Hidrólisis enzimática de residuos de la cosecha de caña de azúcar

En esta investigación, se hidrolizó un sustrato deslignificado proveniente de residuos de la cosecha caña de azúcar (hojas y cogollos) usando un preparado enzimático con 27.53 unidades de papel filtro (FPU), obtenido a partir de enzimas comerciales. La hidrólisis se llevó a cabo a un pH de 4.2 y una...

Full description

Autores:
Flórez Pardo, Luz Marina
Salcedo Mendoza, Jairo G
Galán López, Jorge Enrique
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/12016
Acceso en línea:
http://hdl.handle.net/10614/12016
Palabra clave:
Inversión del azúcar
Hidrólisis
Enzimas vegetales - Inhibidores
Sugar - Inversion
Hydrolysis
Plant enzymes - Inhibitors
Inhibición
Modelos cinéticos
Hojas y cogollos
Coctel de enzimas
Inhibition
Kinetic models
Leaves and tops cane
Enzyme cocktail
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_6d16f578b013c57edcf16a4b6c41286a
oai_identifier_str oai:red.uao.edu.co:10614/12016
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
dc.title.alternative.eng.fl_str_mv Hydrolysis Enzymatic of crop residues sugar cane
title Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
spellingShingle Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
Inversión del azúcar
Hidrólisis
Enzimas vegetales - Inhibidores
Sugar - Inversion
Hydrolysis
Plant enzymes - Inhibitors
Inhibición
Modelos cinéticos
Hojas y cogollos
Coctel de enzimas
Inhibition
Kinetic models
Leaves and tops cane
Enzyme cocktail
title_short Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
title_full Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
title_fullStr Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
title_full_unstemmed Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
title_sort Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
dc.creator.fl_str_mv Flórez Pardo, Luz Marina
Salcedo Mendoza, Jairo G
Galán López, Jorge Enrique
dc.contributor.author.none.fl_str_mv Flórez Pardo, Luz Marina
Salcedo Mendoza, Jairo G
Galán López, Jorge Enrique
dc.subject.armarc.spa.fl_str_mv Inversión del azúcar
Hidrólisis
Enzimas vegetales - Inhibidores
topic Inversión del azúcar
Hidrólisis
Enzimas vegetales - Inhibidores
Sugar - Inversion
Hydrolysis
Plant enzymes - Inhibitors
Inhibición
Modelos cinéticos
Hojas y cogollos
Coctel de enzimas
Inhibition
Kinetic models
Leaves and tops cane
Enzyme cocktail
dc.subject.armarc.eng.fl_str_mv Sugar - Inversion
Hydrolysis
Plant enzymes - Inhibitors
dc.subject.proposal.spa.fl_str_mv Inhibición
Modelos cinéticos
Hojas y cogollos
Coctel de enzimas
dc.subject.proposal.eng.fl_str_mv Inhibition
Kinetic models
Leaves and tops cane
Enzyme cocktail
description En esta investigación, se hidrolizó un sustrato deslignificado proveniente de residuos de la cosecha caña de azúcar (hojas y cogollos) usando un preparado enzimático con 27.53 unidades de papel filtro (FPU), obtenido a partir de enzimas comerciales. La hidrólisis se llevó a cabo a un pH de 4.2 y una temperatura de 50 oC. Fueron analizados modelos de inhibición por sustrato, glucosa e inhibición total por producto. Los resultados mostraron que los modelos que mejor se ajustan a los datos experimentales, son los modelos de inhibición competitiva por glucosa, con una constante de Michaelis (Km) de 20.37 g/L, velocidad máxima (Vmax) 39 g/L h y una constante de inhibición (ki) de 0.442. En el caso que las relaciones enzima – Sustrato (E/S) sean mayores de 0.5, se puede aplicar el modelo cinético de Michaelis-Menten
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-03-02T18:32:00Z
dc.date.available.none.fl_str_mv 2020-03-02T18:32:00Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 19098758
01233475
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/12016
identifier_str_mv 19098758
01233475
url http://hdl.handle.net/10614/12016
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv Revista Colombiana de Biotecnología. Volumen 14, número 1, (2012); páginas 171-181
dc.relation.citationendpage.none.fl_str_mv 181
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 171
dc.relation.citationvolume.none.fl_str_mv 14
dc.relation.cites.none.fl_str_mv Pardo Flórez, L. M.; Salcedo Mendoza, J. G.; Galán López, J. E. (2012). Hidrólisis enzimática de residuos de la cosecha de caña de azúcar. Revista Colombiana de Biotecnología. 14(1); 171-181. http://hdl.handle.net/10614/12016. http://hdl.handle.net/10614/12016
dc.relation.references.none.fl_str_mv Adsula, M.G. Ghuleb, J. E. Shaikhb, H., Singhb, R., Bastawdea, KB., Gokhalea, DV, and y Varma AJ. Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers., 62, 6 –10, 2005
Alberty, R. Determination of kinetic parameters of enzyme – catalyzed reactions with a minimum number of velocity measurements, Journal of theoretical Biology., 254, 156-163, 2008
Alves, L., Gurgela, V., Marabezia, K., Ramosa, L.A., Da Silva Curveloa, A.P. Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products 36, 560–571, 2012
Almeida, JS. Predictive non- linear modeling of complex data by artificial neural networks, Analytical biotechnology., 13, 72 -76, 2002
Ander, P. and Ericksson, KE. Selective Degradation of Wood Components by White-Rot Fungi, physiol plant., 41, 239-248, 1977
Asenjo, J. Maximazing the formation of glucose in the enzymatic hydrolysis of insoluble cellulose, Biothecnol Bioeng., 25, 3150-85, 1983
Atalla, RH. And Vanderlhart, DL. Native cellulose a composite of two distint crystalline forms, Science., 223, 283 – 285, 1984
Bailey, M., Biely, P. And Pountanen, K. Interlaboratory testig of methods for assay of xylanase activity, Journal of Biotechnology., 23, 257 – 270, 1992
Bagga, P., Sandhu, D. and Sharma, S. Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans, Journal of Applied Bacteriology., 68, 61-68, 1990
aş, D. Ceyda Dudak, F. and Boyac, IH. Modeling and optimization III: Reaction rate estimation using artificial neural network (ANN) without a kinetic model., Journal of Food Engineering., Vol 79, 622-628, 2007
Bennet, A. Role of cell wall hydrolases in fruit ripening: Annual Review Plant physiology, Plant Mol. Bio.l, 42, 675-703, 1991
Bioinformatics Resourse Portal, 2010, Herramienta Expasy, available http\ www. Expasy.Org [citado 2010]
Blumenkrantz, N. New methods for quantitative determination of uronic, Anal Biochem., 54, 484 – 489, 1973
Cara, C. Moya, M. Ballesteros, I. Negro, MJ. Gonzalez, A. And Ruiz, E. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass, Process Biochem., 42, 1003-1009, 2007
Chao, T. And Talalay, P. A simple generalized equation for the analysis of multiple inhibitions of michaelis-menten kinetic systems, The journal of biological chemistry., 252, 6438-6442, 1997
Duarte, A, Introducción a la Ingeniería Bioquímica, Departamento de ingeniería Química, Universidad Nacional, Colombia, 1995
Fengel, D. and Wenwger, G. Wood: Chemistry, ultraestrucrure reaction, De Gruyter. Berlin, 300-329, 1984
Fu liu, C. Ren, J. Xu, F. Jui Liu, J. Jxia Sun, J. And Sun, R. Isolation and Characterization of Cellulose Obtained from Ultrasonic Irradiated Sugarcane Bagasse, J. Agric. Food Chem; 54, 5742-5748, 2006
Galbe, M. And Zacchi, G. A review of the production of ethanol from softwod, Appl. Microbial biotechnol; 59,.618- 628, 2002
Gianfreda, L. Xu, F. And Bollag, J. Laccases: A Useful Group of Oxidoreductive Enzymes, Bioremediation Journal; vol 3, 1-26, 1999
Heitz, M. Carrasco. F, Rubio, M. Brown, A. Chornet, E. And Overend, R. Physico-chemical characterization of lignocellulosic substrates pretreated via autohydrolysis: an application to tropical woods, Biomass; 13, 255-273, 1987
Hodge, DB. Karim, MN. Schell, DJ. McMillan, JD. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocelluloses, Bioresour Technol; 99,8940-8948, 2008
Jurado, M. Prieto, A. Martínez-Alcalá, A. And Martínez, MJ. Laccase detoxification of steam-exploded wheat straw for second generation Bioethanol, Bioresource Technology; 100, 6378 -6384, 2009
Kuwahara, M. Glenn, J, Morgan, M. And Gold, M. Separation and characterization of two extracellular H2O2 -dependent oxidases from lignolytic cultures of Phanerochaete chrysosporium, FEBS Lett; 169, 247–50, 1984
Lee, H, Fan, L.. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates, Biotechnology and Bioingineering; Vol XXIV, .2383 -2406, 1982
Marín, R. Caracterización y expresión recombinante de una celulasa de origen antartido,[ trabajo de grado para optar título de ingeniero civil en biotecnología], Facultad de Ciencias Físicas, Universidad de Chile, 2007
Megazyme International Ireland Limited. Assay 1-4-β xilanase using Azo Xilan (OAT), SAXYO, available: http\: www. Megazyme.com, [citado diciembre 2009]
Movagarnejad, K. Sohrabi, M. Kaghazchi, T. And Vahabzadeh, F. A Model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid – liquid systems, Biochemical Engineering Journal; 4, 197-206, 2000
Orsi, B. And Tipton, F. Enzyme kinetics and mechanism part A. Initial rate and inhibitor, Methods Enzymoly; 63, 159-183, 1979
Philippidis, G. and Smith, T. Limiting factors in the simultaneous saccharification and fermentation process for conversión of cellulosic biomass to fuel ethanol, Appl. Biochem and Biotech; 51/52, 117- 124, 1995
Ranby, B. G. The Mercerization of cellulose. Acta Chemica Scandinavica, 6, 116–127, 1952.
Rosgaard, L. Andric, P. Dam-Johansen, K. Pedersen, S. Meyer, A. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl Biochem Biotechnol; 143,27- 40, 2007
Saha, B. Item, L. Cotta, M. And Wu, Y. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnology Progress; 21, 816–822, 2005
Saparrat, M. Mocchiutti, P. And Liggieri, C. Ligninolytic enzyme ability and potential biotechnology applications of the white-rot fungus Grammothele subargentea LPSC no. 436 strain, Process Biochemistry; 43, 368–375, 2008
Sørensen, I. Pedersen, S. Meyer, A. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue, Biotechnol Prog; 22,505-513, 2006.
Van Zyl, C. Prior, B. And Du Preez, J. Acetic acid inhibition of D-xylose fermentation by Pichia stipitis, Enzyme and Microbial Technology; 13, 82-86, 1991
Wheals, A. Basso, L. And Álvarez, A. Fuel ethanol after 25 years, Trend Biotecnol; 17, 482-489, 1999
Wyman, C. Handbook on Bioethanol: production and utilization. Washinnton, DC, Taylor & francis, 1996
Zhang, Y. And Lynd, L. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: Development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Analytical Chemistry, 75, 219-227, 2003
Zhang, S. Wolfgang, D. And Wilson, D. Substrate Heterogeneity Causes the Nonlinear Kinetics of Insoluble Cellulose Hydrolysis, Biotechnology and Bioengineering; vol. 66, no. 1, 1998
Zykwisnka, F. Ralet, M. Garnier, C. And Thibault, F. Evidence for vitro binding of pectin side chains to cellulose, Plant physiol; 139, 397- 407, 2005
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 11 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/deaf5296-1cb9-4a10-bc55-3b041e0893be/download
https://red.uao.edu.co/bitstreams/de888124-0adb-4feb-91da-a3d22b1b0de0/download
https://red.uao.edu.co/bitstreams/2fc5ec66-8ccf-432f-891f-48d7c79b2620/download
https://red.uao.edu.co/bitstreams/ece50555-7313-4ab1-b5ef-cf5f9e91c3c3/download
https://red.uao.edu.co/bitstreams/00a12cce-27f8-40cd-b9c9-5f3ade2727ce/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
c2d3f45f9acad7782feb6ad4b4c84edf
62af790418b8e0487b869df0974f21a5
378f05198b1a80509a248104f4b8e2a9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259899861827584
spelling Flórez Pardo, Luz Marinavirtual::1701-1Salcedo Mendoza, Jairo G514e81ab74b0cca051b27c863ecb3674Galán López, Jorge Enrique44bc804ec488c3ad557b32adac4b7910Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-03-02T18:32:00Z2020-03-02T18:32:00Z20121909875801233475http://hdl.handle.net/10614/12016En esta investigación, se hidrolizó un sustrato deslignificado proveniente de residuos de la cosecha caña de azúcar (hojas y cogollos) usando un preparado enzimático con 27.53 unidades de papel filtro (FPU), obtenido a partir de enzimas comerciales. La hidrólisis se llevó a cabo a un pH de 4.2 y una temperatura de 50 oC. Fueron analizados modelos de inhibición por sustrato, glucosa e inhibición total por producto. Los resultados mostraron que los modelos que mejor se ajustan a los datos experimentales, son los modelos de inhibición competitiva por glucosa, con una constante de Michaelis (Km) de 20.37 g/L, velocidad máxima (Vmax) 39 g/L h y una constante de inhibición (ki) de 0.442. En el caso que las relaciones enzima – Sustrato (E/S) sean mayores de 0.5, se puede aplicar el modelo cinético de Michaelis-MentenIn this research, a delignified substrate from crops residues sugar cane residues (leaves and top cane) was hydrolyzed using an enzyme preparation with 27.53 FPU. This enzyme was obtained from trade. Hydrolysis was carried out to pH of 4.2 and a temperature of 50 oC. Models of inhibition models substrate, glucose and total inhibition product was analyzed. The results showed that models that best fit the data experimental was the models competitive glucose inhibition (Km= 20.37, Vmax=39 and ki= 0.442). In the event that E/S is above 0.5, can applied kinetic models of Michaelis – Mentenapplication/pdf11 páginasspaUniversidad Nacional de ColombiaRevista Colombiana de Biotecnología. Volumen 14, número 1, (2012); páginas 171-181181117114Pardo Flórez, L. M.; Salcedo Mendoza, J. G.; Galán López, J. E. (2012). Hidrólisis enzimática de residuos de la cosecha de caña de azúcar. Revista Colombiana de Biotecnología. 14(1); 171-181. http://hdl.handle.net/10614/12016. http://hdl.handle.net/10614/12016Adsula, M.G. Ghuleb, J. E. Shaikhb, H., Singhb, R., Bastawdea, KB., Gokhalea, DV, and y Varma AJ. Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers., 62, 6 –10, 2005Alberty, R. Determination of kinetic parameters of enzyme – catalyzed reactions with a minimum number of velocity measurements, Journal of theoretical Biology., 254, 156-163, 2008Alves, L., Gurgela, V., Marabezia, K., Ramosa, L.A., Da Silva Curveloa, A.P. Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products 36, 560–571, 2012Almeida, JS. Predictive non- linear modeling of complex data by artificial neural networks, Analytical biotechnology., 13, 72 -76, 2002Ander, P. and Ericksson, KE. Selective Degradation of Wood Components by White-Rot Fungi, physiol plant., 41, 239-248, 1977Asenjo, J. Maximazing the formation of glucose in the enzymatic hydrolysis of insoluble cellulose, Biothecnol Bioeng., 25, 3150-85, 1983Atalla, RH. And Vanderlhart, DL. Native cellulose a composite of two distint crystalline forms, Science., 223, 283 – 285, 1984Bailey, M., Biely, P. And Pountanen, K. Interlaboratory testig of methods for assay of xylanase activity, Journal of Biotechnology., 23, 257 – 270, 1992Bagga, P., Sandhu, D. and Sharma, S. Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans, Journal of Applied Bacteriology., 68, 61-68, 1990aş, D. Ceyda Dudak, F. and Boyac, IH. Modeling and optimization III: Reaction rate estimation using artificial neural network (ANN) without a kinetic model., Journal of Food Engineering., Vol 79, 622-628, 2007Bennet, A. Role of cell wall hydrolases in fruit ripening: Annual Review Plant physiology, Plant Mol. Bio.l, 42, 675-703, 1991Bioinformatics Resourse Portal, 2010, Herramienta Expasy, available http\ www. Expasy.Org [citado 2010]Blumenkrantz, N. New methods for quantitative determination of uronic, Anal Biochem., 54, 484 – 489, 1973Cara, C. Moya, M. Ballesteros, I. Negro, MJ. Gonzalez, A. And Ruiz, E. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass, Process Biochem., 42, 1003-1009, 2007Chao, T. And Talalay, P. A simple generalized equation for the analysis of multiple inhibitions of michaelis-menten kinetic systems, The journal of biological chemistry., 252, 6438-6442, 1997Duarte, A, Introducción a la Ingeniería Bioquímica, Departamento de ingeniería Química, Universidad Nacional, Colombia, 1995Fengel, D. and Wenwger, G. Wood: Chemistry, ultraestrucrure reaction, De Gruyter. Berlin, 300-329, 1984Fu liu, C. Ren, J. Xu, F. Jui Liu, J. Jxia Sun, J. And Sun, R. Isolation and Characterization of Cellulose Obtained from Ultrasonic Irradiated Sugarcane Bagasse, J. Agric. Food Chem; 54, 5742-5748, 2006Galbe, M. And Zacchi, G. A review of the production of ethanol from softwod, Appl. Microbial biotechnol; 59,.618- 628, 2002Gianfreda, L. Xu, F. And Bollag, J. Laccases: A Useful Group of Oxidoreductive Enzymes, Bioremediation Journal; vol 3, 1-26, 1999Heitz, M. Carrasco. F, Rubio, M. Brown, A. Chornet, E. And Overend, R. Physico-chemical characterization of lignocellulosic substrates pretreated via autohydrolysis: an application to tropical woods, Biomass; 13, 255-273, 1987Hodge, DB. Karim, MN. Schell, DJ. McMillan, JD. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocelluloses, Bioresour Technol; 99,8940-8948, 2008Jurado, M. Prieto, A. Martínez-Alcalá, A. And Martínez, MJ. Laccase detoxification of steam-exploded wheat straw for second generation Bioethanol, Bioresource Technology; 100, 6378 -6384, 2009Kuwahara, M. Glenn, J, Morgan, M. And Gold, M. Separation and characterization of two extracellular H2O2 -dependent oxidases from lignolytic cultures of Phanerochaete chrysosporium, FEBS Lett; 169, 247–50, 1984Lee, H, Fan, L.. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates, Biotechnology and Bioingineering; Vol XXIV, .2383 -2406, 1982Marín, R. Caracterización y expresión recombinante de una celulasa de origen antartido,[ trabajo de grado para optar título de ingeniero civil en biotecnología], Facultad de Ciencias Físicas, Universidad de Chile, 2007Megazyme International Ireland Limited. Assay 1-4-β xilanase using Azo Xilan (OAT), SAXYO, available: http\: www. Megazyme.com, [citado diciembre 2009]Movagarnejad, K. Sohrabi, M. Kaghazchi, T. And Vahabzadeh, F. A Model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid – liquid systems, Biochemical Engineering Journal; 4, 197-206, 2000Orsi, B. And Tipton, F. Enzyme kinetics and mechanism part A. Initial rate and inhibitor, Methods Enzymoly; 63, 159-183, 1979Philippidis, G. and Smith, T. Limiting factors in the simultaneous saccharification and fermentation process for conversión of cellulosic biomass to fuel ethanol, Appl. Biochem and Biotech; 51/52, 117- 124, 1995Ranby, B. G. The Mercerization of cellulose. Acta Chemica Scandinavica, 6, 116–127, 1952.Rosgaard, L. Andric, P. Dam-Johansen, K. Pedersen, S. Meyer, A. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl Biochem Biotechnol; 143,27- 40, 2007Saha, B. Item, L. Cotta, M. And Wu, Y. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnology Progress; 21, 816–822, 2005Saparrat, M. Mocchiutti, P. And Liggieri, C. Ligninolytic enzyme ability and potential biotechnology applications of the white-rot fungus Grammothele subargentea LPSC no. 436 strain, Process Biochemistry; 43, 368–375, 2008Sørensen, I. Pedersen, S. Meyer, A. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue, Biotechnol Prog; 22,505-513, 2006.Van Zyl, C. Prior, B. And Du Preez, J. Acetic acid inhibition of D-xylose fermentation by Pichia stipitis, Enzyme and Microbial Technology; 13, 82-86, 1991Wheals, A. Basso, L. And Álvarez, A. Fuel ethanol after 25 years, Trend Biotecnol; 17, 482-489, 1999Wyman, C. Handbook on Bioethanol: production and utilization. Washinnton, DC, Taylor & francis, 1996Zhang, Y. And Lynd, L. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: Development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Analytical Chemistry, 75, 219-227, 2003Zhang, S. Wolfgang, D. And Wilson, D. Substrate Heterogeneity Causes the Nonlinear Kinetics of Insoluble Cellulose Hydrolysis, Biotechnology and Bioengineering; vol. 66, no. 1, 1998Zykwisnka, F. Ralet, M. Garnier, C. And Thibault, F. Evidence for vitro binding of pectin side chains to cellulose, Plant physiol; 139, 397- 407, 2005Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Hidrólisis enzimática de residuos de la cosecha de caña de azúcarHydrolysis Enzymatic of crop residues sugar caneArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inversión del azúcarHidrólisisEnzimas vegetales - InhibidoresSugar - InversionHydrolysisPlant enzymes - InhibitorsInhibiciónModelos cinéticosHojas y cogollosCoctel de enzimasInhibitionKinetic modelsLeaves and tops caneEnzyme cocktailPublicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1701-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1701-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1701-10000-0001-8779-8120virtual::1701-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1701-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/deaf5296-1cb9-4a10-bc55-3b041e0893be/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/de888124-0adb-4feb-91da-a3d22b1b0de0/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdfHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf2286514https://red.uao.edu.co/bitstreams/2fc5ec66-8ccf-432f-891f-48d7c79b2620/downloadc2d3f45f9acad7782feb6ad4b4c84edfMD54TEXTHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdf.txtHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdf.txtExtracted texttext/plain39918https://red.uao.edu.co/bitstreams/ece50555-7313-4ab1-b5ef-cf5f9e91c3c3/download62af790418b8e0487b869df0974f21a5MD55THUMBNAILHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdf.jpgHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdf.jpgGenerated Thumbnailimage/jpeg9507https://red.uao.edu.co/bitstreams/00a12cce-27f8-40cd-b9c9-5f3ade2727ce/download378f05198b1a80509a248104f4b8e2a9MD5610614/12016oai:red.uao.edu.co:10614/120162024-03-05 09:55:08.774https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K