacasas fúngicas. Ciudad: Congreso Iberoamericano de Investigación en Celulosa y Papel, CIADICYP (2002)Sun, J.X., Sun, X.F., Zhao, H., and Sun, R.C., Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability . 84, 331-339 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.02.008TAPPI, Technical Association of the Pulp and Paper Industries. The Permanganate Consumption of Pulp Materials. Tappi, p. 40, 691 (1957)Van Soest, P., Use of detergents in the Analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. Journal of the AOAC. 46, 829-835 (1983)Viera, R.G.P., Rodríguez, G.F., De Assuncao, R.M.N., Meireles, C., and De Oliveira, G., Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers 67, 182-18 (2007). https://doi.org/10.1016/j.carbpol.2006.05.007Wada, M., Heux, L., and Sugiyama, J., Polymorphism of Cellulose I Family: Reinvestigation of Cellulose IVI. Biomacromolecules. 5, 1385-1391 (2004). https://doi.org/10.1021/bm0345357Wen, F., Nair, U.N., and Zhao, H., Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Current Opinion in Biotechnology. 20, 412-419 (2009). https://doi.org/10.1016/j.copbio.2009.07.001Zhang, J., Dongli, L., Zhang, X., and Yuguan, S., Solvent effect on carboxymethylation of cellulose. Journal of Applied Polymer Science. 49, 741-746 (1993). https://doi.org/10.1002/app.1993.070490420Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., and Holladay, J. H., Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy & Fuels. 20, 807-811 (2006). https://doi.org/10.1021/ef050319aZhu, L., O’Dwyer, J. P., Chang, V. S., Granda, C. B., and Holtzapple, M. T., Structural features affecting biomass enzymatic digestibility. Bioresource Technology . 99, 3817-3828 (2008). https://doi.org/10.1016/j.biortech.2007.07.033Publicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1693-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1693-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1693-10000-0001-8779-8120virtual::1693-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1693-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/317f6769-bc2b-4cc6-8426-63643c3273a4/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/c89c496b-d5b2-4bfb-bae5-769b411dd65d/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdfInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1356148https://red.uao.edu.co/bitstreams/cc85da14-0ef6-43a6-95e9-136a0f3a1842/downloada22e5819e9cf909341f9ee046c5e3ed3MD54TEXTInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdf.txtInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdf.txtExtracted texttext/plain39809https://red.uao.edu.co/bitstreams/d488bbeb-9ac0-4d6d-a908-794830ba7a68/download6bcba79f71e86fcbfc00637264aabf4bMD55THUMBNAILInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdf.jpgInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdf.jpgGenerated Thumbnailimage/jpeg14149https://red.uao.edu.co/bitstreams/ea0478ed-44ed-4007-818c-1f9324acce7c/download8f1ac933aa18d15bce5dcbfe666a8febMD5610614/11573oai:red.uao.edu.co:10614/115732024-03-05 09:41:54.139https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |