On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface

We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other au...

Full description

Autores:
Cadavid, Carlos A.
Osorno, María C.
Ruíz, Óscar E.
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
eng
OAI Identifier:
oai:repository.eafit.edu.co:10784/9530
Acceso en línea:
http://hdl.handle.net/10784/9530
Palabra clave:
TEORÍA DE GRAFOS
OPERADORES DIFERENCIALES
VARIEDADES (MATEMÁTICAS)
FUNCIONES DE VARIABLE REAL
GENERADORES DE FUNCIONES
TRANSFORMACIONES DE LAPLACE
TEORÍA DEL PUNTO CRÍTICO (ANÁLISIS MATEMÁTICO)
TEORÍA DE MORSE
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
Graph theory
Differential operators
Manifolds (Mathematics)
Functions of real variables
Function generators
Laplace transformation
Critical point theory (mathematical analysis)
Morse theory
Rights
License
Acceso abierto
Description
Summary:We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifolds