Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications
Se presenta una nueva plataforma de microscopio de fuerza atómica (AFM) de nanomanipulación de doble punta que opera en condiciones ambientales. El sistema está equipado con una sonda de escaneo de detección automática piezoeléctrica de cuarzo de alta frecuencia para obtener imágenes rápidas y un vo...
- Autores:
-
Acosta Mejía, Juan Camilo
Polesel, Jerome
François, Thoyer
Xie, Hui
Haliyo, Sinan
Régnier, Stéphane
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11949
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11949
- Palabra clave:
- Nanotecnología
Microscopia de exploración con sonda
Atomic force microscopy
Nanotechnology
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_71bba9afc0c86f2ec02287bd4c225bc0 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11949 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications |
title |
Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications |
spellingShingle |
Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications Nanotecnología Microscopia de exploración con sonda Atomic force microscopy Nanotechnology |
title_short |
Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications |
title_full |
Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications |
title_fullStr |
Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications |
title_full_unstemmed |
Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications |
title_sort |
Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications |
dc.creator.fl_str_mv |
Acosta Mejía, Juan Camilo Polesel, Jerome François, Thoyer Xie, Hui Haliyo, Sinan Régnier, Stéphane |
dc.contributor.author.none.fl_str_mv |
Acosta Mejía, Juan Camilo Polesel, Jerome François, Thoyer Xie, Hui Haliyo, Sinan Régnier, Stéphane |
dc.subject.lemb.spa.fl_str_mv |
Nanotecnología Microscopia de exploración con sonda |
topic |
Nanotecnología Microscopia de exploración con sonda Atomic force microscopy Nanotechnology |
dc.subject.lemb.eng.fl_str_mv |
Atomic force microscopy Nanotechnology |
description |
Se presenta una nueva plataforma de microscopio de fuerza atómica (AFM) de nanomanipulación de doble punta que opera en condiciones ambientales. El sistema está equipado con una sonda de escaneo de detección automática piezoeléctrica de cuarzo de alta frecuencia para obtener imágenes rápidas y un voladizo pasivo para la manipulación. El sistema se valida mediante la obtención de imágenes y el empuje / tracción selectivo de perlas coloidales de oro (diámetros de 80 a 180 nm). Esto proporciona una integración más compacta en comparación con una palanca óptica externa y evita varios de sus inconvenientes, como la interferencia óptica y el ruido, y la recalibración en el caso de un voladizo móvil y una fuente láser fija y un sensor de fotodiodo. Además, como el oscilador de cuarzo exhibe amplitudes de oscilación en el rango de sub-picómetro con una frecuencia de resonancia en el rango de megahercios, este sensor de fuerza dinámica es ideal para imágenes AFM rápidas. |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-01 |
dc.date.accessioned.none.fl_str_mv |
2020-02-19T21:27:42Z |
dc.date.available.none.fl_str_mv |
2020-02-19T21:27:42Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
http://red.uao.edu.co//handle/10614/11949 |
url |
http://red.uao.edu.co//handle/10614/11949 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Nanotechnology. Volumen 24, número 6, (enero 2013) |
dc.relation.citationissue.none.fl_str_mv |
6 |
dc.relation.citationvolume.none.fl_str_mv |
24 |
dc.relation.cites.spa.fl_str_mv |
Acosta, J.C., Polesel-Maris, J., Thoyer, F., Xie, H., Haliyo, S., & Régnier, S. (2013). Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications. Nanotechnology, 24(6). http://red.uao.edu.co//handle/10614/11949 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Nanotechnology Nanotechnology. |
dc.relation.references.none.fl_str_mv |
Fatikow S (ed) 2007 Automated Nanohandling by Microrobots (Berlin: Springer) Giessibl F J 2003 Advances in atomic force microscopy Rev. Mod. Phys. 75 949 Gauthier M and Regnier S (ed) 2010 ´ Robotic Micro-Assembly (New York: Wiley-IEEE Press) Nanonics Imaging Ltd www.nanonics.co.il/applications/afm sem integration Xie H and Regnier S 2011 Development of a flexible robotic ´ system for multiscale applications of micro/nanoscale manipulation and assembly IEEE/ASME Trans. Mech. 16 266–76 Millet O, Bernardoni P, Regnier S, Bidaud P, Tsitsiris E, ´ Collard D and Buchaillot L 2004 Electrostatic actuated micro gripper using an amplification mechanism Sensors Actuators A 114 371–8 Perez R, Agnus J, Cl ´ evy C, Hubert A and Chaillet N 2005 ´ Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation IEEE/ASME Trans. Mechatronics 10 161–71 Driesen W, Varidel T, Regnier S and Breguet J M 2005 ´ Micromanipulation by adhesion with two collaborating mobile micro robots J. Micromech. Microeng. 15 S259–67 Kim P and Lieber C M 1999 Nanotube nanotweezers Science 286 2148–50 Requicha A A 2003 Nanorobots, NEMS, and nanoassembly Proc. IEEE 91 1922–33 Sitti M and Hashimoto H 2000 Controlled pushing of nanoparticles: modeling and experiments IEEE/ASME Trans. Mechatronics 5 199–211 Guthold M, Falvo M R, Matthews W G, Paulson S, Washburn S, Erie D A, Superfine R, Brooks F P and Taylor R M 2000 Controlled manipulation of molecular samples with the nanomanipulator IEEE/ASME Trans. Mechatronics 5 189–98 Resch R, Lewis D, Meltzer S, Montoya N, Koel B E, Madhukar A, Requicha A A G and Will P 2000 Manipulation of gold nanoparticles in liquid environments using scanning force microscopy Ultramicroscopy 82 135–9 Sitti M 2004 Atomic force microscope probe based controlled pushing for nanotribological characterization IEEE/ASME Trans. Mechatronics 9 343–9 Xie H, Haliyo D S and Regnier S 2009 Parallel ´ imaging/manipulation force microscopy Appl. Phys. Lett. 94 153106 Fantner G E, Hegarty P, Kindt J H, Schitter G, Cidade G A G and Hansma P K 2005 Data acquisition system for high speed atomic force microscopy Rev. Sci. Instrum. 76 026118 Hansma P K, Schitter G, Fantner G E and Prater C 2006 High-speed atomic force microscopy Science 314 601 Seo Y, Choi C S, Han S H and Han S J 2008 Real-time atomic force microscopy using mechanical resonator type scanner Rev. Sci. Instrum. 79 103703 Ando T, Uchihashi T and Fukuma T 2008 High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes Prog. Surf. Sci. 83 337–437 Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Breaking the speed limit with atomic force microscopy Nanotechnology 18 044030 Makky A, Berthelot Th, Feraudet-Tarisse C, Volland H, Viel P and Polesel-Maris J 2012 Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy Sensors Actuators B 162 269–77 Karrai K and Grober R D 1995 Piezoelectric tip-sample distance control for near field optical microscopes Appl. Phys. Lett. 66 1842 Acosta J C, Hwang G, Polesel-Maris J and Regnier S 2011 ´ A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope Rev. Sci. Instrum. 82 035116 Albrecht T R, Grutter P, Horne D and Rugar D 1991 ¨ Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity J. Appl. Phys. 69 668–73 EPSON TOYOCON data sheets on: www.epsontoyocom.co. jp/english/product/Crystal/index.html Xie H, Haliyo D S and Regnier S 2009 A versatile atomic ´ force microscope for three-dimensional nanomanipulation and nanoassembly Nanotechnology 21 215301 Krejci P and Kuhnen K 2001 Inverse control of systems with hysteresis and creep IEEE Proc. Control Theory Appl. 148 185–92 Abe T, Shimamoto H and Li X 2006 Miniaturization of spherically contoured rectangular AT-cut quartz-crystal resonators by using reactive ion etching Japan. J. Appl. Phys. 45 5283–5 Yongho S, Hwansung C and Wonho J 2003 Atomic-resolution noncontact atomic force microscopy in air Appl. Phys. Lett. 83 1860 Yongho S and Wonho J 2005 Tapping mode quartz crystal resonator based scanning force microscopy Rev. Sci. Instrum. 