Geodesic-based manifold learning for parameterization of triangular meshes

Reverse Engineering (RE) requires representing with free forms (NURBS, Spline, Bézier) a real surface which has been pointsampled -- To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample -- We use a dualdist...

Full description

Autores:
Acosta, Diego A.
Ruíz, Óscar E.
Arroyave, Santiago
Ebratt, Roberto
Cadavid, Carlos
Londono, Juan J.
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9668
Acceso en línea:
http://hdl.handle.net/10784/9668
Palabra clave:
TRIANGULACIÓN
POLIEDRO
ALGORITMOS
SUPERFICIES MÍNIMAS
TOPOLOGÍA
TEORÍA DE GRAFOS
GEODESIA
GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO)
Triangulation
Polyhedra
Algorithms
Minimal surfaces
Topology
Graph theory
Geodesy
Numerical grid generation (Numerical analysis)
Triangulation
Polyhedra
Algorithms
Minimal surfaces
Topology
Graph theory
Geodesy
Numerical grid generation (Numerical analysis)
Ingeniería inversa
Superficies NURBS
Geometría computacional
Reconstrucción superficial
Triangulación de Delaunay
Rights
License
Acceso abierto
id REPOEAFIT2_f96dd2461672ea53750068e8685d44da
oai_identifier_str oai:repository.eafit.edu.co:10784/9668
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling 2016-11-18T21:56:35Z20142016-11-18T21:56:35Z1955-2505http://hdl.handle.net/10784/966810.1007/s12008-014-0249-9Reverse Engineering (RE) requires representing with free forms (NURBS, Spline, Bézier) a real surface which has been pointsampled -- To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample -- We use a dualdistance calculation point to / from surfaces, which discourages the forming of outliers and artifacts -- This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form -- The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesicbased dimensionality reduction methods: (a) graphapproximated geodesics (Isomap), or (b) PL orthogonal geodesic grids -- We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE) -- A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniformspeed parameterizations -- Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes -- Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful -- These initial guesses, in turn, produce efficient free form optimization processes with minimal errors -- Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reductionapplication/pdfengSpringer VerlagInternational Journal on Interactive Design and Manufacturing (IJIDeM), pp 1-14http://link.springer.com/article/10.1007/s12008-014-0249-9Acceso abiertohttp://purl.org/coar/access_right/c_14cbGeodesic-based manifold learning for parameterization of triangular meshesinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1TRIANGULACIÓNPOLIEDROALGORITMOSSUPERFICIES MÍNIMASTOPOLOGÍATEORÍA DE GRAFOSGEODESIAGENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO)TriangulationPolyhedraAlgorithmsMinimal surfacesTopologyGraph theoryGeodesyNumerical grid generation (Numerical analysis)TriangulationPolyhedraAlgorithmsMinimal surfacesTopologyGraph theoryGeodesyNumerical grid generation (Numerical analysis)Ingeniería inversaSuperficies NURBSGeometría computacionalReconstrucción superficialTriangulación de DelaunayUniversidad EAFIT. Departamento de Ingeniería MecánicaAcosta, Diego A.Ruíz, Óscar E.Arroyave, SantiagoEbratt, RobertoCadavid, CarlosLondono, Juan J.Laboratorio CAD/CAM/CAEInternational Journal on Interactive Design and Manufacturing (IJIDeM)International Journal on Interactive Design and Manufacturing114IJIDeMLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/1ce29e19-016f-49e5-801c-1645afb87ef1/download76025f86b095439b7ac65b367055d40cMD51ORIGINALGeodesic-based.htmlGeodesic-based.htmltext/html275https://repository.eafit.edu.co/bitstreams/7d1257e4-41dd-46ca-9329-5268c2875f58/download559e32e0c6084657503f7ecd167b41daMD52Geodesic-based.pdfGeodesic-based.pdfWeb Page Printapplication/pdf640957https://repository.eafit.edu.co/bitstreams/a88e9dd7-1e6a-4c11-b66f-8b92fb8ad563/download88e87758a297b4747d3c1676ca5e40b8MD53s12008-014-0249-9.pdfs12008-014-0249-9.pdfapplication/pdf3291193https://repository.eafit.edu.co/bitstreams/670bad64-20f5-44c8-b359-4dc050f65df8/downloadfe40f1c68bef5d36f0ae1c6cbde90f7cMD5410784/9668oai:repository.eafit.edu.co:10784/96682022-11-08 11:26:25.546open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.eng.fl_str_mv Geodesic-based manifold learning for parameterization of triangular meshes
title Geodesic-based manifold learning for parameterization of triangular meshes
spellingShingle Geodesic-based manifold learning for parameterization of triangular meshes
TRIANGULACIÓN
POLIEDRO
ALGORITMOS
SUPERFICIES MÍNIMAS
TOPOLOGÍA
TEORÍA DE GRAFOS
GEODESIA
GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO)
Triangulation
Polyhedra
Algorithms
Minimal surfaces
Topology
Graph theory
Geodesy
Numerical grid generation (Numerical analysis)
Triangulation
Polyhedra
Algorithms
Minimal surfaces
Topology
Graph theory
Geodesy
Numerical grid generation (Numerical analysis)
Ingeniería inversa
Superficies NURBS
Geometría computacional
Reconstrucción superficial
Triangulación de Delaunay
title_short Geodesic-based manifold learning for parameterization of triangular meshes
title_full Geodesic-based manifold learning for parameterization of triangular meshes
title_fullStr Geodesic-based manifold learning for parameterization of triangular meshes
title_full_unstemmed Geodesic-based manifold learning for parameterization of triangular meshes
title_sort Geodesic-based manifold learning for parameterization of triangular meshes
dc.creator.fl_str_mv Acosta, Diego A.
Ruíz, Óscar E.
Arroyave, Santiago
Ebratt, Roberto
Cadavid, Carlos
Londono, Juan J.
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv Acosta, Diego A.
Ruíz, Óscar E.
Arroyave, Santiago
Ebratt, Roberto
Cadavid, Carlos
Londono, Juan J.
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv TRIANGULACIÓN
POLIEDRO
ALGORITMOS
SUPERFICIES MÍNIMAS
TOPOLOGÍA
TEORÍA DE GRAFOS
GEODESIA
GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO)
topic TRIANGULACIÓN
POLIEDRO
ALGORITMOS
SUPERFICIES MÍNIMAS
TOPOLOGÍA
TEORÍA DE GRAFOS
GEODESIA
GENERACIÓN NUMÉRICA DE MALLAS (ANÁLISIS NUMÉRICO)
Triangulation
Polyhedra
Algorithms
Minimal surfaces
Topology
Graph theory
Geodesy
Numerical grid generation (Numerical analysis)
Triangulation
Polyhedra
Algorithms
Minimal surfaces
Topology
Graph theory
Geodesy
Numerical grid generation (Numerical analysis)
Ingeniería inversa
Superficies NURBS
Geometría computacional
Reconstrucción superficial
Triangulación de Delaunay
dc.subject.keyword.spa.fl_str_mv Triangulation
Polyhedra
Algorithms
Minimal surfaces
Topology
Graph theory
Geodesy
Numerical grid generation (Numerical analysis)
dc.subject.keyword.eng.fl_str_mv Triangulation
Polyhedra
Algorithms
Minimal surfaces
Topology
Graph theory
Geodesy
Numerical grid generation (Numerical analysis)
dc.subject.keyword..keywor.fl_str_mv Ingeniería inversa
Superficies NURBS
Geometría computacional
Reconstrucción superficial
Triangulación de Delaunay
description Reverse Engineering (RE) requires representing with free forms (NURBS, Spline, Bézier) a real surface which has been pointsampled -- To serve this purpose, we have implemented an algorithm that minimizes the accumulated distance between the free form and the (noisy) point sample -- We use a dualdistance calculation point to / from surfaces, which discourages the forming of outliers and artifacts -- This algorithm seeks a minimum in a function that represents the fitting error, by using as tuning variable the control polyhedron for the free form -- The topology (rows, columns) and geometry of the control polyhedron are determined by alternative geodesicbased dimensionality reduction methods: (a) graphapproximated geodesics (Isomap), or (b) PL orthogonal geodesic grids -- We assume the existence of a triangular mesh of the point sample (a reasonable expectation in current RE) -- A bijective composition mapping allows to estimate a size of the control polyhedrons favorable to uniformspeed parameterizations -- Our results show that orthogonal geodesic grids is a direct and intuitive parameterization method, which requires more exploration for irregular triangle meshes -- Isomap gives a usable initial parameterization whenever the graph approximation of geodesics on be faithful -- These initial guesses, in turn, produce efficient free form optimization processes with minimal errors -- Future work is required in further exploiting the usual triangular mesh underlying the point sample for (a) enhancing the segmentation of the point set into faces, and (b) using a more accurate approximation of the geodesic distances within , which would benefit its dimensionality reduction
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.available.none.fl_str_mv 2016-11-18T21:56:35Z
dc.date.accessioned.none.fl_str_mv 2016-11-18T21:56:35Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1955-2505
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9668
dc.identifier.doi.none.fl_str_mv 10.1007/s12008-014-0249-9
identifier_str_mv 1955-2505
10.1007/s12008-014-0249-9
url http://hdl.handle.net/10784/9668
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv International Journal on Interactive Design and Manufacturing (IJIDeM), pp 1-14
dc.relation.uri.none.fl_str_mv http://link.springer.com/article/10.1007/s12008-014-0249-9
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_14cb
dc.format.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Verlag
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/1ce29e19-016f-49e5-801c-1645afb87ef1/download
https://repository.eafit.edu.co/bitstreams/7d1257e4-41dd-46ca-9329-5268c2875f58/download
https://repository.eafit.edu.co/bitstreams/a88e9dd7-1e6a-4c11-b66f-8b92fb8ad563/download
https://repository.eafit.edu.co/bitstreams/670bad64-20f5-44c8-b359-4dc050f65df8/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
559e32e0c6084657503f7ecd167b41da
88e87758a297b4747d3c1676ca5e40b8
fe40f1c68bef5d36f0ae1c6cbde90f7c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110445829619712