On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface
We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other au...
- Autores:
-
Cadavid, Carlos A.
Osorno, María C.
Ruíz, Óscar E.
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- eng
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/9530
- Acceso en línea:
- http://hdl.handle.net/10784/9530
- Palabra clave:
- TEORÍA DE GRAFOS
OPERADORES DIFERENCIALES
VARIEDADES (MATEMÁTICAS)
FUNCIONES DE VARIABLE REAL
GENERADORES DE FUNCIONES
TRANSFORMACIONES DE LAPLACE
TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)
TEORÍA DE MORSE
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
- Rights
- License
- Acceso abierto