76 016106 Jeong H-W, Aoki T and Hatsuzawa T 2004 Frequency responses of spherically contoured rectangular AT-cut quartz crystal resonators fabricated by fixed abrasive method Int. J. Mach. Tools Manuf. 44 1143–9 Sekimoto H, Tajima D, Watanabe Y and Ishizaki A 1995 Application of Lee’s plate equations to analysis of spurious vibrations of rectangular AT-cut quartz plates Japan. J. Appl. Phys. 34 5706–10 Johannsmann D 2008 Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance Phys. Chem. Chem. Phys. 10 4516–34 Sun H, Lu P, Zhang P and Chen H 2004 Dynamic analysis of AT-cut quartz resonators with ANSYS Sensors Proc. IEEE 1 95–8 Lee K, Duchamp M, Kulik G, Magrez A, Seo J W, Jeney S, Kulik A J, Forro L, Sundaram R S and Brugger J 2007 ´ Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling Appl. Phys. Lett. 91 173112 Polesel-Maris J, Legrand J, Berthelot Th, Garcia A, Viel P, Makky A and Palacin S 2011 Force spectroscopy by dynamic atomic force microscopy on bovine serum albumin proteins changing the tip hydrophobicity, with piezoelectric tuning fork self-sensing scanning probe Sensors Actuators B 161 775–83 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
IOP Publishing |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/0f96bb72-06e1-404a-b50b-1a505c5efc0e/download https://dspace7-uao.metacatalogo.com/bitstreams/88746e1a-d070-49b2-9355-4fe230a3a8a9/download https://dspace7-uao.metacatalogo.com/bitstreams/95df7fb3-061d-4cdb-9ae0-d0da2f775383/download https://dspace7-uao.metacatalogo.com/bitstreams/886a044f-4fa1-4ac0-a0cc-07e4e41f4221/download https://dspace7-uao.metacatalogo.com/bitstreams/5cb3995a-7ad3-4829-89ea-f416c7e05dcf/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 b9ee021fdc129c9458011273d84b4dc7 bd1f67a2b1604656a087d7e10ed3b7e5 568bb1654bcda8dab5ca39aadda28b0a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260174120026112 |
spelling |
Acosta Mejía, Juan Camilob79faa637a9ac4f9043425666629f80cPolesel, Jeromedfec45545f63dd9d02c5a4539baaca51François, Thoyer53db0f52239980b7c30ab13d5d3cdf2bXie, Hui7bada08c0316d0dbd857b01c2956c54fHaliyo, Sinanb6ca81cda5f701a9bf2f09452c77d209Régnier, Stéphane58afcc1efa08dea06691d0e2b7845f4bUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-02-19T21:27:42Z2020-02-19T21:27:42Z2013-01http://red.uao.edu.co//handle/10614/11949Se presenta una nueva plataforma de microscopio de fuerza atómica (AFM) de nanomanipulación de doble punta que opera en condiciones ambientales. El sistema está equipado con una sonda de escaneo de detección automática piezoeléctrica de cuarzo de alta frecuencia para obtener imágenes rápidas y un voladizo pasivo para la manipulación. El sistema se valida mediante la obtención de imágenes y el empuje / tracción selectivo de perlas coloidales de oro (diámetros de 80 a 180 nm). Esto proporciona una integración más compacta en comparación con una palanca óptica externa y evita varios de sus inconvenientes, como la interferencia óptica y el ruido, y la recalibración en el caso de un voladizo móvil y una fuente láser fija y un sensor de fotodiodo. Además, como el oscilador de cuarzo exhibe amplitudes de oscilación en el rango de sub-picómetro con una frecuencia de resonancia en el rango de megahercios, este sensor de fuerza dinámica es ideal para imágenes AFM rápidas.A novel dual tip nanomanipulation atomic force microscope (AFM) platform operating in ambient conditions is presented. The system is equipped with a high frequency quartz piezoelectric self-sensing scanning probe for fast imaging and a passive cantilever for manipulation. The system is validated by imaging and selective pushing/pulling of gold colloid beads (diameters from 80 to 180 nm). This provides a more compact integration compared to an external optical lever and avoids several of its drawbacks such as optical interference and noise, and recalibration in the case of a moving cantilever and a fixed laser source and photodiode sensor. Moreover, as the quartz oscillator exhibits oscillation amplitudes in the sub-picometer range with a resonant frequency in the megahertz range, this dynamic force sensor is ideal for fast AFM imaging. Experiments show an increase by five times in imaging speed compared to a classical AFM systemapplication/pdf12 páginasengIOP PublishingNanotechnology. Volumen 24, número 6, (enero 2013)624Acosta, J.C., Polesel-Maris, J., Thoyer, F., Xie, H., Haliyo, S., & Régnier, S. (2013). Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications. Nanotechnology, 24(6). http://red.uao.edu.co//handle/10614/11949NanotechnologyNanotechnology.Fatikow S (ed) 2007 Automated Nanohandling by Microrobots (Berlin: Springer)Giessibl F J 2003 Advances in atomic force microscopy Rev. Mod. Phys. 75 949Gauthier M and Regnier S (ed) 2010 ´ Robotic Micro-Assembly (New York: Wiley-IEEE Press)Nanonics Imaging Ltd www.nanonics.co.il/applications/afm sem integrationXie H and Regnier S 2011 Development of a flexible robotic ´ system for multiscale applications of micro/nanoscale manipulation and assembly IEEE/ASME Trans. Mech. 16 266–76Millet O, Bernardoni P, Regnier S, Bidaud P, Tsitsiris E, ´ Collard D and Buchaillot L 2004 Electrostatic actuated micro gripper using an amplification mechanism Sensors Actuators A 114 371–8Perez R, Agnus J, Cl ´ evy C, Hubert A and Chaillet N 2005 ´ Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation IEEE/ASME Trans. Mechatronics 10 161–71Driesen W, Varidel T, Regnier S and Breguet J M 2005 ´ Micromanipulation by adhesion with two collaborating mobile micro robots J. Micromech. Microeng. 15 S259–67Kim P and Lieber C M 1999 Nanotube nanotweezers Science 286 2148–50Requicha A A 2003 Nanorobots, NEMS, and nanoassembly Proc. IEEE 91 1922–33Sitti M and Hashimoto H 2000 Controlled pushing of nanoparticles: modeling and experiments IEEE/ASME Trans. Mechatronics 5 199–211Guthold M, Falvo M R, Matthews W G, Paulson S, Washburn S, Erie D A, Superfine R, Brooks F P and Taylor R M 2000 Controlled manipulation of molecular samples with the nanomanipulator IEEE/ASME Trans. Mechatronics 5 189–98Resch R, Lewis D, Meltzer S, Montoya N, Koel B E, Madhukar A, Requicha A A G and Will P 2000 Manipulation of gold nanoparticles in liquid environments using scanning force microscopy Ultramicroscopy 82 135–9Sitti M 2004 Atomic force microscope probe based controlled pushing for nanotribological characterization IEEE/ASME Trans. Mechatronics 9 343–9Xie H, Haliyo D S and Regnier S 2009 Parallel ´ imaging/manipulation force microscopy Appl. Phys. Lett. 94 153106Fantner G E, Hegarty P, Kindt J H, Schitter G, Cidade G A G and Hansma P K 2005 Data acquisition system for high speed atomic force microscopy Rev. Sci. Instrum. 76 026118Hansma P K, Schitter G, Fantner G E and Prater C 2006 High-speed atomic force microscopy Science 314 601Seo Y, Choi C S, Han S H and Han S J 2008 Real-time atomic force microscopy using mechanical resonator type scanner Rev. Sci. Instrum. 79 103703Ando T, Uchihashi T and Fukuma T 2008 High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes Prog. Surf. Sci. 83 337–437Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Breaking the speed limit with atomic force microscopy Nanotechnology 18 044030Makky A, Berthelot Th, Feraudet-Tarisse C, Volland H, Viel P and Polesel-Maris J 2012 Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy Sensors Actuators B 162 269–77Karrai K and Grober R D 1995 Piezoelectric tip-sample distance control for near field optical microscopes Appl. Phys. Lett. 66 1842Acosta J C, Hwang G, Polesel-Maris J and Regnier S 2011 ´ A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope Rev. Sci. Instrum. 82 035116Albrecht T R, Grutter P, Horne D and Rugar D 1991 ¨ Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity J. Appl. Phys. 69 668–73EPSON TOYOCON data sheets on: www.epsontoyocom.co. jp/english/product/Crystal/index.htmlXie H, Haliyo D S and Regnier S 2009 A versatile atomic ´ force microscope for three-dimensional nanomanipulation and nanoassembly Nanotechnology 21 215301Krejci P and Kuhnen K 2001 Inverse control of systems with hysteresis and creep IEEE Proc. Control Theory Appl. 148 185–92Abe T, Shimamoto H and Li X 2006 Miniaturization of spherically contoured rectangular AT-cut quartz-crystal resonators by using reactive ion etching Japan. J. Appl. Phys. 45 5283–5Yongho S, Hwansung C and Wonho J 2003 Atomic-resolution noncontact atomic force microscopy in air Appl. Phys. Lett. 83 1860Yongho S and Wonho J 2005 Tapping mode quartz crystal resonator based scanning force microscopy Rev. Sci. Instrum. 76 016106Jeong H-W, Aoki T and Hatsuzawa T 2004 Frequency responses of spherically contoured rectangular AT-cut quartz crystal resonators fabricated by fixed abrasive method Int. J. Mach. Tools Manuf. 44 1143–9Sekimoto H, Tajima D, Watanabe Y and Ishizaki A 1995 Application of Lee’s plate equations to analysis of spurious vibrations of rectangular AT-cut quartz plates Japan. J. Appl. Phys. 34 5706–10Johannsmann D 2008 Viscoelastic, mechanical, and dielectric measurements on complex samples with the quartz crystal microbalance Phys. Chem. Chem. Phys. 10 4516–34Sun H, Lu P, Zhang P and Chen H 2004 Dynamic analysis of AT-cut quartz resonators with ANSYS Sensors Proc. IEEE 1 95–8Lee K, Duchamp M, Kulik G, Magrez A, Seo J W, Jeney S, Kulik A J, Forro L, Sundaram R S and Brugger J 2007 ´ Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling Appl. Phys. Lett. 91 173112Polesel-Maris J, Legrand J, Berthelot Th, Garcia A, Viel P, Makky A and Palacin S 2011 Force spectroscopy by dynamic atomic force microscopy on bovine serum albumin proteins changing the tip hydrophobicity, with piezoelectric tuning fork self-sensing scanning probe Sensors Actuators B 161 775–83Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85NanotecnologíaMicroscopia de exploración con sondaAtomic force microscopyNanotechnologyPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/0f96bb72-06e1-404a-b50b-1a505c5efc0e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/88746e1a-d070-49b2-9355-4fe230a3a8a9/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdfA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1455917https://dspace7-uao.metacatalogo.com/bitstreams/95df7fb3-061d-4cdb-9ae0-d0da2f775383/downloadb9ee021fdc129c9458011273d84b4dc7MD54TEXTA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdf.txtA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdf.txtExtracted texttext/plain42589https://dspace7-uao.metacatalogo.com/bitstreams/886a044f-4fa1-4ac0-a0cc-07e4e41f4221/downloadbd1f67a2b1604656a087d7e10ed3b7e5MD55THUMBNAILA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdf.jpgA0264_Gentle and fast atomic forcé microscopy with a piezoelectric scanning probe for nanorobotics applications.pdf.jpgGenerated Thumbnailimage/jpeg6692https://dspace7-uao.metacatalogo.com/bitstreams/5cb3995a-7ad3-4829-89ea-f416c7e05dcf/download568bb1654bcda8dab5ca39aadda28b0aMD5610614/11949oai:dspace7-uao.metacatalogo.com:10614/119492024-01-19 17:20:21.565https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |