On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface

We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other au...

Full description

Autores:
Cadavid, Carlos A.
Osorno, María C.
Ruíz, Óscar E.
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9530
Acceso en línea:
http://hdl.handle.net/10784/9530
Palabra clave:
TEORÍA DE GRAFOS
OPERADORES DIFERENCIALES
VARIEDADES (MATEMÁTICAS)
FUNCIONES DE VARIABLE REAL
GENERADORES DE FUNCIONES
TRANSFORMACIONES DE LAPLACE
TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)
TEORÍA DE MORSE
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
Rights
License
Acceso abierto
id REPOEAFIT2_bb7ac7de907f60c18adcdaa96497ca29
oai_identifier_str oai:repository.eafit.edu.co:10784/9530
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
dc.title.eng.fl_str_mv On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
title On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
spellingShingle On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
TEORÍA DE GRAFOS
OPERADORES DIFERENCIALES
VARIEDADES (MATEMÁTICAS)
FUNCIONES DE VARIABLE REAL
GENERADORES DE FUNCIONES
TRANSFORMACIONES DE LAPLACE
TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)
TEORÍA DE MORSE
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
title_short On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
title_full On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
title_fullStr On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
title_full_unstemmed On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
title_sort On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
dc.creator.fl_str_mv Cadavid, Carlos A.
Osorno, María C.
Ruíz, Óscar E.
dc.contributor.department.spa.fl_str_mv Universidad EAFIT. Departamento de Ingeniería Mecánica
dc.contributor.author.none.fl_str_mv Cadavid, Carlos A.
Osorno, María C.
Ruíz, Óscar E.
dc.contributor.researchgroup.spa.fl_str_mv Laboratorio CAD/CAM/CAE
dc.subject.lemb.spa.fl_str_mv TEORÍA DE GRAFOS
OPERADORES DIFERENCIALES
VARIEDADES (MATEMÁTICAS)
FUNCIONES DE VARIABLE REAL
GENERADORES DE FUNCIONES
TRANSFORMACIONES DE LAPLACE
TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)
TEORÍA DE MORSE
topic TEORÍA DE GRAFOS
OPERADORES DIFERENCIALES
VARIEDADES (MATEMÁTICAS)
FUNCIONES DE VARIABLE REAL
GENERADORES DE FUNCIONES
TRANSFORMACIONES DE LAPLACE
TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)
TEORÍA DE MORSE
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
dc.subject.keyword.spa.fl_str_mv Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
dc.subject.keyword.eng.fl_str_mv Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
description We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifolds
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-05-30
dc.date.available.none.fl_str_mv 2016-10-21T15:44:33Z
dc.date.accessioned.none.fl_str_mv 2016-10-21T15:44:33Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
article
info:eu-repo/semantics/publishedVersion
publishedVersion
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2276-6367
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/9530
dc.identifier.doi.none.fl_str_mv 10.7237/sjp/128
identifier_str_mv 2276-6367
10.7237/sjp/128
url http://hdl.handle.net/10784/9530
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv Science Journal of Physics, Volume 2012, pp 1-8
dc.relation.uri.none.fl_str_mv http://www.sjpub.org/sjp/abstract/sjp-128.html
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.format.eng.fl_str_mv application/pdf
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/9b4b5fa0-fe41-4eb9-92d3-8e30a74d0d84/download
https://repository.eafit.edu.co/bitstreams/16c45977-009c-4148-b490-9008cc6f4218/download
bitstream.checksum.fl_str_mv 76025f86b095439b7ac65b367055d40c
f960fc1a647de1dd3090548539903bbb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110235700232192
spelling 2016-10-21T15:44:33Z2012-05-302016-10-21T15:44:33Z2276-6367http://hdl.handle.net/10784/953010.7237/sjp/128We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifoldsapplication/pdfengScience Journal of Physics, Volume 2012, pp 1-8http://www.sjpub.org/sjp/abstract/sjp-128.htmlAcceso abiertohttp://purl.org/coar/access_right/c_abf2On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surfaceinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1TEORÍA DE GRAFOSOPERADORES DIFERENCIALESVARIEDADES (MATEMÁTICAS)FUNCIONES DE VARIABLE REALGENERADORES DE FUNCIONESTRANSFORMACIONES DE LAPLACETEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)TEORÍA DE MORSEGraph theoryDifferential operatorsManifolds (Mathematics)Functions of real variablesFunction generatorsLaplace transformationCritical point theory (mathematical analysis)Morse theoryGraph theoryDifferential operatorsManifolds (Mathematics)Functions of real variablesFunction generatorsLaplace transformationCritical point theory (mathematical analysis)Morse theoryUniversidad EAFIT. Departamento de Ingeniería MecánicaCadavid, Carlos A.Osorno, María C.Ruíz, Óscar E.Laboratorio CAD/CAM/CAEScience Journal of PhysicsScience Journal of Physics201218sjpLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/9b4b5fa0-fe41-4eb9-92d3-8e30a74d0d84/download76025f86b095439b7ac65b367055d40cMD51ORIGINALsjp-On-the-critical.pdfsjp-On-the-critical.pdfOpenAccess versionapplication/pdf3720312https://repository.eafit.edu.co/bitstreams/16c45977-009c-4148-b490-9008cc6f4218/downloadf960fc1a647de1dd3090548539903bbbMD5210784/9530oai:repository.eafit.edu.co:10784/95302021-09-03 15:43:30.601open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK