Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues

This research evaluated the effect of different delignification pretreatments (enzymatic and organosolv), on the crystallinity and enzymatic hydrolysis of harvested sugar cane residues. The Crystallinity Index (CrI), the Relative Number of Intensity (Ir), the degree of cellulose mercerization (IIC-%...

Full description

Autores:
Flórez Pardo, Luz Marina
López Galán, Jorge Enrique
Salcedo Mendoza, Jairo G.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11573
Acceso en línea:
http://hdl.handle.net/10614/11573
https://doi.org/10.1590/0104-6632.20190361s20180093
Palabra clave:
Hidrólisis
Hydrolysis
Crystallinity index
Sugar cane
Organosolv pretreatment
Enzymatic hydrolysis
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_90fdd11ab0624c8c82a4473a7f09cf41
oai_identifier_str oai:red.uao.edu.co:10614/11573
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
title Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
spellingShingle Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
Hidrólisis
Hydrolysis
Crystallinity index
Sugar cane
Organosolv pretreatment
Enzymatic hydrolysis
title_short Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
title_full Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
title_fullStr Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
title_full_unstemmed Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
title_sort Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues
dc.creator.fl_str_mv Flórez Pardo, Luz Marina
López Galán, Jorge Enrique
Salcedo Mendoza, Jairo G.
dc.contributor.author.none.fl_str_mv Flórez Pardo, Luz Marina
López Galán, Jorge Enrique
Salcedo Mendoza, Jairo G.
dc.subject.armarc.spa.fl_str_mv Hidrólisis
topic Hidrólisis
Hydrolysis
Crystallinity index
Sugar cane
Organosolv pretreatment
Enzymatic hydrolysis
dc.subject.armarc.eng.fl_str_mv Hydrolysis
dc.subject.proposal.eng.fl_str_mv Crystallinity index
Sugar cane
Organosolv pretreatment
Enzymatic hydrolysis
description This research evaluated the effect of different delignification pretreatments (enzymatic and organosolv), on the crystallinity and enzymatic hydrolysis of harvested sugar cane residues. The Crystallinity Index (CrI), the Relative Number of Intensity (Ir), the degree of cellulose mercerization (IIC-%), and the Global Index of Saccharification (GIS) were used as measurement parameters for six different substrates obtained from sugar cane residues (tops and leaves) by different processes. In this characterization, the spectroscopic ty Techniques of Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction and scanning eElectron microscopy (SEM) were used. Substrates to which only organosolv pretreatment was applied, without any further treatment, presented good behavior for the enzymatic hydrolysis and a high CrI, possibly due to the increase of the crystallinity by elimination of amorphous material
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-26T15:39:08Z
dc.date.available.none.fl_str_mv 2019-11-26T15:39:08Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0104-6632 (en línea)
1678-4383 (impresa)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11573
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1590/0104-6632.20190361s20180093
identifier_str_mv 0104-6632 (en línea)
1678-4383 (impresa)
url http://hdl.handle.net/10614/11573
https://doi.org/10.1590/0104-6632.20190361s20180093
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 141
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 131
dc.relation.citationvolume.none.fl_str_mv 36
dc.relation.cites.none.fl_str_mv Flórez Pardo, L. M., Salcedo Mendoza, J. G., & López Galán, J. E. (2019). Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues. Brazilian Journal of Chemical Engineering, 36(1), 131-141. dx.doi.org/10.1590/0104-6632.20190361s20180093
dc.relation.ispartofjournal.eng.fl_str_mv Brazilian Journal of Chemical Engineering
dc.relation.references.none.fl_str_mv Alves, L. V., Gurgel, M., Ramos, K., Da Silva, L.A., and Curvelo, A.P., Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products. 36, 560-571 (2012). https://doi.org/10.1016/j.indcrop.2011.11.009
Aro, N., Pakula, T., and Penttilä, M., Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. 29, 719-739 (2012). https://doi.org/10.1016/j.femsre.2004.11.006
Atalla, R.H., and Vanderhart, D.L., Native cellulose: A composite of two distinct crystalline forms. Science. 223, 283-285 (1984). https://doi.org/10.1126/science.223.4633.283
Bian, J., Peng, F., Peng, X-P., Xiao, X., Peng, P., and Xu, F., Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydrate Polymers, 100, 211-217 (2014). https://doi.org/10.1016/j.carbpol.2013.02.059
Bourbonnais, R., Paice, M.G., Reid, I.D., and Lanthier, R., Lignin Oxidation by Laccase Isozymes from Trametes versicolor and Role of the Mediator 2,2’-Azinobis(3-Ethylbenzthiazoline-6-Sulfonate) in Kraft Lignin Depolymerizatio. Applied and Environmental Microbiology. 65, p. 1876-1880 (1995)
Cardona, C.A., Quintero, J.A., and Paz, I.C., Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology. 101, 4754-4766 (2010). https://doi.org/10.1016/j.biortech.2009.10.097
Carballo-Abreu, L.R., Orea-Igarza, U., and Cordero-Manchado, E. Composición química de tres maderas en la provincia de Pinar del Rio, Cuba a tres alturas del fuste comercial. Revista chapingo parte 2 y 3, serie forestales y ambiente, 57-52 (2004)
Collard, F.X., and Blin, J. A., Review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev. 38, 594-608 (2014). https://doi.org/10.1016/j.rser.2014.06.013
Colom, X., Carrillo, F., Nogues, F., and Garriga, P., Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability, 80, 543-549 (2003). https://doi.org/10.1016/S0141-3910(03)00051-X
Claassen, P. A. M., van Lier, J. B., López Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., de Vries, S. S., and Weusthuis, R. A., Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741-755 (1999). https://doi.org/10.1007/s002530051586
Cenicaña. Boletines diarios de la red meteorológica automatizada-RMA. Recuperado de http://www.cenicana.org/clima_/boletin_meteoro_diario.php. (2010)
Ghose, T.K., Measure cellulose activities, Pure & Applied Chemistry. 59, 257-268 (1987). https://doi.org/10.1351/pac198759020257
Gupta, A., and Verma, J.P., Sustainable bioethanol production from agro-residues: a review renew. Sustain. Energ. Rev. 41, 550-567 (2015). https://doi.org/10.1016/j.rser.2014.08.032
Hall, M., Bansal, P., Lee, J.H., Realff, M.J., and Bommarius, A.S., Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS Journal. 277, 1571-1582 (2010). https://doi.org/10.1111/j.1742-4658.2010.07585.x
Hall, M., Bansal, P., Lee, J.H., Realff, M. J., and Bommarius, A. S. Biological pretreatment of cellulose: Enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresource Technology . 102, 2910-2915 (2011). https://doi.org/10.1016/j.biortech.2010.11.010
Hsu, T-C., Guo, G-L., Chen, W-H., and Hwang, W.-S., Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology . 101, 4907-4913 (2010). https://doi.org/10.1016/j.biortech.2009.10.009
International Energy Agency. Sustainable Production of Second-Generation Biofuels. Paris. Of http://www.iea.org/books (2010)
International Energy Agency. Key World Energy Statistics. Retrieved at ( Retrieved at (https://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_ 2015.pdf ), 9th September (2016)
Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E., and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Applied Microbiology and Biotechnology . 81, 783-790 (2008). https://doi.org/10.1007/s00253-008-1753-2
Koo, B.-W., Min, B.-Ch., Gwak, K.-S., Lee, S.-M., Choi, J.-W., Yeo, H., and Choi, I.-G., Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy. 42, 24-32 (2012). https://doi.org/10.1016/j.biombioe.2012.03.012
Kumar, R., Singh, S., and Singh, O. V., Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology. 35, 377-391 (2008). https://doi.org/10.1007/s10295-008-0327-8
Langan, P., Nishiyama, Y., and Chanzy, H., X-ray structure of mercerized cellulose II at 1Å resolution. Biomacromolecules. 2, 410-416 (2001). https://doi.org/10.1021/bm005612q
Laureano-Pérez, L., Teymouri, F., Alizadeh, H., and Dale, B. E., Understanding factors that limit enzymatic hydrolysis of biomass. Characterization of pretreated corn stover. Applied Biochemistry and Biotechnology. 121, 1081-1099 (2005). https://doi.org/10.1385/ABAB:124:1-3:1081
Manssikkamaki, P., Lahtinen, M., and Rissanen, K., The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: An X-ray powder diffraction study. Carbohydrate Polymers , 68, 35-43 (2007). https://doi.org/10.1016/j.carbpol.2006.07.010
