Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
The aim of this research is to study the thermal degradation kinetics andsome physicochemical properties of starch nanoparticles (SNPs) producedfrom potato starch (PS) by nanoprecipitation. Native PS is used as a control.The powder samples are analyzed by means of light and transmissionelectron micr...
- Autores:
-
Aparicio Rojas, Gladis Miriam
Agudelo Henao, Ana Cecilia
Ayala Valencia, Germán
Caicedo Chacón, Wilson Daniel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11397
- Acceso en línea:
- http://hdl.handle.net/10614/11397
https://doi.org/10.1002/star.201800081
- Palabra clave:
- Cinética química
Chemical reaction, rate of
Nanopartículas
Nanoparticles
Activation energy
Nanoprecipitation
Starch nanoparticles
Thermogravimetry
Thermal degradation kinetic
Water evaporation kinetic
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_39a539457fc304734f39eef398bd9f86 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11397 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation |
title |
Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation |
spellingShingle |
Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation Cinética química Chemical reaction, rate of Nanopartículas Nanoparticles Activation energy Nanoprecipitation Starch nanoparticles Thermogravimetry Thermal degradation kinetic Water evaporation kinetic |
title_short |
Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation |
title_full |
Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation |
title_fullStr |
Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation |
title_full_unstemmed |
Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation |
title_sort |
Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation |
dc.creator.fl_str_mv |
Aparicio Rojas, Gladis Miriam Agudelo Henao, Ana Cecilia Ayala Valencia, Germán Caicedo Chacón, Wilson Daniel |
dc.contributor.author.none.fl_str_mv |
Aparicio Rojas, Gladis Miriam Agudelo Henao, Ana Cecilia Ayala Valencia, Germán Caicedo Chacón, Wilson Daniel |
dc.subject.lemb.spa.fl_str_mv |
Cinética química |
topic |
Cinética química Chemical reaction, rate of Nanopartículas Nanoparticles Activation energy Nanoprecipitation Starch nanoparticles Thermogravimetry Thermal degradation kinetic Water evaporation kinetic |
dc.subject.lemb.eng.fl_str_mv |
Chemical reaction, rate of |
dc.subject.armarc.spa.fl_str_mv |
Nanopartículas |
dc.subject.armarc.eng.fl_str_mv |
Nanoparticles |
dc.subject.proposal.eng.fl_str_mv |
Activation energy Nanoprecipitation Starch nanoparticles Thermogravimetry Thermal degradation kinetic Water evaporation kinetic |
description |
The aim of this research is to study the thermal degradation kinetics andsome physicochemical properties of starch nanoparticles (SNPs) producedfrom potato starch (PS) by nanoprecipitation. Native PS is used as a control.The powder samples are analyzed by means of light and transmissionelectron microscopies, X-ray diffraction, Fourier transform infrared, andthermogravimetric analysis. PS shows oval and spherical granular shapedwith a diameter between 6 and 18mm, whereas SNPs display spherical andelliptical shapes with particle sizes between 50 and 150 nm. The relativecrystallinity is 25.4% to PS, and it decreases to approximately 23.5% forSNPs. Activation energy (E) associated to the water evaporation and thermaldegradation is calculated using the Newton model as well Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose (KAS) models, respectively. TheEvaluesusing the Newton model increase from 43.7 kJ mol 1(PS) to 84.1 kJ mol 1(SNPs). TheEvalues using the OFW and KAS models vary between 165 and227 kJ mol 1for PS, and between 180 and 400 kJ mol 1for SNPs. Modifica-tions inEvalues are associated with the increase in surface area in SNPs.This research reports new information of the thermal properties of SNPs |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-07-12 |
dc.date.accessioned.none.fl_str_mv |
2019-11-05T20:55:17Z |
dc.date.available.none.fl_str_mv |
2019-11-05T20:55:17Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0038-9056 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11397 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1002/star.201800081 |
identifier_str_mv |
0038-9056 |
url |
http://hdl.handle.net/10614/11397 https://doi.org/10.1002/star.201800081 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationissue.none.fl_str_mv |
1-2 |
dc.relation.citationvolume.none.fl_str_mv |
71 |
dc.relation.cites.eng.fl_str_mv |
Caicedo Chacon, W. D., Ayala Valencia, G., Aparicio Rojas, G. M., & Agudelo Henao, A. C. (2019). Mathematical Models for Prediction of Water Evaporation and Thermal Degradation Kinetics of Potato Starch Nanoparticles Obtained by Nanoprecipitation. Starch‐Stärke, 71(1-2), 1800081 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Starch‐Stärke |
dc.relation.references.none.fl_str_mv |
[1] BeMiller, J., Whistler, R., Starch: Chemistry and Technology, 3rd ed. Elsevier B.V. 2009. [2] Eliasson, A. C., Starch in food: Structure, function and applications, 1st ed. CRC Press. 2004. [3] LeCorre, D., Bras, J., Dufresne, A., Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr Polym. 2012, 87, 658–666. [4] LeCorre, D., Bras, J., Dufresne, A., Starch Nanoparticles: A Review. Biomacromlecules. 2010, 11, 1139–1153. [5] Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, Q., Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym. 2015, 121, 155–162. [6] Jiang, S., Liu, C., Wang, X., Xiong, L., Sun, Q., Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT - Food Sci. Technol. 2016, 69, 251–257. [7] Valencia, G. A., Moraes, I. C. F., Hilliou, L. H. G., Lourenço, R. V., Sobral, P. J. D. A., Nanocomposite-forming solutions based on cassava starch and laponite: Viscoelastic and rheological characterization. J. Food Eng. 2015, 166, 174–181. [8] Aouada, A. F., Mattoso, L. H., Longo, E., A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: Structural, mechanical, and thermal characterizations. J. Thermoplast Compos Mater. 2011, 26, 109–124. [9] Song, D., Thio, Y. S., Deng, Y., Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym. 2011, 85, 208–214. [10] Shi, A., Li, D., Wang, L., Li, B., Adhikari, B., Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydr Polym. 2001, 83, 1604–1610. [11] Kim, H., Lee, J. H., Kim, J., Lim, W., Lim, S., Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch/Stärke. 2012, 64, 367–373. [12] Qin, Y., Liu, C., Jiang, S., Xiong, L., Sun, Q., Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Ind. Crop. Prod. 2016, 87, 182–190. [13] Hebeish, A., El-Rafie, M. H., El-Sheikh, M. A., El-Naggar, M. E., Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. J. Inorg. Organomet. Polym. Mater. 2014, 24, 515–524. [14] Bouvier, J. M., Campanella, O. H., Extrusion Processing Technology: Food and Non-Food Biomaterials, 1st ed. Wiley-Blackwell. 2014. [15] Gómez, P. P., Rivera, A. R., García, M. E. R., Effect of the thermoalkaline treatment over the thermal degradation of corn starch. Starch/Stärke. 2012, 64, 776–785. [16] Valencia, G. A., Henao, A. C. A., Zapara, R. A. V., Influence of glicerol content on the electrical properties of potato starch films. Starch/Stärke. 2014, 66, 260–266. [17] Nara, B. S., Komiya, T., Studies on the Relationship Between Watersatured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch/Stärke.1983, 35, 407–410. [18] Gallant, D.J., Bouchet, B., Baldwin, P. M., Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym. 1997, 32, 177–191. [19] LeCorre, D., Bras, J., Dufresne, A., Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanoparticle Res. 2011, 13, 7193–7208. [20] Tester, R. F., Karkalas, J., Qi, X., Starch-composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [21] Zobel, H. F., Young, S. N., Rocca, L. A., Starch Gelatinization: An X-ray Diffraction Study. Starch/Stärke. 1988, 65, 443–446. [22] Valencia, A., Cristina, I., Moraes, F., Lourenc, R. V., Barbosa, Q., Jose, P., Mo, A., Physicochemical, morphological, and functional properties of fl our and starch from peach palm (Bactris gasipaes K.) fruit. [23] Boyaci, I. H., Temiz, H. T., Genis, H. E., Soykut, E. A., Yazgan, N. N., Güven, B., Uysal, R. S., Bozkurt, A. G., Ilaslan, K., Torum, O., Seker, F. C. D., Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015, 5, 56606–56624. [24] Kizil, R., Irudayaraj, J., Seetharaman, K., Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [25] Morais, L. C., Maia, A. A. D., Guandique, M. E. G., Rosa, A. A. H., Pyrolysis and combustion of sugarcane bagasse. J. Therm. Anal. Calorim. 2017, 129, 1813–1822. [26] Gómez, P. P., Gil, N. C. A., Muñoz, C. V., Rivera, A. R., García, M. E. R., Thermal degradation of starch sources: Green banana, potato, cassava, and corn – kinetic study by non-isothermal procedures. Starch/Stärke. 2014, 66, 691–699. [27] Gonçalves, P. M., Noreña, C. P. Z., da Silveira, N. P., Brandelly, A., Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Sci. Technol. 2014, 58, 21–27. [28] Chen, D. Y., Zhang, D., Zhu, X. F., Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J. Therm. Anal. Calorim. 2012, 109, 847–854. [29] Chen, D., Zheng, Y., Zhu, X., In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresour. Technol. 2013, 131, 40–46. [30] Saari, H., Fuentes, C., Sjöö, M., Rayner, M., Wahlgren, M., Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydr. Polym. 2017, 157, 558–566. [31] Cortés, A. M., Bridgwater, A. V., Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis. Fuel Process. Technol. 2015, 138, 184–193. [32] Lim, A. C. R., Chin, B. L. F., Jawad, Z. A., Hii, K.L., Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng. 2016, 148, 1247–1251. [33] Moussout, H., Ahla, H., Aazza, M., Bourakhouadar, M., Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 2016, 130, 1–9. [34] Fernandez, A., Saffe, A., Mazza, G., Rodriguez, R., Nonisothermal drying kinetics of biomass fuels by thermogravimetric analysis under oxidative and inert atmosphere. Dry. Technol. 2017, 35, 163–172. [35] Doyle, C., Estimating Isothermal Life from Thermogravimetric Data. J. Appl. Polym. Sci. 1962, 6, 639–642. [36] Edreis, E. M. A., Yao, H., Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. Integr. Med. Res. 2016, 5, 317–326. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Wiley Online Library |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/8ee0c42c-87f9-4f4a-92ec-dd541e85a592/download https://red.uao.edu.co/bitstreams/b9745203-cfd6-4c36-b16b-3473ccd1b0d2/download https://red.uao.edu.co/bitstreams/c0241162-89d9-48f6-9ba5-fe59d10ba56a/download https://red.uao.edu.co/bitstreams/0a773000-f9a8-44ff-b9d8-724f4c5ccb14/download https://red.uao.edu.co/bitstreams/455bf24e-0916-4c3e-97a4-52bc531b72e9/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 5a41bd85b71d82014044cc46b7fbdcf2 45afeead14c7e6099c67dc25140a3160 1a765aad8d034b82fb1951265279e887 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259825309122560 |
spelling |
Aparicio Rojas, Gladis Miriamvirtual::300-1Agudelo Henao, Ana Cecilia51447f519820eb6cb1afffd13254039fAyala Valencia, Germán3495b08f6aaf044609ddd642686e78f5Caicedo Chacón, Wilson Daniel8fa3387f67fbdd7b8e4efb5a45e18e60Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-05T20:55:17Z2019-11-05T20:55:17Z2018-07-120038-9056http://hdl.handle.net/10614/11397https://doi.org/10.1002/star.201800081The aim of this research is to study the thermal degradation kinetics andsome physicochemical properties of starch nanoparticles (SNPs) producedfrom potato starch (PS) by nanoprecipitation. Native PS is used as a control.The powder samples are analyzed by means of light and transmissionelectron microscopies, X-ray diffraction, Fourier transform infrared, andthermogravimetric analysis. PS shows oval and spherical granular shapedwith a diameter between 6 and 18mm, whereas SNPs display spherical andelliptical shapes with particle sizes between 50 and 150 nm. The relativecrystallinity is 25.4% to PS, and it decreases to approximately 23.5% forSNPs. Activation energy (E) associated to the water evaporation and thermaldegradation is calculated using the Newton model as well Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose (KAS) models, respectively. TheEvaluesusing the Newton model increase from 43.7 kJ mol 1(PS) to 84.1 kJ mol 1(SNPs). TheEvalues using the OFW and KAS models vary between 165 and227 kJ mol 1for PS, and between 180 and 400 kJ mol 1for SNPs. Modifica-tions inEvalues are associated with the increase in surface area in SNPs.This research reports new information of the thermal properties of SNPsapplication/pdf7 páginasengWiley Online LibraryDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Cinética químicaChemical reaction, rate ofNanopartículasNanoparticlesActivation energyNanoprecipitationStarch nanoparticlesThermogravimetryThermal degradation kineticWater evaporation kinetic1-271Caicedo Chacon, W. D., Ayala Valencia, G., Aparicio Rojas, G. M., & Agudelo Henao, A. C. (2019). Mathematical Models for Prediction of Water Evaporation and Thermal Degradation Kinetics of Potato Starch Nanoparticles Obtained by Nanoprecipitation. Starch‐Stärke, 71(1-2), 1800081Starch‐Stärke[1] BeMiller, J., Whistler, R., Starch: Chemistry and Technology, 3rd ed. Elsevier B.V. 2009.[2] Eliasson, A. C., Starch in food: Structure, function and applications, 1st ed. CRC Press. 2004.[3] LeCorre, D., Bras, J., Dufresne, A., Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr Polym. 2012, 87, 658–666.[4] LeCorre, D., Bras, J., Dufresne, A., Starch Nanoparticles: A Review. Biomacromlecules. 2010, 11, 1139–1153.[5] Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, Q., Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym. 2015, 121, 155–162.[6] Jiang, S., Liu, C., Wang, X., Xiong, L., Sun, Q., Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT - Food Sci. Technol. 2016, 69, 251–257.[7] Valencia, G. A., Moraes, I. C. F., Hilliou, L. H. G., Lourenço, R. V., Sobral, P. J. D. A., Nanocomposite-forming solutions based on cassava starch and laponite: Viscoelastic and rheological characterization. J. Food Eng. 2015, 166, 174–181.[8] Aouada, A. F., Mattoso, L. H., Longo, E., A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: Structural, mechanical, and thermal characterizations. J. Thermoplast Compos Mater. 2011, 26, 109–124.[9] Song, D., Thio, Y. S., Deng, Y., Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym. 2011, 85, 208–214.[10] Shi, A., Li, D., Wang, L., Li, B., Adhikari, B., Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydr Polym. 2001, 83, 1604–1610.[11] Kim, H., Lee, J. H., Kim, J., Lim, W., Lim, S., Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch/Stärke. 2012, 64, 367–373.[12] Qin, Y., Liu, C., Jiang, S., Xiong, L., Sun, Q., Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Ind. Crop. Prod. 2016, 87, 182–190.[13] Hebeish, A., El-Rafie, M. H., El-Sheikh, M. A., El-Naggar, M. E., Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. J. Inorg. Organomet. Polym. Mater. 2014, 24, 515–524.[14] Bouvier, J. M., Campanella, O. H., Extrusion Processing Technology: Food and Non-Food Biomaterials, 1st ed. Wiley-Blackwell. 2014.[15] Gómez, P. P., Rivera, A. R., García, M. E. R., Effect of the thermoalkaline treatment over the thermal degradation of corn starch. Starch/Stärke. 2012, 64, 776–785.[16] Valencia, G. A., Henao, A. C. A., Zapara, R. A. V., Influence of glicerol content on the electrical properties of potato starch films. Starch/Stärke. 2014, 66, 260–266.[17] Nara, B. S., Komiya, T., Studies on the Relationship Between Watersatured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch/Stärke.1983, 35, 407–410.[18] Gallant, D.J., Bouchet, B., Baldwin, P. M., Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym. 1997, 32, 177–191.[19] LeCorre, D., Bras, J., Dufresne, A., Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanoparticle Res. 2011, 13, 7193–7208.[20] Tester, R. F., Karkalas, J., Qi, X., Starch-composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165.[21] Zobel, H. F., Young, S. N., Rocca, L. A., Starch Gelatinization: An X-ray Diffraction Study. Starch/Stärke. 1988, 65, 443–446.[22] Valencia, A., Cristina, I., Moraes, F., Lourenc, R. V., Barbosa, Q., Jose, P., Mo, A., Physicochemical, morphological, and functional properties of fl our and starch from peach palm (Bactris gasipaes K.) fruit.[23] Boyaci, I. H., Temiz, H. T., Genis, H. E., Soykut, E. A., Yazgan, N. N., Güven, B., Uysal, R. S., Bozkurt, A. G., Ilaslan, K., Torum, O., Seker, F. C. D., Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015, 5, 56606–56624.[24] Kizil, R., Irudayaraj, J., Seetharaman, K., Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918.[25] Morais, L. C., Maia, A. A. D., Guandique, M. E. G., Rosa, A. A. H., Pyrolysis and combustion of sugarcane bagasse. J. Therm. Anal. Calorim. 2017, 129, 1813–1822.[26] Gómez, P. P., Gil, N. C. A., Muñoz, C. V., Rivera, A. R., García, M. E. R., Thermal degradation of starch sources: Green banana, potato, cassava, and corn – kinetic study by non-isothermal procedures. Starch/Stärke. 2014, 66, 691–699.[27] Gonçalves, P. M., Noreña, C. P. Z., da Silveira, N. P., Brandelly, A., Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Sci. Technol. 2014, 58, 21–27.[28] Chen, D. Y., Zhang, D., Zhu, X. F., Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J. Therm. Anal. Calorim. 2012, 109, 847–854.[29] Chen, D., Zheng, Y., Zhu, X., In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresour. Technol. 2013, 131, 40–46.[30] Saari, H., Fuentes, C., Sjöö, M., Rayner, M., Wahlgren, M., Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydr. Polym. 2017, 157, 558–566.[31] Cortés, A. M., Bridgwater, A. V., Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis. Fuel Process. Technol. 2015, 138, 184–193.[32] Lim, A. C. R., Chin, B. L. F., Jawad, Z. A., Hii, K.L., Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng. 2016, 148, 1247–1251.[33] Moussout, H., Ahla, H., Aazza, M., Bourakhouadar, M., Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 2016, 130, 1–9.[34] Fernandez, A., Saffe, A., Mazza, G., Rodriguez, R., Nonisothermal drying kinetics of biomass fuels by thermogravimetric analysis under oxidative and inert atmosphere. Dry. Technol. 2017, 35, 163–172.[35] Doyle, C., Estimating Isothermal Life from Thermogravimetric Data. J. Appl. Polym. Sci. 1962, 6, 639–642.[36] Edreis, E. M. A., Yao, H., Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. Integr. Med. Res. 2016, 5, 317–326.Publicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::300-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::300-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::300-10000-0002-7158-1223virtual::300-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::300-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/8ee0c42c-87f9-4f4a-92ec-dd541e85a592/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/b9745203-cfd6-4c36-b16b-3473ccd1b0d2/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdfMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1581557https://red.uao.edu.co/bitstreams/c0241162-89d9-48f6-9ba5-fe59d10ba56a/download5a41bd85b71d82014044cc46b7fbdcf2MD54TEXTMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdf.txtMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdf.txtExtracted texttext/plain35734https://red.uao.edu.co/bitstreams/0a773000-f9a8-44ff-b9d8-724f4c5ccb14/download45afeead14c7e6099c67dc25140a3160MD55THUMBNAILMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdf.jpgMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdf.jpgGenerated Thumbnailimage/jpeg9378https://red.uao.edu.co/bitstreams/455bf24e-0916-4c3e-97a4-52bc531b72e9/download1a765aad8d034b82fb1951265279e887MD5610614/11397oai:red.uao.edu.co:10614/113972024-02-26 16:39:27.324https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |