On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other au...
- Autores:
-
Cadavid, Carlos A.
Osorno, María C.
Ruíz, Óscar E.
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9530
- Acceso en línea:
- http://hdl.handle.net/10784/9530
- Palabra clave:
- TEORÍA DE GRAFOS
OPERADORES DIFERENCIALES
VARIEDADES (MATEMÁTICAS)
FUNCIONES DE VARIABLE REAL
GENERADORES DE FUNCIONES
TRANSFORMACIONES DE LAPLACE
TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)
TEORÍA DE MORSE
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_bb7ac7de907f60c18adcdaa96497ca29 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/9530 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
dc.title.eng.fl_str_mv |
On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface |
title |
On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface |
spellingShingle |
On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface TEORÍA DE GRAFOS OPERADORES DIFERENCIALES VARIEDADES (MATEMÁTICAS) FUNCIONES DE VARIABLE REAL GENERADORES DE FUNCIONES TRANSFORMACIONES DE LAPLACE TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO) TEORÍA DE MORSE Graph theory Differential operators Manifolds (Mathematics) Functions of real variables Function generators Laplace transformation Critical point theory (mathematical analysis) Morse theory Graph theory Differential operators Manifolds (Mathematics) Functions of real variables Function generators Laplace transformation Critical point theory (mathematical analysis) Morse theory |
title_short |
On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface |
title_full |
On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface |
title_fullStr |
On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface |
title_full_unstemmed |
On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface |
title_sort |
On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface |
dc.creator.fl_str_mv |
Cadavid, Carlos A. Osorno, María C. Ruíz, Óscar E. |
dc.contributor.department.spa.fl_str_mv |
Universidad EAFIT. Departamento de Ingeniería Mecánica |
dc.contributor.author.none.fl_str_mv |
Cadavid, Carlos A. Osorno, María C. Ruíz, Óscar E. |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio CAD/CAM/CAE |
dc.subject.lemb.spa.fl_str_mv |
TEORÍA DE GRAFOS OPERADORES DIFERENCIALES VARIEDADES (MATEMÁTICAS) FUNCIONES DE VARIABLE REAL GENERADORES DE FUNCIONES TRANSFORMACIONES DE LAPLACE TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO) TEORÍA DE MORSE |
topic |
TEORÍA DE GRAFOS OPERADORES DIFERENCIALES VARIEDADES (MATEMÁTICAS) FUNCIONES DE VARIABLE REAL GENERADORES DE FUNCIONES TRANSFORMACIONES DE LAPLACE TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO) TEORÍA DE MORSE Graph theory Differential operators Manifolds (Mathematics) Functions of real variables Function generators Laplace transformation Critical point theory (mathematical analysis) Morse theory Graph theory Differential operators Manifolds (Mathematics) Functions of real variables Function generators Laplace transformation Critical point theory (mathematical analysis) Morse theory |
dc.subject.keyword.spa.fl_str_mv |
Graph theory Differential operators Manifolds (Mathematics) Functions of real variables Function generators Laplace transformation Critical point theory (mathematical analysis) Morse theory |
dc.subject.keyword.eng.fl_str_mv |
Graph theory Differential operators Manifolds (Mathematics) Functions of real variables Function generators Laplace transformation Critical point theory (mathematical analysis) Morse theory |
description |
We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifolds |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012-05-30 |
dc.date.available.none.fl_str_mv |
2016-10-21T15:44:33Z |
dc.date.accessioned.none.fl_str_mv |
2016-10-21T15:44:33Z |
dc.type.eng.fl_str_mv |
info:eu-repo/semantics/article article info:eu-repo/semantics/publishedVersion publishedVersion |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2276-6367 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/9530 |
dc.identifier.doi.none.fl_str_mv |
10.7237/sjp/128 |
identifier_str_mv |
2276-6367 10.7237/sjp/128 |
url |
http://hdl.handle.net/10784/9530 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
Science Journal of Physics, Volume 2012, pp 1-8 |
dc.relation.uri.none.fl_str_mv |
http://www.sjpub.org/sjp/abstract/sjp-128.html |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.format.eng.fl_str_mv |
application/pdf |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/9b4b5fa0-fe41-4eb9-92d3-8e30a74d0d84/download https://repository.eafit.edu.co/bitstreams/16c45977-009c-4148-b490-9008cc6f4218/download |
bitstream.checksum.fl_str_mv |
76025f86b095439b7ac65b367055d40c f960fc1a647de1dd3090548539903bbb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110235700232192 |
spelling |
2016-10-21T15:44:33Z2012-05-302016-10-21T15:44:33Z2276-6367http://hdl.handle.net/10784/953010.7237/sjp/128We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifoldsapplication/pdfengScience Journal of Physics, Volume 2012, pp 1-8http://www.sjpub.org/sjp/abstract/sjp-128.htmlAcceso abiertohttp://purl.org/coar/access_right/c_abf2On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surfaceinfo:eu-repo/semantics/articlearticleinfo:eu-repo/semantics/publishedVersionpublishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1TEORÍA DE GRAFOSOPERADORES DIFERENCIALESVARIEDADES (MATEMÁTICAS)FUNCIONES DE VARIABLE REALGENERADORES DE FUNCIONESTRANSFORMACIONES DE LAPLACETEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)TEORÍA DE MORSEGraph theoryDifferential operatorsManifolds (Mathematics)Functions of real variablesFunction generatorsLaplace transformationCritical point theory (mathematical analysis)Morse theoryGraph theoryDifferential operatorsManifolds (Mathematics)Functions of real variablesFunction generatorsLaplace transformationCritical point theory (mathematical analysis)Morse theoryUniversidad EAFIT. Departamento de Ingeniería MecánicaCadavid, Carlos A.Osorno, María C.Ruíz, Óscar E.Laboratorio CAD/CAM/CAEScience Journal of PhysicsScience Journal of Physics201218sjpLICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/9b4b5fa0-fe41-4eb9-92d3-8e30a74d0d84/download76025f86b095439b7ac65b367055d40cMD51ORIGINALsjp-On-the-critical.pdfsjp-On-the-critical.pdfOpenAccess versionapplication/pdf3720312https://repository.eafit.edu.co/bitstreams/16c45977-009c-4148-b490-9008cc6f4218/downloadf960fc1a647de1dd3090548539903bbbMD5210784/9530oai:repository.eafit.edu.co:10784/95302021-09-03 15:43:30.601open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.coSS4gT0JSQVMgWUEgUFVCTElDQURBUwoKUGFyYSBvYnJhcyB5YSBwdWJsaWNhZGFzIHNlIHJlcXVpZXJlLCBwYXJhIGVsIGFyY2hpdm8geSBkaXZ1bGdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBFQUZJVCwgcXVlIGVsIGF1dG9yIGNvbm96Y2EgeSB2YWxpZGUgbGFzIGNvbmRpY2lvbmVzIGVuIHF1ZSBoYSBzdXNjcml0byBsb3MgYWN1ZXJkb3MgZGUgY2VzacOzbiBvIGxpY2VuY2lhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIGNvbiBsYShzKSBlZGl0b3JpYWwoZXMpIGVuIGxhcyBxdWUgaGEgcHVibGljYWRvIGxhIG9icmEuCgpFc3RhIHZlcmlmaWNhY2nDs24gc2UgcHVlZGUgcmVhbGl6YXIgY29uc3VsdGFuZG8gbGFzIGJhc2VzIGRlIGRhdG9zIFNIRVJQQSAvIFJPTUVPIHkgRFVMQ0lORUEsIHBhcmEgY29ub2NlciBsYSBwb2zDrXRpY2Egc29icmUgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgcmVzcGVjdGl2YSBlZGl0b3JpYWwuIEVuIGNhc28gZGUgcXVlIGxhIGVkaXRvcmlhbCBubyBzZSBlbmN1ZW50cmUgZW4gZXN0YXMgYmFzZXMgZGUgZGF0b3MsIGVsIGF1dG9yIGRlYmUgY29uc3VsdGFyIGRpcmVjdGFtZW50ZSBjb24gZWwgcmVzcG9uc2FibGUgZGUgbGEgZmlybWEgZGUgbGEgbGljZW5jaWEgcG9yIHBhcnRlIGRlIGxhIGVkaXRvcmlhbC4KCkNvbnN1bHRhciBQb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwuCgpJSS4gT0JSQVMgSU7DiURJVEFTCgpFbCBhdXRvciBjb25zZXJ2YSB0b2RvcyBsb3MgZGVyZWNob3MsIGNvbiBsbyBjdWFsIHB1ZWRlIHB1YmxpY2FybGEgcG9zdGVyaW9ybWVudGUuIFNlIHJlY29taWVuZGEgY29ub2Nlci9yZXZpc2FyIGxhIHBvbMOtdGljYSBkZSBkb25kZSBzZSBwcmV2w6kgcHVibGljYXIsIGRhZG8gcXVlIGFsZ3Vub3MgcHVibGljYWRvcmVzIHPDs2xvIGFjZXB0YW4gdHJhYmFqb3Mgbm8gZGlmdW5kaWRvcyBjb24gYW50ZXJpb3JpZGFkLiBQdWVkZSBjb25zdWx0YXIgbGEgYmFzZSBkZSBkYXRvcyBTSEVSUEEvUk9NRU8qIG8gRFVMQ0lORUEqKiwgcGFyYSBjb25vY2VyIGxhIHBvbMOtdGljYSBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSByZXNwZWN0aXZhIGVkaXRvcmlhbC4KCkFVVE9SSVpBQ0nDk04gREUgUFVCTElDQUNJw5NOIEVOIEZPUk1BIEFOQUzDk0dJQ0EgTyBESUdJVEFMIERFIExBIE9CUkEuCgpBdXRvcml6byBlbiBmb3JtYSBncmF0dWl0YSB5IHBvciB0aWVtcG8gaW5kZWZpbmlkbyBhIGxhIFVuaXZlcnNpZGFkIEVBRklUIHBhcmEgcmVhbGl6YXIgbGFzIHNpZ3VpZW50ZXMgYWN0aXZpZGFkZXM6CgotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSBvIGRpdnVsZ2FyIHBvciBtZWRpbyBlbGVjdHLDs25pY28gZWwgdGV4dG8gZGVsIHRyYWJham8gY29uIGVsIGZpbiBkZSBzZXIgY29uc3VsdGFkbyBwb3IgZWwgcMO6YmxpY28gZW4gaHR0cDovL3d3dy5lYWZpdC5lZHUuY28vYmlibGlvdGVjYQotIFB1YmxpY2FyIGVuIGZvcm1hIGVsZWN0csOzbmljYSwgZGl2dWxnYXIgcG9yIG1lZGlvIGVsZWN0csOzbmljbyB5IHByZXNlcnZhciBlbCB0ZXh0byBkZWwgdHJhYmFqbyBjb24gZWwgZmluIGRlIHNlciBjb25zdWx0YWRvIHBvciBlbCBww7pibGljbyBlbiBodHRwOi8vcmVwb3NpdG9yeS5lYWZpdC5lZHUuY28KClRvZG8gcGVyc29uYSBxdWUgY29uc3VsdGUgZWwgbWF0ZXJpYWwgYmllbiBzZWEgZGUgZm9ybWEgYW5hbMOzZ2ljYSBvIGRpZ2l0YWwsIHBvZHLDoSByZWFsaXphciBjaXRhcyBjb25mb3JtZSBhIGxvIHBlcm1pdGlkbyBwb3IgbGEgbGV5IGNpdGFuZG8gZW4gdG9kbyBjYXNvIGxhcyBmdWVudGVzLiBFc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhLgoKRGVjbGFybyBxdWUgc295IGVsIGF1dG9yIHkgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgeSBxdWUgbGEgbWlzbWEgZXMgb3JpZ2luYWwsIHBvciBsbyB0YW50byBsYSBVbml2ZXJzaWRhZCBFQUZJVCBubyBzZXLDoSByZXNwb25zYWJsZSBkZSBuaW5ndW5hIHJlY2xhbWFjacOzbiBxdWUgcHVkaWVyYSBzdXJnaXIgcG9yIHBhcnRlIGRlIHRlcmNlcm9zIHF1ZSBpbnZvcXVlbiBhdXRvcsOtYSBkZSBsYSBvYnJhIHF1ZSBwcmVzZW50by4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxhIGxpY2VuY2lhLCBwb3IgZmF2b3IsIGNvbnRhY3RlIGNvbiBlbCBhZG1pbmlzdHJhZG9yIGRlbCBzaXN0ZW1hLgoKRGVjbGFybyBxdWUgY29ub3pjbyBsYSBwb2zDrXRpY2EgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBjb25jZWRvIGxhIGF1dG9yaXphY2nDs24uCgpfX19fX19fX19fX19fX18KKCopIFNoZXJwYS4gRGlzcG9uaWJsZSBlbjogaHR0cDovL3d3dy5zaGVycGEuYWMudWsvcm9tZW8vP2xhPWVzCigqKikgRHVsY2luZWEuIERpc3BvbmlibGUgZW46IGh0dHA6Ly93d3cuYWNjZXNvYWJpZXJ0by5uZXQvZHVsY2luZWEK |