Mesa, L., Gonzáles, E., Romero, E., Cara, I., Felissia, C., and Castro, E., Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Applied Energy. 87, 109-114 (2010). https://doi.org/10.1016/j.apenergy.2009.07.016
Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry. 31, 426- 428 (1959). https://doi.org/10.1021/ac60147a030
Mittal, A., Katahira, R., Himmel, M.E., and Johnson, D.K., Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnology for Biofuels. 4, 41-57 (2011). https://doi.org/10.1186/1754-6834-4-41
Mutis D., Deslignificación de los residuos de cosecha de la caña de azúcar usando alcohol y soda como catalizador. Cali: Universidad del Valle (Trabajo de Grado para optar al Título de Ingeniero Químico), Escuela de Ingeniería Química, 53 p., (2010)
Park, S., Baker, J., Himmel, M., Parilla, P., and Johnson, D. K., Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels . 3, 1-10 (2010). https://doi.org/10.1186/1754-6834-3-10
Poletto, M., Pistor, V., Zeni, M., and Zattera, A., Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradability and Stability. 96, 679-685 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.12.007
Ranby B.G., The mercerization of cellulose. Acta Chemical Scandinavica, 6, 116-127 (1952)
Rose J., The plant cell wall. Annual plant reviews. New York, USA: Blackwell publishing. CRC press. Cornell University Ithaca, 8, p.381 (2003)
Salcedo M., J. G., López-Galán, J.E., and Flórez-Pardo, L.M., Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha de caña de azúcar. Dyna. 168, 182-190 (2011)
Salcedo M., J. G., López-Galán, J.E., and Flórez-Pardo, L.M., Hidrólisis enzimática de la cosecha de caña de azúcar. Rev. Colomb. Biotecnol. 14, 171-181 (2012)
Sánchez, A.M., Gütierrez, A.I., Muñoz, J.A., and Rivera, C. A., Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 5, 61-91 (2010)
Sannigrahi, P., Miller, S. J., and Ragauskas, A. J., Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research. 345, 965-970 (2010). https://doi.org/10.1016/j.carres.2010.02.010
Segal, L., Creely, J.J., Martin, A.E., and Conrad, C.M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, Princeton. 29, 786-794 (1959). https://doi.org/10.1177/004051755902901003
Sharma, H.K., Xu, C. and Qin, W., Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valorization. 8, 1-17 (2017)
Silva, R., Gonzáles, A., and Villar, J., Delignificación enzimática de pasta al sulfato de E. Globulus empleando lacasas fúngicas. Ciudad: Congreso Iberoamericano de Investigación en Celulosa y Papel, CIADICYP (2002)
Sun, J.X., Sun, X.F., Zhao, H., and Sun, R.C., Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability . 84, 331-339 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.02.008
TAPPI, Technical Association of the Pulp and Paper Industries. The Permanganate Consumption of Pulp Materials. Tappi, p. 40, 691 (1957)
Van Soest, P., Use of detergents in the Analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. Journal of the AOAC. 46, 829-835 (1983)
Viera, R.G.P., Rodríguez, G.F., De Assuncao, R.M.N., Meireles, C., and De Oliveira, G., Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers 67, 182-18 (2007). https://doi.org/10.1016/j.carbpol.2006.05.007
Wada, M., Heux, L., and Sugiyama, J., Polymorphism of Cellulose I Family: Reinvestigation of Cellulose IVI. Biomacromolecules. 5, 1385-1391 (2004). https://doi.org/10.1021/bm0345357
Wen, F., Nair, U.N., and Zhao, H., Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Current Opinion in Biotechnology. 20, 412-419 (2009). https://doi.org/10.1016/j.copbio.2009.07.001
Zhang, J., Dongli, L., Zhang, X., and Yuguan, S., Solvent effect on carboxymethylation of cellulose. Journal of Applied Polymer Science. 49, 741-746 (1993). https://doi.org/10.1002/app.1993.070490420
Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., and Holladay, J. H., Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy & Fuels. 20, 807-811 (2006). https://doi.org/10.1021/ef050319a
Zhu, L., O’Dwyer, J. P., Chang, V. S., Granda, C. B., and Holtzapple, M. T., Structural features affecting biomass enzymatic digestibility. Bioresource Technology . 99, 3817-3828 (2008). https://doi.org/10.1016/j.biortech.2007.07.033
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv páginas 131-141
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
Valle del Cauca, Colombia
dc.publisher.eng.fl_str_mv Brazilian Society of Chemical Engineering
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/317f6769-bc2b-4cc6-8426-63643c3273a4/download
https://red.uao.edu.co/bitstreams/c89c496b-d5b2-4bfb-bae5-769b411dd65d/download
https://red.uao.edu.co/bitstreams/cc85da14-0ef6-43a6-95e9-136a0f3a1842/download
https://red.uao.edu.co/bitstreams/d488bbeb-9ac0-4d6d-a908-794830ba7a68/download
https://red.uao.edu.co/bitstreams/ea0478ed-44ed-4007-818c-1f9324acce7c/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
a22e5819e9cf909341f9ee046c5e3ed3
6bcba79f71e86fcbfc00637264aabf4b
8f1ac933aa18d15bce5dcbfe666a8feb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259948987613184
spelling Flórez Pardo, Luz Marinavirtual::1693-1López Galán, Jorge Enriquec28f842fdc151536a90f2149d7bd6b1fSalcedo Mendoza, Jairo G.a559e9a130563ee161366aed485c1368Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-JamundíValle del Cauca, Colombia2019-11-26T15:39:08Z2019-11-26T15:39:08Z20190104-6632 (en línea)1678-4383 (impresa)http://hdl.handle.net/10614/11573https://doi.org/10.1590/0104-6632.20190361s20180093This research evaluated the effect of different delignification pretreatments (enzymatic and organosolv), on the crystallinity and enzymatic hydrolysis of harvested sugar cane residues. The Crystallinity Index (CrI), the Relative Number of Intensity (Ir), the degree of cellulose mercerization (IIC-%), and the Global Index of Saccharification (GIS) were used as measurement parameters for six different substrates obtained from sugar cane residues (tops and leaves) by different processes. In this characterization, the spectroscopic ty Techniques of Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction and scanning eElectron microscopy (SEM) were used. Substrates to which only organosolv pretreatment was applied, without any further treatment, presented good behavior for the enzymatic hydrolysis and a high CrI, possibly due to the increase of the crystallinity by elimination of amorphous materialapplication/pdfpáginas 131-141engBrazilian Society of Chemical EngineeringDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residuesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85HidrólisisHydrolysisCrystallinity indexSugar caneOrganosolv pretreatmentEnzymatic hydrolysis141113136Flórez Pardo, L. M., Salcedo Mendoza, J. G., & López Galán, J. E. (2019). Influence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues. Brazilian Journal of Chemical Engineering, 36(1), 131-141. dx.doi.org/10.1590/0104-6632.20190361s20180093Brazilian Journal of Chemical EngineeringAlves, L. V., Gurgel, M., Ramos, K., Da Silva, L.A., and Curvelo, A.P., Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products. 36, 560-571 (2012). https://doi.org/10.1016/j.indcrop.2011.11.009Aro, N., Pakula, T., and Penttilä, M., Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews. 29, 719-739 (2012). https://doi.org/10.1016/j.femsre.2004.11.006Atalla, R.H., and Vanderhart, D.L., Native cellulose: A composite of two distinct crystalline forms. Science. 223, 283-285 (1984). https://doi.org/10.1126/science.223.4633.283Bian, J., Peng, F., Peng, X-P., Xiao, X., Peng, P., and Xu, F., Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydrate Polymers, 100, 211-217 (2014). https://doi.org/10.1016/j.carbpol.2013.02.059Bourbonnais, R., Paice, M.G., Reid, I.D., and Lanthier, R., Lignin Oxidation by Laccase Isozymes from Trametes versicolor and Role of the Mediator 2,2’-Azinobis(3-Ethylbenzthiazoline-6-Sulfonate) in Kraft Lignin Depolymerizatio. Applied and Environmental Microbiology. 65, p. 1876-1880 (1995)Cardona, C.A., Quintero, J.A., and Paz, I.C., Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology. 101, 4754-4766 (2010). https://doi.org/10.1016/j.biortech.2009.10.097Carballo-Abreu, L.R., Orea-Igarza, U., and Cordero-Manchado, E. Composición química de tres maderas en la provincia de Pinar del Rio, Cuba a tres alturas del fuste comercial. Revista chapingo parte 2 y 3, serie forestales y ambiente, 57-52 (2004)Collard, F.X., and Blin, J. A., Review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev. 38, 594-608 (2014). https://doi.org/10.1016/j.rser.2014.06.013Colom, X., Carrillo, F., Nogues, F., and Garriga, P., Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability, 80, 543-549 (2003). https://doi.org/10.1016/S0141-3910(03)00051-XClaassen, P. A. M., van Lier, J. B., López Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., de Vries, S. S., and Weusthuis, R. A., Utilisation of biomass for the supply of energy carriers. Applied Microbiology and Biotechnology, 52, 741-755 (1999). https://doi.org/10.1007/s002530051586Cenicaña. Boletines diarios de la red meteorológica automatizada-RMA. Recuperado de http://www.cenicana.org/clima_/boletin_meteoro_diario.php. (2010)Ghose, T.K., Measure cellulose activities, Pure & Applied Chemistry. 59, 257-268 (1987). https://doi.org/10.1351/pac198759020257Gupta, A., and Verma, J.P., Sustainable bioethanol production from agro-residues: a review renew. Sustain. Energ. Rev. 41, 550-567 (2015). https://doi.org/10.1016/j.rser.2014.08.032Hall, M., Bansal, P., Lee, J.H., Realff, M.J., and Bommarius, A.S., Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS Journal. 277, 1571-1582 (2010). https://doi.org/10.1111/j.1742-4658.2010.07585.xHall, M., Bansal, P., Lee, J.H., Realff, M. J., and Bommarius, A. S. Biological pretreatment of cellulose: Enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresource Technology . 102, 2910-2915 (2011). https://doi.org/10.1016/j.biortech.2010.11.010Hsu, T-C., Guo, G-L., Chen, W-H., and Hwang, W.-S., Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology . 101, 4907-4913 (2010). https://doi.org/10.1016/j.biortech.2009.10.009International Energy Agency. Sustainable Production of Second-Generation Biofuels. Paris. Of http://www.iea.org/books (2010)International Energy Agency. Key World Energy Statistics. Retrieved at ( Retrieved at (https://www.iea.org/publications/freepublications/publication/KeyWorld_Statistics_ 2015.pdf ), 9th September (2016)Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E., and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Applied Microbiology and Biotechnology . 81, 783-790 (2008). https://doi.org/10.1007/s00253-008-1753-2Koo, B.-W., Min, B.-Ch., Gwak, K.-S., Lee, S.-M., Choi, J.-W., Yeo, H., and Choi, I.-G., Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy. 42, 24-32 (2012). https://doi.org/10.1016/j.biombioe.2012.03.012Kumar, R., Singh, S., and Singh, O. V., Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology. 35, 377-391 (2008). https://doi.org/10.1007/s10295-008-0327-8Langan, P., Nishiyama, Y., and Chanzy, H., X-ray structure of mercerized cellulose II at 1Å resolution. Biomacromolecules. 2, 410-416 (2001). https://doi.org/10.1021/bm005612qLaureano-Pérez, L., Teymouri, F., Alizadeh, H., and Dale, B. E., Understanding factors that limit enzymatic hydrolysis of biomass. Characterization of pretreated corn stover. Applied Biochemistry and Biotechnology. 121, 1081-1099 (2005). https://doi.org/10.1385/ABAB:124:1-3:1081Manssikkamaki, P., Lahtinen, M., and Rissanen, K., The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: An X-ray powder diffraction study. Carbohydrate Polymers , 68, 35-43 (2007). https://doi.org/10.1016/j.carbpol.2006.07.010Mesa, L., Gonzáles, E., Romero, E., Cara, I., Felissia, C., and Castro, E., Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: Application of 23 experimental design. Applied Energy. 87, 109-114 (2010). https://doi.org/10.1016/j.apenergy.2009.07.016Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry. 31, 426- 428 (1959). https://doi.org/10.1021/ac60147a030Mittal, A., Katahira, R., Himmel, M.E., and Johnson, D.K., Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnology for Biofuels. 4, 41-57 (2011). https://doi.org/10.1186/1754-6834-4-41Mutis D., Deslignificación de los residuos de cosecha de la caña de azúcar usando alcohol y soda como catalizador. Cali: Universidad del Valle (Trabajo de Grado para optar al Título de Ingeniero Químico), Escuela de Ingeniería Química, 53 p., (2010)Park, S., Baker, J., Himmel, M., Parilla, P., and Johnson, D. K., Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels . 3, 1-10 (2010). https://doi.org/10.1186/1754-6834-3-10Poletto, M., Pistor, V., Zeni, M., and Zattera, A., Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradability and Stability. 96, 679-685 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.12.007Ranby B.G., The mercerization of cellulose. Acta Chemical Scandinavica, 6, 116-127 (1952)Rose J., The plant cell wall. Annual plant reviews. New York, USA: Blackwell publishing. CRC press. Cornell University Ithaca, 8, p.381 (2003)Salcedo M., J. G., López-Galán, J.E., and Flórez-Pardo, L.M., Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha de caña de azúcar. Dyna. 168, 182-190 (2011)Salcedo M., J. G., López-Galán, J.E., and Flórez-Pardo, L.M., Hidrólisis enzimática de la cosecha de caña de azúcar. Rev. Colomb. Biotecnol. 14, 171-181 (2012)Sánchez, A.M., Gütierrez, A.I., Muñoz, J.A., and Rivera, C. A., Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 5, 61-91 (2010)Sannigrahi, P., Miller, S. J., and Ragauskas, A. J., Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydrate Research. 345, 965-970 (2010). https://doi.org/10.1016/j.carres.2010.02.010Segal, L., Creely, J.J., Martin, A.E., and Conrad, C.M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, Princeton. 29, 786-794 (1959). https://doi.org/10.1177/004051755902901003Sharma, H.K., Xu, C. and Qin, W., Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valorization. 8, 1-17 (2017)Silva, R., Gonzáles, A., and Villar, J., Delignificación enzimática de pasta al sulfato de E. Globulus empleando lacasas fúngicas. Ciudad: Congreso Iberoamericano de Investigación en Celulosa y Papel, CIADICYP (2002)Sun, J.X., Sun, X.F., Zhao, H., and Sun, R.C., Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability . 84, 331-339 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.02.008TAPPI, Technical Association of the Pulp and Paper Industries. The Permanganate Consumption of Pulp Materials. Tappi, p. 40, 691 (1957)Van Soest, P., Use of detergents in the Analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. Journal of the AOAC. 46, 829-835 (1983)Viera, R.G.P., Rodríguez, G.F., De Assuncao, R.M.N., Meireles, C., and De Oliveira, G., Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers 67, 182-18 (2007). https://doi.org/10.1016/j.carbpol.2006.05.007Wada, M., Heux, L., and Sugiyama, J., Polymorphism of Cellulose I Family: Reinvestigation of Cellulose IVI. Biomacromolecules. 5, 1385-1391 (2004). https://doi.org/10.1021/bm0345357Wen, F., Nair, U.N., and Zhao, H., Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Current Opinion in Biotechnology. 20, 412-419 (2009). https://doi.org/10.1016/j.copbio.2009.07.001Zhang, J., Dongli, L., Zhang, X., and Yuguan, S., Solvent effect on carboxymethylation of cellulose. Journal of Applied Polymer Science. 49, 741-746 (1993). https://doi.org/10.1002/app.1993.070490420Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., and Holladay, J. H., Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy & Fuels. 20, 807-811 (2006). https://doi.org/10.1021/ef050319aZhu, L., O’Dwyer, J. P., Chang, V. S., Granda, C. B., and Holtzapple, M. T., Structural features affecting biomass enzymatic digestibility. Bioresource Technology . 99, 3817-3828 (2008). https://doi.org/10.1016/j.biortech.2007.07.033Publicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1693-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1693-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1693-10000-0001-8779-8120virtual::1693-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1693-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/317f6769-bc2b-4cc6-8426-63643c3273a4/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/c89c496b-d5b2-4bfb-bae5-769b411dd65d/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdfInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1356148https://red.uao.edu.co/bitstreams/cc85da14-0ef6-43a6-95e9-136a0f3a1842/downloada22e5819e9cf909341f9ee046c5e3ed3MD54TEXTInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdf.txtInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdf.txtExtracted texttext/plain39809https://red.uao.edu.co/bitstreams/d488bbeb-9ac0-4d6d-a908-794830ba7a68/download6bcba79f71e86fcbfc00637264aabf4bMD55THUMBNAILInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdf.jpgInfluence of pretreatments on crystallinity and enzymatic hydrolysis in sugar cane residues.pdf.jpgGenerated Thumbnailimage/jpeg14149https://red.uao.edu.co/bitstreams/ea0478ed-44ed-4007-818c-1f9324acce7c/download8f1ac933aa18d15bce5dcbfe666a8febMD5610614/11573oai:red.uao.edu.co:10614/115732024-03-05 09:41:54.139https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K