Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications

Se presenta una nueva plataforma de microscopio de fuerza atómica (AFM) de nanomanipulación de doble punta que opera en condiciones ambientales. El sistema está equipado con una sonda de escaneo de detección automática piezoeléctrica de cuarzo de alta frecuencia para obtener imágenes rápidas y un vo...

Full description

Autores:
Acosta Mejía, Juan Camilo
Polesel, Jerome
François, Thoyer
Xie, Hui
Haliyo, Sinan
Régnier, Stéphane
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11949
Acceso en línea:
http://red.uao.edu.co//handle/10614/11949
Palabra clave:
Nanotecnología
Microscopia de exploración con sonda
Atomic force microscopy
Nanotechnology
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_71bba9afc0c86f2ec02287bd4c225bc0
oai_identifier_str oai:red.uao.edu.co:10614/11949
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
title Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
spellingShingle Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
Nanotecnología
Microscopia de exploración con sonda
Atomic force microscopy
Nanotechnology
title_short Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
title_full Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
title_fullStr Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
title_full_unstemmed Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
title_sort Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
dc.creator.fl_str_mv Acosta Mejía, Juan Camilo
Polesel, Jerome
François, Thoyer
Xie, Hui
Haliyo, Sinan
Régnier, Stéphane
dc.contributor.author.none.fl_str_mv Acosta Mejía, Juan Camilo
Polesel, Jerome
François, Thoyer
Xie, Hui
Haliyo, Sinan
Régnier, Stéphane
dc.subject.lemb.spa.fl_str_mv Nanotecnología
Microscopia de exploración con sonda
topic Nanotecnología
Microscopia de exploración con sonda
Atomic force microscopy
Nanotechnology
dc.subject.lemb.eng.fl_str_mv Atomic force microscopy
Nanotechnology
description Se presenta una nueva plataforma de microscopio de fuerza atómica (AFM) de nanomanipulación de doble punta que opera en condiciones ambientales. El sistema está equipado con una sonda de escaneo de detección automática piezoeléctrica de cuarzo de alta frecuencia para obtener imágenes rápidas y un voladizo pasivo para la manipulación. El sistema se valida mediante la obtención de imágenes y el empuje / tracción selectivo de perlas coloidales de oro (diámetros de 80 a 180 nm). Esto proporciona una integración más compacta en comparación con una palanca óptica externa y evita varios de sus inconvenientes, como la interferencia óptica y el ruido, y la recalibración en el caso de un voladizo móvil y una fuente láser fija y un sensor de fotodiodo. Además, como el oscilador de cuarzo exhibe amplitudes de oscilación en el rango de sub-picómetro con una frecuencia de resonancia en el rango de megahercios, este sensor de fuerza dinámica es ideal para imágenes AFM rápidas.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-01
dc.date.accessioned.none.fl_str_mv 2020-02-19T21:27:42Z
dc.date.available.none.fl_str_mv 2020-02-19T21:27:42Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://red.uao.edu.co//handle/10614/11949
url http://red.uao.edu.co//handle/10614/11949
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv Nanotechnology. Volumen 24, número 6, (enero 2013)
dc.relation.citationissue.none.fl_str_mv 6
dc.relation.citationvolume.none.fl_str_mv 24
dc.relation.cites.spa.fl_str_mv Acosta, J.C., Polesel-Maris, J., Thoyer, F., Xie, H., Haliyo, S., & Régnier, S. (2013). Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications. Nanotechnology, 24(6). http://red.uao.edu.co//handle/10614/11949
dc.relation.ispartofjournal.eng.fl_str_mv Nanotechnology
Nanotechnology.
dc.relation.references.none.fl_str_mv Fatikow S (ed) 2007 Automated Nanohandling by Microrobots (Berlin: Springer)
Giessibl F J 2003 Advances in atomic force microscopy Rev. Mod. Phys. 75 949
Gauthier M and Regnier S (ed) 2010 ´ Robotic Micro-Assembly (New York: Wiley-IEEE Press)
Nanonics Imaging Ltd www.nanonics.co.il/applications/afm sem integration
Xie H and Regnier S 2011 Development of a flexible robotic ´ system for multiscale applications of micro/nanoscale manipulation and assembly IEEE/ASME Trans. Mech. 16 266–76
Millet O, Bernardoni P, Regnier S, Bidaud P, Tsitsiris E, ´ Collard D and Buchaillot L 2004 Electrostatic actuated micro gripper using an amplification mechanism Sensors Actuators A 114 371–8
Perez R, Agnus J, Cl ´ evy C, Hubert A and Chaillet N 2005 ´ Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation IEEE/ASME Trans. Mechatronics 10 161–71
Driesen W, Varidel T, Regnier S and Breguet J M 2005 ´ Micromanipulation by adhesion with two collaborating mobile micro robots J. Micromech. Microeng. 15 S259–67
Kim P and Lieber C M 1999 Nanotube nanotweezers Science 286 2148–50
Requicha A A 2003 Nanorobots, NEMS, and nanoassembly Proc. IEEE 91 1922–33
Sitti M and Hashimoto H 2000 Controlled pushing of nanoparticles: modeling and experiments IEEE/ASME Trans. Mechatronics 5 199–211
Guthold M, Falvo M R, Matthews W G, Paulson S, Washburn S, Erie D A, Superfine R, Brooks F P and Taylor R M 2000 Controlled manipulation of molecular samples with the nanomanipulator IEEE/ASME Trans. Mechatronics 5 189–98
Resch R, Lewis D, Meltzer S, Montoya N, Koel B E, Madhukar A, Requicha A A G and Will P 2000 Manipulation of gold nanoparticles in liquid environments using scanning force microscopy Ultramicroscopy 82 135–9
Sitti M 2004 Atomic force microscope probe based controlled pushing for nanotribological characterization IEEE/ASME Trans. Mechatronics 9 343–9
Xie H, Haliyo D S and Regnier S 2009 Parallel ´ imaging/manipulation force microscopy Appl. Phys. Lett. 94 153106
Fantner G E, Hegarty P, Kindt J H, Schitter G, Cidade G A G and Hansma P K 2005 Data acquisition system for high speed atomic force microscopy Rev. Sci. Instrum. 76 026118
Hansma P K, Schitter G, Fantner G E and Prater C 2006 High-speed atomic force microscopy Science 314 601
Seo Y, Choi C S, Han S H and Han S J 2008 Real-time atomic force microscopy using mechanical resonator type scanner Rev. Sci. Instrum. 79 103703
Ando T, Uchihashi T and Fukuma T 2008 High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes Prog. Surf. Sci. 83 337–437
Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Breaking the speed limit with atomic force microscopy Nanotechnology 18 044030
Makky A, Berthelot Th, Feraudet-Tarisse C, Volland H, Viel P and Polesel-Maris J 2012 Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy Sensors Actuators B 162 269–77
Karrai K and Grober R D 1995 Piezoelectric tip-sample distance control for near field optical microscopes Appl. Phys. Lett. 66 1842
Acosta J C, Hwang G, Polesel-Maris J and Regnier S 2011 ´ A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope Rev. Sci. Instrum. 82 035116
Albrecht T R, Grutter P, Horne D and Rugar D 1991 ¨ Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity J. Appl. Phys. 69 668–73
EPSON TOYOCON data sheets on: www.epsontoyocom.co. jp/english/product/Crystal/index.html
Xie H, Haliyo D S and Regnier S 2009 A versatile atomic ´ force microscope for three-dimensional nanomanipulation and nanoassembly Nanotechnology 21 215301
Krejci P and Kuhnen K 2001 Inverse control of systems with hysteresis and creep IEEE Proc. Control Theory Appl. 148 185–92
Abe T, Shimamoto H and Li X 2006 Miniaturization of spherically contoured rectangular AT-cut quartz-crystal resonators by using reactive ion etching Japan. J. Appl. Phys. 45 5283–5
Yongho S, Hwansung C and Wonho J 2003 Atomic-resolution noncontact atomic force microscopy in air Appl. Phys. Lett. 83 1860
Yongho S and Wonho J 2005 Tapping mode quartz crystal resonator based scanning force microscopy Rev. Sci. Instrum. 76 016106
Jeong H-W, Aoki T and Hatsuzawa T 2004 Frequency responses of spherically contoured rectangular AT-cut quartz crystal resonators fabricated by fixed abrasive method Int. J. Mach. Tools Manuf. 44 1143–9
Sekimoto H, Tajima D, Watanabe Y and Ishizaki A 1995 Application of Lee’s plate equations to analysis of spurious vibrations of rectangular AT-cut quartz plates Japan. J. Appl. Phys. 34 5706–10
Johannsmann D 2008 Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance Phys. Chem. Chem. Phys. 10 4516–34
Sun H, Lu P, Zhang P and Chen H 2004 Dynamic analysis of AT-cut quartz resonators with ANSYS Sensors Proc. IEEE 1 95–8
Lee K, Duchamp M, Kulik G, Magrez A, Seo J W, Jeney S, Kulik A J, Forro L, Sundaram R S and Brugger J 2007 ´ Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling Appl. Phys. Lett. 91 173112
Polesel-Maris J, Legrand J, Berthelot Th, Garcia A, Viel P, Makky A and Palacin S 2011 Force spectroscopy by dynamic atomic force microscopy on bovine serum albumin proteins changing the tip hydrophobicity, with piezoelectric tuning fork self-sensing scanning probe Sensors Actuators B 161 775–83
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 12 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv IOP Publishing
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/0f96bb72-06e1-404a-b50b-1a505c5efc0e/download
https://dspace7-uao.metacatalogo.com/bitstreams/88746e1a-d070-49b2-9355-4fe230a3a8a9/download
https://dspace7-uao.metacatalogo.com/bitstreams/95df7fb3-061d-4cdb-9ae0-d0da2f775383/download
https://dspace7-uao.metacatalogo.com/bitstreams/886a044f-4fa1-4ac0-a0cc-07e4e41f4221/download
https://dspace7-uao.metacatalogo.com/bitstreams/5cb3995a-7ad3-4829-89ea-f416c7e05dcf/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
b9ee021fdc129c9458011273d84b4dc7
bd1f67a2b1604656a087d7e10ed3b7e5
568bb1654bcda8dab5ca39aadda28b0a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478999923392512
spelling Acosta Mejía, Juan Camilob79faa637a9ac4f9043425666629f80cPolesel, Jeromedfec45545f63dd9d02c5a4539baaca51François, Thoyer53db0f52239980b7c30ab13d5d3cdf2bXie, Hui7bada08c0316d0dbd857b01c2956c54fHaliyo, Sinanb6ca81cda5f701a9bf2f09452c77d209Régnier, Stéphane58afcc1efa08dea06691d0e2b7845f4bUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-02-19T21:27:42Z2020-02-19T21:27:42Z2013-01http://red.uao.edu.co//handle/10614/11949Se presenta una nueva plataforma de microscopio de fuerza atómica (AFM) de nanomanipulación de doble punta que opera en condiciones ambientales. El sistema está equipado con una sonda de escaneo de detección automática piezoeléctrica de cuarzo de alta frecuencia para obtener imágenes rápidas y un voladizo pasivo para la manipulación. El sistema se valida mediante la obtención de imágenes y el empuje / tracción selectivo de perlas coloidales de oro (diámetros de 80 a 180 nm). Esto proporciona una integración más compacta en comparación con una palanca óptica externa y evita varios de sus inconvenientes, como la interferencia óptica y el ruido, y la recalibración en el caso de un voladizo móvil y una fuente láser fija y un sensor de fotodiodo. Además, como el oscilador de cuarzo exhibe amplitudes de oscilación en el rango de sub-picómetro con una frecuencia de resonancia en el rango de megahercios, este sensor de fuerza dinámica es ideal para imágenes AFM rápidas.A novel dual tip nanomanipulation atomic force microscope (AFM) platform operating in ambient conditions is presented. The system is equipped with a high frequency quartz piezoelectric self-sensing scanning probe for fast imaging and a passive cantilever for manipulation. The system is validated by imaging and selective pushing/pulling of gold colloid beads (diameters from 80 to 180 nm). This provides a more compact integration compared to an external optical lever and avoids several of its drawbacks such as optical interference and noise, and recalibration in the case of a moving cantilever and a fixed laser source and photodiode sensor. Moreover, as the quartz oscillator exhibits oscillation amplitudes in the sub-picometer range with a resonant frequency in the megahertz range, this dynamic force sensor is ideal for fast AFM imaging. Experiments show an increase by five times in imaging speed compared to a classical AFM systemapplication/pdf12 páginasengIOP PublishingNanotechnology. Volumen 24, número 6, (enero 2013)624Acosta, J.C., Polesel-Maris, J., Thoyer, F., Xie, H., Haliyo, S., & Régnier, S. (2013). Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications. Nanotechnology, 24(6). http://red.uao.edu.co//handle/10614/11949NanotechnologyNanotechnology.Fatikow S (ed) 2007 Automated Nanohandling by Microrobots (Berlin: Springer)Giessibl F J 2003 Advances in atomic force microscopy Rev. Mod. Phys. 75 949Gauthier M and Regnier S (ed) 2010 ´ Robotic Micro-Assembly (New York: Wiley-IEEE Press)Nanonics Imaging Ltd www.nanonics.co.il/applications/afm sem integrationXie H and Regnier S 2011 Development of a flexible robotic ´ system for multiscale applications of micro/nanoscale manipulation and assembly IEEE/ASME Trans. Mech. 16 266–76Millet O, Bernardoni P, Regnier S, Bidaud P, Tsitsiris E, ´ Collard D and Buchaillot L 2004 Electrostatic actuated micro gripper using an amplification mechanism Sensors Actuators A 114 371–8Perez R, Agnus J, Cl ´ evy C, Hubert A and Chaillet N 2005 ´ Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation IEEE/ASME Trans. Mechatronics 10 161–71Driesen W, Varidel T, Regnier S and Breguet J M 2005 ´ Micromanipulation by adhesion with two collaborating mobile micro robots J. Micromech. Microeng. 15 S259–67Kim P and Lieber C M 1999 Nanotube nanotweezers Science 286 2148–50Requicha A A 2003 Nanorobots, NEMS, and nanoassembly Proc. IEEE 91 1922–33Sitti M and Hashimoto H 2000 Controlled pushing of nanoparticles: modeling and experiments IEEE/ASME Trans. Mechatronics 5 199–211Guthold M, Falvo M R, Matthews W G, Paulson S, Washburn S, Erie D A, Superfine R, Brooks F P and Taylor R M 2000 Controlled manipulation of molecular samples with the nanomanipulator IEEE/ASME Trans. Mechatronics 5 189–98Resch R, Lewis D, Meltzer S, Montoya N, Koel B E, Madhukar A, Requicha A A G and Will P 2000 Manipulation of gold nanoparticles in liquid environments using scanning force microscopy Ultramicroscopy 82 135–9Sitti M 2004 Atomic force microscope probe based controlled pushing for nanotribological characterization IEEE/ASME Trans. Mechatronics 9 343–9Xie H, Haliyo D S and Regnier S 2009 Parallel ´ imaging/manipulation force microscopy Appl. Phys. Lett. 94 153106Fantner G E, Hegarty P, Kindt J H, Schitter G, Cidade G A G and Hansma P K 2005 Data acquisition system for high speed atomic force microscopy Rev. Sci. Instrum. 76 026118Hansma P K, Schitter G, Fantner G E and Prater C 2006 High-speed atomic force microscopy Science 314 601Seo Y, Choi C S, Han S H and Han S J 2008 Real-time atomic force microscopy using mechanical resonator type scanner Rev. Sci. Instrum. 79 103703Ando T, Uchihashi T and Fukuma T 2008 High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes Prog. Surf. Sci. 83 337–437Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Breaking the speed limit with atomic force microscopy Nanotechnology 18 044030Makky A, Berthelot Th, Feraudet-Tarisse C, Volland H, Viel P and Polesel-Maris J 2012 Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy Sensors Actuators B 162 269–77Karrai K and Grober R D 1995 Piezoelectric tip-sample distance control for near field optical microscopes Appl. Phys. Lett. 66 1842Acosta J C, Hwang G, Polesel-Maris J and Regnier S 2011 ´ A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope Rev. Sci. Instrum. 82 035116Albrecht T R, Grutter P, Horne D and Rugar D 1991 ¨ Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity J. Appl. Phys. 69 668–73EPSON TOYOCON data sheets on: www.epsontoyocom.co. jp/english/product/Crystal/index.htmlXie H, Haliyo D S and Regnier S 2009 A versatile atomic ´ force microscope for three-dimensional nanomanipulation and nanoassembly Nanotechnology 21 215301Krejci P and Kuhnen K 2001 Inverse control of systems with hysteresis and creep IEEE Proc. Control Theory Appl. 148 185–92Abe T, Shimamoto H and Li X 2006 Miniaturization of spherically contoured rectangular AT-cut quartz-crystal resonators by using reactive ion etching Japan. J. Appl. Phys. 45 5283–5Yongho S, Hwansung C and Wonho J 2003 Atomic-resolution noncontact atomic force microscopy in air Appl. Phys. Lett. 83 1860Yongho S and Wonho J 2005 Tapping mode quartz crystal resonator based scanning force microscopy Rev. Sci. Instrum. 76 016106Jeong H-W, Aoki T and Hatsuzawa T 2004 Frequency responses of spherically contoured rectangular AT-cut quartz crystal resonators fabricated by fixed abrasive method Int. J. Mach. Tools Manuf. 44 1143–9Sekimoto H, Tajima D, Watanabe Y and Ishizaki A 1995 Application of Lee’s plate equations to analysis of spurious vibrations of rectangular AT-cut quartz plates Japan. J. Appl. Phys. 34 5706–10Johannsmann D 2008 Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance Phys. Chem. Chem. Phys. 10 4516–34Sun H, Lu P, Zhang P and Chen H 2004 Dynamic analysis of AT-cut quartz resonators with ANSYS Sensors Proc. IEEE 1 95–8Lee K, Duchamp M, Kulik G, Magrez A, Seo J W, Jeney S, Kulik A J, Forro L, Sundaram R S and Brugger J 2007 ´ Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling Appl. Phys. Lett. 91 173112Polesel-Maris J, Legrand J, Berthelot Th, Garcia A, Viel P, Makky A and Palacin S 2011 Force spectroscopy by dynamic atomic force microscopy on bovine serum albumin proteins changing the tip hydrophobicity, with piezoelectric tuning fork self-sensing scanning probe Sensors Actuators B 161 775–83Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85NanotecnologíaMicroscopia de exploración con sondaAtomic force microscopyNanotechnologyPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/0f96bb72-06e1-404a-b50b-1a505c5efc0e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/88746e1a-d070-49b2-9355-4fe230a3a8a9/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdfA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1455917https://dspace7-uao.metacatalogo.com/bitstreams/95df7fb3-061d-4cdb-9ae0-d0da2f775383/downloadb9ee021fdc129c9458011273d84b4dc7MD54TEXTA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdf.txtA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdf.txtExtracted texttext/plain42589https://dspace7-uao.metacatalogo.com/bitstreams/886a044f-4fa1-4ac0-a0cc-07e4e41f4221/downloadbd1f67a2b1604656a087d7e10ed3b7e5MD55THUMBNAILA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdf.jpgA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdf.jpgGenerated Thumbnailimage/jpeg6692https://dspace7-uao.metacatalogo.com/bitstreams/5cb3995a-7ad3-4829-89ea-f416c7e05dcf/download568bb1654bcda8dab5ca39aadda28b0aMD5610614/11949oai:dspace7-uao.metacatalogo.com:10614/119492024-01-19 17:20:21.565https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K