Hidrólisis enzimática de residuos de la cosecha de caña de azúcar
En esta investigación, se hidrolizó un sustrato deslignificado proveniente de residuos de la cosecha caña de azúcar (hojas y cogollos) usando un preparado enzimático con 27.53 unidades de papel filtro (FPU), obtenido a partir de enzimas comerciales. La hidrólisis se llevó a cabo a un pH de 4.2 y una...
- Autores:
-
Flórez Pardo, Luz Marina
Salcedo Mendoza, Jairo G
Galán López, Jorge Enrique
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2012
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/12016
- Acceso en línea:
- http://hdl.handle.net/10614/12016
- Palabra clave:
- Inversión del azúcar
Hidrólisis
Enzimas vegetales - Inhibidores
Sugar - Inversion
Hydrolysis
Plant enzymes - Inhibitors
Inhibición
Modelos cinéticos
Hojas y cogollos
Coctel de enzimas
Inhibition
Kinetic models
Leaves and tops cane
Enzyme cocktail
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_6d16f578b013c57edcf16a4b6c41286a |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/12016 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Hidrólisis enzimática de residuos de la cosecha de caña de azúcar |
dc.title.alternative.eng.fl_str_mv |
Hydrolysis Enzymatic of crop residues sugar cane |
title |
Hidrólisis enzimática de residuos de la cosecha de caña de azúcar |
spellingShingle |
Hidrólisis enzimática de residuos de la cosecha de caña de azúcar Inversión del azúcar Hidrólisis Enzimas vegetales - Inhibidores Sugar - Inversion Hydrolysis Plant enzymes - Inhibitors Inhibición Modelos cinéticos Hojas y cogollos Coctel de enzimas Inhibition Kinetic models Leaves and tops cane Enzyme cocktail |
title_short |
Hidrólisis enzimática de residuos de la cosecha de caña de azúcar |
title_full |
Hidrólisis enzimática de residuos de la cosecha de caña de azúcar |
title_fullStr |
Hidrólisis enzimática de residuos de la cosecha de caña de azúcar |
title_full_unstemmed |
Hidrólisis enzimática de residuos de la cosecha de caña de azúcar |
title_sort |
Hidrólisis enzimática de residuos de la cosecha de caña de azúcar |
dc.creator.fl_str_mv |
Flórez Pardo, Luz Marina Salcedo Mendoza, Jairo G Galán López, Jorge Enrique |
dc.contributor.author.none.fl_str_mv |
Flórez Pardo, Luz Marina Salcedo Mendoza, Jairo G Galán López, Jorge Enrique |
dc.subject.armarc.spa.fl_str_mv |
Inversión del azúcar Hidrólisis Enzimas vegetales - Inhibidores |
topic |
Inversión del azúcar Hidrólisis Enzimas vegetales - Inhibidores Sugar - Inversion Hydrolysis Plant enzymes - Inhibitors Inhibición Modelos cinéticos Hojas y cogollos Coctel de enzimas Inhibition Kinetic models Leaves and tops cane Enzyme cocktail |
dc.subject.armarc.eng.fl_str_mv |
Sugar - Inversion Hydrolysis Plant enzymes - Inhibitors |
dc.subject.proposal.spa.fl_str_mv |
Inhibición Modelos cinéticos Hojas y cogollos Coctel de enzimas |
dc.subject.proposal.eng.fl_str_mv |
Inhibition Kinetic models Leaves and tops cane Enzyme cocktail |
description |
En esta investigación, se hidrolizó un sustrato deslignificado proveniente de residuos de la cosecha caña de azúcar (hojas y cogollos) usando un preparado enzimático con 27.53 unidades de papel filtro (FPU), obtenido a partir de enzimas comerciales. La hidrólisis se llevó a cabo a un pH de 4.2 y una temperatura de 50 oC. Fueron analizados modelos de inhibición por sustrato, glucosa e inhibición total por producto. Los resultados mostraron que los modelos que mejor se ajustan a los datos experimentales, son los modelos de inhibición competitiva por glucosa, con una constante de Michaelis (Km) de 20.37 g/L, velocidad máxima (Vmax) 39 g/L h y una constante de inhibición (ki) de 0.442. En el caso que las relaciones enzima – Sustrato (E/S) sean mayores de 0.5, se puede aplicar el modelo cinético de Michaelis-Menten |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2020-03-02T18:32:00Z |
dc.date.available.none.fl_str_mv |
2020-03-02T18:32:00Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
19098758 01233475 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/12016 |
identifier_str_mv |
19098758 01233475 |
url |
http://hdl.handle.net/10614/12016 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
Revista Colombiana de Biotecnología. Volumen 14, número 1, (2012); páginas 171-181 |
dc.relation.citationendpage.none.fl_str_mv |
181 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
171 |
dc.relation.citationvolume.none.fl_str_mv |
14 |
dc.relation.cites.none.fl_str_mv |
Pardo Flórez, L. M.; Salcedo Mendoza, J. G.; Galán López, J. E. (2012). Hidrólisis enzimática de residuos de la cosecha de caña de azúcar. Revista Colombiana de Biotecnología. 14(1); 171-181. http://hdl.handle.net/10614/12016. http://hdl.handle.net/10614/12016 |
dc.relation.references.none.fl_str_mv |
Adsula, M.G. Ghuleb, J. E. Shaikhb, H., Singhb, R., Bastawdea, KB., Gokhalea, DV, and y Varma AJ. Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers., 62, 6 –10, 2005 Alberty, R. Determination of kinetic parameters of enzyme – catalyzed reactions with a minimum number of velocity measurements, Journal of theoretical Biology., 254, 156-163, 2008 Alves, L., Gurgela, V., Marabezia, K., Ramosa, L.A., Da Silva Curveloa, A.P. Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products 36, 560–571, 2012 Almeida, JS. Predictive non- linear modeling of complex data by artificial neural networks, Analytical biotechnology., 13, 72 -76, 2002 Ander, P. and Ericksson, KE. Selective Degradation of Wood Components by White-Rot Fungi, physiol plant., 41, 239-248, 1977 Asenjo, J. Maximazing the formation of glucose in the enzymatic hydrolysis of insoluble cellulose, Biothecnol Bioeng., 25, 3150-85, 1983 Atalla, RH. And Vanderlhart, DL. Native cellulose a composite of two distint crystalline forms, Science., 223, 283 – 285, 1984 Bailey, M., Biely, P. And Pountanen, K. Interlaboratory testig of methods for assay of xylanase activity, Journal of Biotechnology., 23, 257 – 270, 1992 Bagga, P., Sandhu, D. and Sharma, S. Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans, Journal of Applied Bacteriology., 68, 61-68, 1990 aş, D. Ceyda Dudak, F. and Boyac, IH. Modeling and optimization III: Reaction rate estimation using artificial neural network (ANN) without a kinetic model., Journal of Food Engineering., Vol 79, 622-628, 2007 Bennet, A. Role of cell wall hydrolases in fruit ripening: Annual Review Plant physiology, Plant Mol. Bio.l, 42, 675-703, 1991 Bioinformatics Resourse Portal, 2010, Herramienta Expasy, available http\ www. Expasy.Org [citado 2010] Blumenkrantz, N. New methods for quantitative determination of uronic, Anal Biochem., 54, 484 – 489, 1973 Cara, C. Moya, M. Ballesteros, I. Negro, MJ. Gonzalez, A. And Ruiz, E. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass, Process Biochem., 42, 1003-1009, 2007 Chao, T. And Talalay, P. A simple generalized equation for the analysis of multiple inhibitions of michaelis-menten kinetic systems, The journal of biological chemistry., 252, 6438-6442, 1997 Duarte, A, Introducción a la Ingeniería Bioquímica, Departamento de ingeniería Química, Universidad Nacional, Colombia, 1995 Fengel, D. and Wenwger, G. Wood: Chemistry, ultraestrucrure reaction, De Gruyter. Berlin, 300-329, 1984 Fu liu, C. Ren, J. Xu, F. Jui Liu, J. Jxia Sun, J. And Sun, R. Isolation and Characterization of Cellulose Obtained from Ultrasonic Irradiated Sugarcane Bagasse, J. Agric. Food Chem; 54, 5742-5748, 2006 Galbe, M. And Zacchi, G. A review of the production of ethanol from softwod, Appl. Microbial biotechnol; 59,.618- 628, 2002 Gianfreda, L. Xu, F. And Bollag, J. Laccases: A Useful Group of Oxidoreductive Enzymes, Bioremediation Journal; vol 3, 1-26, 1999 Heitz, M. Carrasco. F, Rubio, M. Brown, A. Chornet, E. And Overend, R. Physico-chemical characterization of lignocellulosic substrates pretreated via autohydrolysis: an application to tropical woods, Biomass; 13, 255-273, 1987 Hodge, DB. Karim, MN. Schell, DJ. McMillan, JD. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocelluloses, Bioresour Technol; 99,8940-8948, 2008 Jurado, M. Prieto, A. Martínez-Alcalá, A. And Martínez, MJ. Laccase detoxification of steam-exploded wheat straw for second generation Bioethanol, Bioresource Technology; 100, 6378 -6384, 2009 Kuwahara, M. Glenn, J, Morgan, M. And Gold, M. Separation and characterization of two extracellular H2O2 -dependent oxidases from lignolytic cultures of Phanerochaete chrysosporium, FEBS Lett; 169, 247–50, 1984 Lee, H, Fan, L.. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates, Biotechnology and Bioingineering; Vol XXIV, .2383 -2406, 1982 Marín, R. Caracterización y expresión recombinante de una celulasa de origen antartido,[ trabajo de grado para optar título de ingeniero civil en biotecnología], Facultad de Ciencias Físicas, Universidad de Chile, 2007 Megazyme International Ireland Limited. Assay 1-4-β xilanase using Azo Xilan (OAT), SAXYO, available: http\: www. Megazyme.com, [citado diciembre 2009] Movagarnejad, K. Sohrabi, M. Kaghazchi, T. And Vahabzadeh, F. A Model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid – liquid systems, Biochemical Engineering Journal; 4, 197-206, 2000 Orsi, B. And Tipton, F. Enzyme kinetics and mechanism part A. Initial rate and inhibitor, Methods Enzymoly; 63, 159-183, 1979 Philippidis, G. and Smith, T. Limiting factors in the simultaneous saccharification and fermentation process for conversión of cellulosic biomass to fuel ethanol, Appl. Biochem and Biotech; 51/52, 117- 124, 1995 Ranby, B. G. The Mercerization of cellulose. Acta Chemica Scandinavica, 6, 116–127, 1952. Rosgaard, L. Andric, P. Dam-Johansen, K. Pedersen, S. Meyer, A. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl Biochem Biotechnol; 143,27- 40, 2007 Saha, B. Item, L. Cotta, M. And Wu, Y. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnology Progress; 21, 816–822, 2005 Saparrat, M. Mocchiutti, P. And Liggieri, C. Ligninolytic enzyme ability and potential biotechnology applications of the white-rot fungus Grammothele subargentea LPSC no. 436 strain, Process Biochemistry; 43, 368–375, 2008 Sørensen, I. Pedersen, S. Meyer, A. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue, Biotechnol Prog; 22,505-513, 2006. Van Zyl, C. Prior, B. And Du Preez, J. Acetic acid inhibition of D-xylose fermentation by Pichia stipitis, Enzyme and Microbial Technology; 13, 82-86, 1991 Wheals, A. Basso, L. And Álvarez, A. Fuel ethanol after 25 years, Trend Biotecnol; 17, 482-489, 1999 Wyman, C. Handbook on Bioethanol: production and utilization. Washinnton, DC, Taylor & francis, 1996 Zhang, Y. And Lynd, L. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: Development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Analytical Chemistry, 75, 219-227, 2003 Zhang, S. Wolfgang, D. And Wilson, D. Substrate Heterogeneity Causes the Nonlinear Kinetics of Insoluble Cellulose Hydrolysis, Biotechnology and Bioengineering; vol. 66, no. 1, 1998 Zykwisnka, F. Ralet, M. Garnier, C. And Thibault, F. Evidence for vitro binding of pectin side chains to cellulose, Plant physiol; 139, 397- 407, 2005 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/deaf5296-1cb9-4a10-bc55-3b041e0893be/download https://red.uao.edu.co/bitstreams/de888124-0adb-4feb-91da-a3d22b1b0de0/download https://red.uao.edu.co/bitstreams/2fc5ec66-8ccf-432f-891f-48d7c79b2620/download https://red.uao.edu.co/bitstreams/ece50555-7313-4ab1-b5ef-cf5f9e91c3c3/download https://red.uao.edu.co/bitstreams/00a12cce-27f8-40cd-b9c9-5f3ade2727ce/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 c2d3f45f9acad7782feb6ad4b4c84edf 62af790418b8e0487b869df0974f21a5 378f05198b1a80509a248104f4b8e2a9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259899861827584 |
spelling |
Flórez Pardo, Luz Marinavirtual::1701-1Salcedo Mendoza, Jairo G514e81ab74b0cca051b27c863ecb3674Galán López, Jorge Enrique44bc804ec488c3ad557b32adac4b7910Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-03-02T18:32:00Z2020-03-02T18:32:00Z20121909875801233475http://hdl.handle.net/10614/12016En esta investigación, se hidrolizó un sustrato deslignificado proveniente de residuos de la cosecha caña de azúcar (hojas y cogollos) usando un preparado enzimático con 27.53 unidades de papel filtro (FPU), obtenido a partir de enzimas comerciales. La hidrólisis se llevó a cabo a un pH de 4.2 y una temperatura de 50 oC. Fueron analizados modelos de inhibición por sustrato, glucosa e inhibición total por producto. Los resultados mostraron que los modelos que mejor se ajustan a los datos experimentales, son los modelos de inhibición competitiva por glucosa, con una constante de Michaelis (Km) de 20.37 g/L, velocidad máxima (Vmax) 39 g/L h y una constante de inhibición (ki) de 0.442. En el caso que las relaciones enzima – Sustrato (E/S) sean mayores de 0.5, se puede aplicar el modelo cinético de Michaelis-MentenIn this research, a delignified substrate from crops residues sugar cane residues (leaves and top cane) was hydrolyzed using an enzyme preparation with 27.53 FPU. This enzyme was obtained from trade. Hydrolysis was carried out to pH of 4.2 and a temperature of 50 oC. Models of inhibition models substrate, glucose and total inhibition product was analyzed. The results showed that models that best fit the data experimental was the models competitive glucose inhibition (Km= 20.37, Vmax=39 and ki= 0.442). In the event that E/S is above 0.5, can applied kinetic models of Michaelis – Mentenapplication/pdf11 páginasspaUniversidad Nacional de ColombiaRevista Colombiana de Biotecnología. Volumen 14, número 1, (2012); páginas 171-181181117114Pardo Flórez, L. M.; Salcedo Mendoza, J. G.; Galán López, J. E. (2012). Hidrólisis enzimática de residuos de la cosecha de caña de azúcar. Revista Colombiana de Biotecnología. 14(1); 171-181. http://hdl.handle.net/10614/12016. http://hdl.handle.net/10614/12016Adsula, M.G. Ghuleb, J. E. Shaikhb, H., Singhb, R., Bastawdea, KB., Gokhalea, DV, and y Varma AJ. Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers., 62, 6 –10, 2005Alberty, R. Determination of kinetic parameters of enzyme – catalyzed reactions with a minimum number of velocity measurements, Journal of theoretical Biology., 254, 156-163, 2008Alves, L., Gurgela, V., Marabezia, K., Ramosa, L.A., Da Silva Curveloa, A.P. Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products 36, 560–571, 2012Almeida, JS. Predictive non- linear modeling of complex data by artificial neural networks, Analytical biotechnology., 13, 72 -76, 2002Ander, P. and Ericksson, KE. Selective Degradation of Wood Components by White-Rot Fungi, physiol plant., 41, 239-248, 1977Asenjo, J. Maximazing the formation of glucose in the enzymatic hydrolysis of insoluble cellulose, Biothecnol Bioeng., 25, 3150-85, 1983Atalla, RH. And Vanderlhart, DL. Native cellulose a composite of two distint crystalline forms, Science., 223, 283 – 285, 1984Bailey, M., Biely, P. And Pountanen, K. Interlaboratory testig of methods for assay of xylanase activity, Journal of Biotechnology., 23, 257 – 270, 1992Bagga, P., Sandhu, D. and Sharma, S. Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans, Journal of Applied Bacteriology., 68, 61-68, 1990aş, D. Ceyda Dudak, F. and Boyac, IH. Modeling and optimization III: Reaction rate estimation using artificial neural network (ANN) without a kinetic model., Journal of Food Engineering., Vol 79, 622-628, 2007Bennet, A. Role of cell wall hydrolases in fruit ripening: Annual Review Plant physiology, Plant Mol. Bio.l, 42, 675-703, 1991Bioinformatics Resourse Portal, 2010, Herramienta Expasy, available http\ www. Expasy.Org [citado 2010]Blumenkrantz, N. New methods for quantitative determination of uronic, Anal Biochem., 54, 484 – 489, 1973Cara, C. Moya, M. Ballesteros, I. Negro, MJ. Gonzalez, A. And Ruiz, E. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass, Process Biochem., 42, 1003-1009, 2007Chao, T. And Talalay, P. A simple generalized equation for the analysis of multiple inhibitions of michaelis-menten kinetic systems, The journal of biological chemistry., 252, 6438-6442, 1997Duarte, A, Introducción a la Ingeniería Bioquímica, Departamento de ingeniería Química, Universidad Nacional, Colombia, 1995Fengel, D. and Wenwger, G. Wood: Chemistry, ultraestrucrure reaction, De Gruyter. Berlin, 300-329, 1984Fu liu, C. Ren, J. Xu, F. Jui Liu, J. Jxia Sun, J. And Sun, R. Isolation and Characterization of Cellulose Obtained from Ultrasonic Irradiated Sugarcane Bagasse, J. Agric. Food Chem; 54, 5742-5748, 2006Galbe, M. And Zacchi, G. A review of the production of ethanol from softwod, Appl. Microbial biotechnol; 59,.618- 628, 2002Gianfreda, L. Xu, F. And Bollag, J. Laccases: A Useful Group of Oxidoreductive Enzymes, Bioremediation Journal; vol 3, 1-26, 1999Heitz, M. Carrasco. F, Rubio, M. Brown, A. Chornet, E. And Overend, R. Physico-chemical characterization of lignocellulosic substrates pretreated via autohydrolysis: an application to tropical woods, Biomass; 13, 255-273, 1987Hodge, DB. Karim, MN. Schell, DJ. McMillan, JD. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocelluloses, Bioresour Technol; 99,8940-8948, 2008Jurado, M. Prieto, A. Martínez-Alcalá, A. And Martínez, MJ. Laccase detoxification of steam-exploded wheat straw for second generation Bioethanol, Bioresource Technology; 100, 6378 -6384, 2009Kuwahara, M. Glenn, J, Morgan, M. And Gold, M. Separation and characterization of two extracellular H2O2 -dependent oxidases from lignolytic cultures of Phanerochaete chrysosporium, FEBS Lett; 169, 247–50, 1984Lee, H, Fan, L.. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates, Biotechnology and Bioingineering; Vol XXIV, .2383 -2406, 1982Marín, R. Caracterización y expresión recombinante de una celulasa de origen antartido,[ trabajo de grado para optar título de ingeniero civil en biotecnología], Facultad de Ciencias Físicas, Universidad de Chile, 2007Megazyme International Ireland Limited. Assay 1-4-β xilanase using Azo Xilan (OAT), SAXYO, available: http\: www. Megazyme.com, [citado diciembre 2009]Movagarnejad, K. Sohrabi, M. Kaghazchi, T. And Vahabzadeh, F. A Model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid – liquid systems, Biochemical Engineering Journal; 4, 197-206, 2000Orsi, B. And Tipton, F. Enzyme kinetics and mechanism part A. Initial rate and inhibitor, Methods Enzymoly; 63, 159-183, 1979Philippidis, G. and Smith, T. Limiting factors in the simultaneous saccharification and fermentation process for conversión of cellulosic biomass to fuel ethanol, Appl. Biochem and Biotech; 51/52, 117- 124, 1995Ranby, B. G. The Mercerization of cellulose. Acta Chemica Scandinavica, 6, 116–127, 1952.Rosgaard, L. Andric, P. Dam-Johansen, K. Pedersen, S. Meyer, A. Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl Biochem Biotechnol; 143,27- 40, 2007Saha, B. Item, L. Cotta, M. And Wu, Y. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol, Biotechnology Progress; 21, 816–822, 2005Saparrat, M. Mocchiutti, P. And Liggieri, C. Ligninolytic enzyme ability and potential biotechnology applications of the white-rot fungus Grammothele subargentea LPSC no. 436 strain, Process Biochemistry; 43, 368–375, 2008Sørensen, I. Pedersen, S. Meyer, A. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue, Biotechnol Prog; 22,505-513, 2006.Van Zyl, C. Prior, B. And Du Preez, J. Acetic acid inhibition of D-xylose fermentation by Pichia stipitis, Enzyme and Microbial Technology; 13, 82-86, 1991Wheals, A. Basso, L. And Álvarez, A. Fuel ethanol after 25 years, Trend Biotecnol; 17, 482-489, 1999Wyman, C. Handbook on Bioethanol: production and utilization. Washinnton, DC, Taylor & francis, 1996Zhang, Y. And Lynd, L. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: Development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Analytical Chemistry, 75, 219-227, 2003Zhang, S. Wolfgang, D. And Wilson, D. Substrate Heterogeneity Causes the Nonlinear Kinetics of Insoluble Cellulose Hydrolysis, Biotechnology and Bioengineering; vol. 66, no. 1, 1998Zykwisnka, F. Ralet, M. Garnier, C. And Thibault, F. Evidence for vitro binding of pectin side chains to cellulose, Plant physiol; 139, 397- 407, 2005Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Hidrólisis enzimática de residuos de la cosecha de caña de azúcarHydrolysis Enzymatic of crop residues sugar caneArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inversión del azúcarHidrólisisEnzimas vegetales - InhibidoresSugar - InversionHydrolysisPlant enzymes - InhibitorsInhibiciónModelos cinéticosHojas y cogollosCoctel de enzimasInhibitionKinetic modelsLeaves and tops caneEnzyme cocktailPublicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1701-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1701-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1701-10000-0001-8779-8120virtual::1701-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1701-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/deaf5296-1cb9-4a10-bc55-3b041e0893be/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/de888124-0adb-4feb-91da-a3d22b1b0de0/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdfHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf2286514https://red.uao.edu.co/bitstreams/2fc5ec66-8ccf-432f-891f-48d7c79b2620/downloadc2d3f45f9acad7782feb6ad4b4c84edfMD54TEXTHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdf.txtHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdf.txtExtracted texttext/plain39918https://red.uao.edu.co/bitstreams/ece50555-7313-4ab1-b5ef-cf5f9e91c3c3/download62af790418b8e0487b869df0974f21a5MD55THUMBNAILHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdf.jpgHidrólisis enzimática de residuos de la cosecha de caña de azúcar.pdf.jpgGenerated Thumbnailimage/jpeg9507https://red.uao.edu.co/bitstreams/00a12cce-27f8-40cd-b9c9-5f3ade2727ce/download378f05198b1a80509a248104f4b8e2a9MD5610614/12016oai:red.uao.edu.co:10614/120162024-03-05 09:55:08.774https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |