Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation

The aim of this research is to study the thermal degradation kinetics andsome physicochemical properties of starch nanoparticles (SNPs) producedfrom potato starch (PS) by nanoprecipitation. Native PS is used as a control.The powder samples are analyzed by means of light and transmissionelectron micr...

Full description

Autores:
Aparicio Rojas, Gladis Miriam
Agudelo Henao, Ana Cecilia
Ayala Valencia, Germán
Caicedo Chacón, Wilson Daniel
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11397
Acceso en línea:
http://hdl.handle.net/10614/11397
https://doi.org/10.1002/star.201800081
Palabra clave:
Cinética química
Chemical reaction, rate of
Nanopartículas
Nanoparticles
Activation energy
Nanoprecipitation
Starch nanoparticles
Thermogravimetry
Thermal degradation kinetic
Water evaporation kinetic
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_39a539457fc304734f39eef398bd9f86
oai_identifier_str oai:red.uao.edu.co:10614/11397
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
title Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
spellingShingle Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
Cinética química
Chemical reaction, rate of
Nanopartículas
Nanoparticles
Activation energy
Nanoprecipitation
Starch nanoparticles
Thermogravimetry
Thermal degradation kinetic
Water evaporation kinetic
title_short Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
title_full Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
title_fullStr Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
title_full_unstemmed Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
title_sort Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation
dc.creator.fl_str_mv Aparicio Rojas, Gladis Miriam
Agudelo Henao, Ana Cecilia
Ayala Valencia, Germán
Caicedo Chacón, Wilson Daniel
dc.contributor.author.none.fl_str_mv Aparicio Rojas, Gladis Miriam
Agudelo Henao, Ana Cecilia
Ayala Valencia, Germán
Caicedo Chacón, Wilson Daniel
dc.subject.lemb.spa.fl_str_mv Cinética química
topic Cinética química
Chemical reaction, rate of
Nanopartículas
Nanoparticles
Activation energy
Nanoprecipitation
Starch nanoparticles
Thermogravimetry
Thermal degradation kinetic
Water evaporation kinetic
dc.subject.lemb.eng.fl_str_mv Chemical reaction, rate of
dc.subject.armarc.spa.fl_str_mv Nanopartículas
dc.subject.armarc.eng.fl_str_mv Nanoparticles
dc.subject.proposal.eng.fl_str_mv Activation energy
Nanoprecipitation
Starch nanoparticles
Thermogravimetry
Thermal degradation kinetic
Water evaporation kinetic
description The aim of this research is to study the thermal degradation kinetics andsome physicochemical properties of starch nanoparticles (SNPs) producedfrom potato starch (PS) by nanoprecipitation. Native PS is used as a control.The powder samples are analyzed by means of light and transmissionelectron microscopies, X-ray diffraction, Fourier transform infrared, andthermogravimetric analysis. PS shows oval and spherical granular shapedwith a diameter between 6 and 18mm, whereas SNPs display spherical andelliptical shapes with particle sizes between 50 and 150 nm. The relativecrystallinity is 25.4% to PS, and it decreases to approximately 23.5% forSNPs. Activation energy (E) associated to the water evaporation and thermaldegradation is calculated using the Newton model as well Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose (KAS) models, respectively. TheEvaluesusing the Newton model increase from 43.7 kJ mol 1(PS) to 84.1 kJ mol 1(SNPs). TheEvalues using the OFW and KAS models vary between 165 and227 kJ mol 1for PS, and between 180 and 400 kJ mol 1for SNPs. Modifica-tions inEvalues are associated with the increase in surface area in SNPs.This research reports new information of the thermal properties of SNPs
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-07-12
dc.date.accessioned.none.fl_str_mv 2019-11-05T20:55:17Z
dc.date.available.none.fl_str_mv 2019-11-05T20:55:17Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0038-9056
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11397
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1002/star.201800081
identifier_str_mv 0038-9056
url http://hdl.handle.net/10614/11397
https://doi.org/10.1002/star.201800081
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 1-2
dc.relation.citationvolume.none.fl_str_mv 71
dc.relation.cites.eng.fl_str_mv Caicedo Chacon, W. D., Ayala Valencia, G., Aparicio Rojas, G. M., & Agudelo Henao, A. C. (2019). Mathematical Models for Prediction of Water Evaporation and Thermal Degradation Kinetics of Potato Starch Nanoparticles Obtained by Nanoprecipitation. Starch‐Stärke, 71(1-2), 1800081
dc.relation.ispartofjournal.eng.fl_str_mv Starch‐Stärke
dc.relation.references.none.fl_str_mv [1] BeMiller, J., Whistler, R., Starch: Chemistry and Technology, 3rd ed. Elsevier B.V. 2009.
[2] Eliasson, A. C., Starch in food: Structure, function and applications, 1st ed. CRC Press. 2004.
[3] LeCorre, D., Bras, J., Dufresne, A., Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr Polym. 2012, 87, 658–666.
[4] LeCorre, D., Bras, J., Dufresne, A., Starch Nanoparticles: A Review. Biomacromlecules. 2010, 11, 1139–1153.
[5] Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, Q., Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym. 2015, 121, 155–162.
[6] Jiang, S., Liu, C., Wang, X., Xiong, L., Sun, Q., Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT - Food Sci. Technol. 2016, 69, 251–257.
[7] Valencia, G. A., Moraes, I. C. F., Hilliou, L. H. G., Lourenço, R. V., Sobral, P. J. D. A., Nanocomposite-forming solutions based on cassava starch and laponite: Viscoelastic and rheological characterization. J. Food Eng. 2015, 166, 174–181.
[8] Aouada, A. F., Mattoso, L. H., Longo, E., A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: Structural, mechanical, and thermal characterizations. J. Thermoplast Compos Mater. 2011, 26, 109–124.
[9] Song, D., Thio, Y. S., Deng, Y., Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym. 2011, 85, 208–214.
[10] Shi, A., Li, D., Wang, L., Li, B., Adhikari, B., Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydr Polym. 2001, 83, 1604–1610.
[11] Kim, H., Lee, J. H., Kim, J., Lim, W., Lim, S., Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch/Stärke. 2012, 64, 367–373.
[12] Qin, Y., Liu, C., Jiang, S., Xiong, L., Sun, Q., Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Ind. Crop. Prod. 2016, 87, 182–190.
[13] Hebeish, A., El-Rafie, M. H., El-Sheikh, M. A., El-Naggar, M. E., Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. J. Inorg. Organomet. Polym. Mater. 2014, 24, 515–524.
[14] Bouvier, J. M., Campanella, O. H., Extrusion Processing Technology: Food and Non-Food Biomaterials, 1st ed. Wiley-Blackwell. 2014.
[15] Gómez, P. P., Rivera, A. R., García, M. E. R., Effect of the thermoalkaline treatment over the thermal degradation of corn starch. Starch/Stärke. 2012, 64, 776–785.
[16] Valencia, G. A., Henao, A. C. A., Zapara, R. A. V., Influence of glicerol content on the electrical properties of potato starch films. Starch/Stärke. 2014, 66, 260–266.
[17] Nara, B. S., Komiya, T., Studies on the Relationship Between Watersatured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch/Stärke.1983, 35, 407–410.
[18] Gallant, D.J., Bouchet, B., Baldwin, P. M., Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym. 1997, 32, 177–191.
[19] LeCorre, D., Bras, J., Dufresne, A., Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanoparticle Res. 2011, 13, 7193–7208.
[20] Tester, R. F., Karkalas, J., Qi, X., Starch-composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165.
[21] Zobel, H. F., Young, S. N., Rocca, L. A., Starch Gelatinization: An X-ray Diffraction Study. Starch/Stärke. 1988, 65, 443–446.
[22] Valencia, A., Cristina, I., Moraes, F., Lourenc, R. V., Barbosa, Q., Jose, P., Mo, A., Physicochemical, morphological, and functional properties of fl our and starch from peach palm (Bactris gasipaes K.) fruit.
[23] Boyaci, I. H., Temiz, H. T., Genis, H. E., Soykut, E. A., Yazgan, N. N., Güven, B., Uysal, R. S., Bozkurt, A. G., Ilaslan, K., Torum, O., Seker, F. C. D., Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015, 5, 56606–56624.
[24] Kizil, R., Irudayaraj, J., Seetharaman, K., Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918.
[25] Morais, L. C., Maia, A. A. D., Guandique, M. E. G., Rosa, A. A. H., Pyrolysis and combustion of sugarcane bagasse. J. Therm. Anal. Calorim. 2017, 129, 1813–1822.
[26] Gómez, P. P., Gil, N. C. A., Muñoz, C. V., Rivera, A. R., García, M. E. R., Thermal degradation of starch sources: Green banana, potato, cassava, and corn – kinetic study by non-isothermal procedures. Starch/Stärke. 2014, 66, 691–699.
[27] Gonçalves, P. M., Noreña, C. P. Z., da Silveira, N. P., Brandelly, A., Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Sci. Technol. 2014, 58, 21–27.
[28] Chen, D. Y., Zhang, D., Zhu, X. F., Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J. Therm. Anal. Calorim. 2012, 109, 847–854.
[29] Chen, D., Zheng, Y., Zhu, X., In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresour. Technol. 2013, 131, 40–46.
[30] Saari, H., Fuentes, C., Sjöö, M., Rayner, M., Wahlgren, M., Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydr. Polym. 2017, 157, 558–566.
[31] Cortés, A. M., Bridgwater, A. V., Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis. Fuel Process. Technol. 2015, 138, 184–193.
[32] Lim, A. C. R., Chin, B. L. F., Jawad, Z. A., Hii, K.L., Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng. 2016, 148, 1247–1251.
[33] Moussout, H., Ahla, H., Aazza, M., Bourakhouadar, M., Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 2016, 130, 1–9.
[34] Fernandez, A., Saffe, A., Mazza, G., Rodriguez, R., Nonisothermal drying kinetics of biomass fuels by thermogravimetric analysis under oxidative and inert atmosphere. Dry. Technol. 2017, 35, 163–172.
[35] Doyle, C., Estimating Isothermal Life from Thermogravimetric Data. J. Appl. Polym. Sci. 1962, 6, 639–642.
[36] Edreis, E. M. A., Yao, H., Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. Integr. Med. Res. 2016, 5, 317–326.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 7 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Wiley Online Library
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/8ee0c42c-87f9-4f4a-92ec-dd541e85a592/download
https://red.uao.edu.co/bitstreams/b9745203-cfd6-4c36-b16b-3473ccd1b0d2/download
https://red.uao.edu.co/bitstreams/c0241162-89d9-48f6-9ba5-fe59d10ba56a/download
https://red.uao.edu.co/bitstreams/0a773000-f9a8-44ff-b9d8-724f4c5ccb14/download
https://red.uao.edu.co/bitstreams/455bf24e-0916-4c3e-97a4-52bc531b72e9/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
5a41bd85b71d82014044cc46b7fbdcf2
45afeead14c7e6099c67dc25140a3160
1a765aad8d034b82fb1951265279e887
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259825309122560
spelling Aparicio Rojas, Gladis Miriamvirtual::300-1Agudelo Henao, Ana Cecilia51447f519820eb6cb1afffd13254039fAyala Valencia, Germán3495b08f6aaf044609ddd642686e78f5Caicedo Chacón, Wilson Daniel8fa3387f67fbdd7b8e4efb5a45e18e60Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-05T20:55:17Z2019-11-05T20:55:17Z2018-07-120038-9056http://hdl.handle.net/10614/11397https://doi.org/10.1002/star.201800081The aim of this research is to study the thermal degradation kinetics andsome physicochemical properties of starch nanoparticles (SNPs) producedfrom potato starch (PS) by nanoprecipitation. Native PS is used as a control.The powder samples are analyzed by means of light and transmissionelectron microscopies, X-ray diffraction, Fourier transform infrared, andthermogravimetric analysis. PS shows oval and spherical granular shapedwith a diameter between 6 and 18mm, whereas SNPs display spherical andelliptical shapes with particle sizes between 50 and 150 nm. The relativecrystallinity is 25.4% to PS, and it decreases to approximately 23.5% forSNPs. Activation energy (E) associated to the water evaporation and thermaldegradation is calculated using the Newton model as well Ozawa-Flynn-Wall(OFW) and Kissinger-Akahira-Sunose (KAS) models, respectively. TheEvaluesusing the Newton model increase from 43.7 kJ mol 1(PS) to 84.1 kJ mol 1(SNPs). TheEvalues using the OFW and KAS models vary between 165 and227 kJ mol 1for PS, and between 180 and 400 kJ mol 1for SNPs. Modifica-tions inEvalues are associated with the increase in surface area in SNPs.This research reports new information of the thermal properties of SNPsapplication/pdf7 páginasengWiley Online LibraryDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Mathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Cinética químicaChemical reaction, rate ofNanopartículasNanoparticlesActivation energyNanoprecipitationStarch nanoparticlesThermogravimetryThermal degradation kineticWater evaporation kinetic1-271Caicedo Chacon, W. D., Ayala Valencia, G., Aparicio Rojas, G. M., & Agudelo Henao, A. C. (2019). Mathematical Models for Prediction of Water Evaporation and Thermal Degradation Kinetics of Potato Starch Nanoparticles Obtained by Nanoprecipitation. Starch‐Stärke, 71(1-2), 1800081Starch‐Stärke[1] BeMiller, J., Whistler, R., Starch: Chemistry and Technology, 3rd ed. Elsevier B.V. 2009.[2] Eliasson, A. C., Starch in food: Structure, function and applications, 1st ed. CRC Press. 2004.[3] LeCorre, D., Bras, J., Dufresne, A., Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr Polym. 2012, 87, 658–666.[4] LeCorre, D., Bras, J., Dufresne, A., Starch Nanoparticles: A Review. Biomacromlecules. 2010, 11, 1139–1153.[5] Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, Q., Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym. 2015, 121, 155–162.[6] Jiang, S., Liu, C., Wang, X., Xiong, L., Sun, Q., Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT - Food Sci. Technol. 2016, 69, 251–257.[7] Valencia, G. A., Moraes, I. C. F., Hilliou, L. H. G., Lourenço, R. V., Sobral, P. J. D. A., Nanocomposite-forming solutions based on cassava starch and laponite: Viscoelastic and rheological characterization. J. Food Eng. 2015, 166, 174–181.[8] Aouada, A. F., Mattoso, L. H., Longo, E., A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: Structural, mechanical, and thermal characterizations. J. Thermoplast Compos Mater. 2011, 26, 109–124.[9] Song, D., Thio, Y. S., Deng, Y., Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym. 2011, 85, 208–214.[10] Shi, A., Li, D., Wang, L., Li, B., Adhikari, B., Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydr Polym. 2001, 83, 1604–1610.[11] Kim, H., Lee, J. H., Kim, J., Lim, W., Lim, S., Characterization of nanoparticles prepared by acid hydrolysis of various starches. Starch/Stärke. 2012, 64, 367–373.[12] Qin, Y., Liu, C., Jiang, S., Xiong, L., Sun, Q., Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Ind. Crop. Prod. 2016, 87, 182–190.[13] Hebeish, A., El-Rafie, M. H., El-Sheikh, M. A., El-Naggar, M. E., Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. J. Inorg. Organomet. Polym. Mater. 2014, 24, 515–524.[14] Bouvier, J. M., Campanella, O. H., Extrusion Processing Technology: Food and Non-Food Biomaterials, 1st ed. Wiley-Blackwell. 2014.[15] Gómez, P. P., Rivera, A. R., García, M. E. R., Effect of the thermoalkaline treatment over the thermal degradation of corn starch. Starch/Stärke. 2012, 64, 776–785.[16] Valencia, G. A., Henao, A. C. A., Zapara, R. A. V., Influence of glicerol content on the electrical properties of potato starch films. Starch/Stärke. 2014, 66, 260–266.[17] Nara, B. S., Komiya, T., Studies on the Relationship Between Watersatured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch/Stärke.1983, 35, 407–410.[18] Gallant, D.J., Bouchet, B., Baldwin, P. M., Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym. 1997, 32, 177–191.[19] LeCorre, D., Bras, J., Dufresne, A., Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanoparticle Res. 2011, 13, 7193–7208.[20] Tester, R. F., Karkalas, J., Qi, X., Starch-composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165.[21] Zobel, H. F., Young, S. N., Rocca, L. A., Starch Gelatinization: An X-ray Diffraction Study. Starch/Stärke. 1988, 65, 443–446.[22] Valencia, A., Cristina, I., Moraes, F., Lourenc, R. V., Barbosa, Q., Jose, P., Mo, A., Physicochemical, morphological, and functional properties of fl our and starch from peach palm (Bactris gasipaes K.) fruit.[23] Boyaci, I. H., Temiz, H. T., Genis, H. E., Soykut, E. A., Yazgan, N. N., Güven, B., Uysal, R. S., Bozkurt, A. G., Ilaslan, K., Torum, O., Seker, F. C. D., Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015, 5, 56606–56624.[24] Kizil, R., Irudayaraj, J., Seetharaman, K., Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918.[25] Morais, L. C., Maia, A. A. D., Guandique, M. E. G., Rosa, A. A. H., Pyrolysis and combustion of sugarcane bagasse. J. Therm. Anal. Calorim. 2017, 129, 1813–1822.[26] Gómez, P. P., Gil, N. C. A., Muñoz, C. V., Rivera, A. R., García, M. E. R., Thermal degradation of starch sources: Green banana, potato, cassava, and corn – kinetic study by non-isothermal procedures. Starch/Stärke. 2014, 66, 691–699.[27] Gonçalves, P. M., Noreña, C. P. Z., da Silveira, N. P., Brandelly, A., Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound. LWT - Food Sci. Technol. 2014, 58, 21–27.[28] Chen, D. Y., Zhang, D., Zhu, X. F., Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J. Therm. Anal. Calorim. 2012, 109, 847–854.[29] Chen, D., Zheng, Y., Zhu, X., In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresour. Technol. 2013, 131, 40–46.[30] Saari, H., Fuentes, C., Sjöö, M., Rayner, M., Wahlgren, M., Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydr. Polym. 2017, 157, 558–566.[31] Cortés, A. M., Bridgwater, A. V., Kinetic study of the pyrolysis of miscanthus and its acid hydrolysis residue by thermogravimetric analysis. Fuel Process. Technol. 2015, 138, 184–193.[32] Lim, A. C. R., Chin, B. L. F., Jawad, Z. A., Hii, K.L., Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Eng. 2016, 148, 1247–1251.[33] Moussout, H., Ahla, H., Aazza, M., Bourakhouadar, M., Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 2016, 130, 1–9.[34] Fernandez, A., Saffe, A., Mazza, G., Rodriguez, R., Nonisothermal drying kinetics of biomass fuels by thermogravimetric analysis under oxidative and inert atmosphere. Dry. Technol. 2017, 35, 163–172.[35] Doyle, C., Estimating Isothermal Life from Thermogravimetric Data. J. Appl. Polym. Sci. 1962, 6, 639–642.[36] Edreis, E. M. A., Yao, H., Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. Integr. Med. Res. 2016, 5, 317–326.Publicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::300-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::300-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::300-10000-0002-7158-1223virtual::300-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::300-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/8ee0c42c-87f9-4f4a-92ec-dd541e85a592/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/b9745203-cfd6-4c36-b16b-3473ccd1b0d2/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdfMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1581557https://red.uao.edu.co/bitstreams/c0241162-89d9-48f6-9ba5-fe59d10ba56a/download5a41bd85b71d82014044cc46b7fbdcf2MD54TEXTMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdf.txtMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdf.txtExtracted texttext/plain35734https://red.uao.edu.co/bitstreams/0a773000-f9a8-44ff-b9d8-724f4c5ccb14/download45afeead14c7e6099c67dc25140a3160MD55THUMBNAILMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdf.jpgMathematical models for prediction of water evaporation and thermal degradation kinetics of potato starch nanoparticles obtained by nanoprecipitation.pdf.jpgGenerated Thumbnailimage/jpeg9378https://red.uao.edu.co/bitstreams/455bf24e-0916-4c3e-97a4-52bc531b72e9/download1a765aad8d034b82fb1951265279e887MD5610614/11397oai:red.uao.edu.co:10614/113972024-02-26 16:39:27.324https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K