Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms

This article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology -- This approach produces a force-displacement meta-model that is suited for real-time control of compliant mechanisms -- The term meta-model is used to repre...

Full description

Autores:
Restrepo Arango, David
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad EAFIT
Repositorio:
Repositorio EAFIT
Idioma:
spa
OAI Identifier:
oai:repository.eafit.edu.co:10784/7234
Acceso en línea:
http://hdl.handle.net/10784/7234
Palabra clave:
Metamodelos
Cinemática inversa
Ángulos de Euler
Deformación elástica
Deformaciones cuasi-estáticas
CINEMÁTICA
MOVIMIENTOS MECÁNICOS
MÉTODO DE ELEMENTOS FINITOS
DEFORMACIONES
ANÁLISIS NUMÉRICO
ALGORITMOS(COMPUTADORES)
Kinematics
Mechanical movements
Finite element method
Numerical analysis
Computer algorithms
Rights
License
Acceso abierto
id REPOEAFIT2_88d364e5605474538b862fdd86c16fb4
oai_identifier_str oai:repository.eafit.edu.co:10784/7234
network_acronym_str REPOEAFIT2
network_name_str Repositorio EAFIT
repository_id_str
spelling Ruíz Salguero, Oscar EduardoRestrepo Arango, DavidIngeniero MecánicoDavid Restrepo Arango (drestr21@eafit.edu.co)Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2015-08-03T16:33:23Z20102015-08-03T16:33:23Z621.811R436http://hdl.handle.net/10784/7234This article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology -- This approach produces a force-displacement meta-model that is suited for real-time control of compliant mechanisms -- The term meta-model is used to represent a simplified and efficient mathematical model of unknown phenomena -- The meta-modeling of compliant mechanisms is performed from virtual experiments based on factorial- and space-filling design of experiments -- The procedure is used to model the quasi-static behavior of the HexFlex compliant mechanism -- The HexFlex is a parallel compliant mechanism for nano-manipulation that allows six degrees of freedom of its moving stage -- The meta-model of the HexFlex is calculated from experiments with the Finite Element Method (FEM) -- The obtained meta-model for the HexFlex is linear for the range of movement of the mechanism -- The accuracy of the meta-model was calculated conducting a set of computer experiments with random uniform distribution of the input forces -- Three criteria were calculated in each displacement direction (x, y, z, θx, θy, θz) comparing the meta-model prediction with respect to the results of the virtual experiments: 1. maximum of the absolute value of the error, 2. relative error, and 3. root mean square error -- The maximum errors were founded adequate with respect to demanding manufacturing tolerances (absolute errors) and lower than errors reported by other authors (relative errors)spaUniversidad EAFITIngeniería MecánicaEscuela de Ingeniería. Departamento de Ingeniería MecánicaMetamodelosCinemática inversaÁngulos de EulerDeformación elásticaDeformaciones cuasi-estáticasCINEMÁTICAMOVIMIENTOS MECÁNICOSMÉTODO DE ELEMENTOS FINITOSDEFORMACIONESANÁLISIS NUMÉRICOALGORITMOS(COMPUTADORES)KinematicsMechanical movementsFinite element methodNumerical analysisComputer algorithmsExperiment design in compliant mechanisms and kinematic identification of parallel mechanismsbachelorThesisinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoacceptedVersionhttp://purl.org/coar/resource_type/c_7a1fAcceso abiertohttp://purl.org/coar/access_right/c_abf2ORIGINALDavid_RestrepoArango_2010.pdfDavid_RestrepoArango_2010.pdfTexto Completoapplication/pdf3371917https://repository.eafit.edu.co/bitstreams/1f8284d8-177a-4f77-908c-4feb06bc0ecd/downloade473febff1af17c59d50ee2df83bfefdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/86fa28b9-0b13-429e-9b07-1aae0a0e49cf/download76025f86b095439b7ac65b367055d40cMD5210784/7234oai:repository.eafit.edu.co:10784/72342015-08-03 11:33:23.617open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co
dc.title.spa.fl_str_mv Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
title Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
spellingShingle Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
Metamodelos
Cinemática inversa
Ángulos de Euler
Deformación elástica
Deformaciones cuasi-estáticas
CINEMÁTICA
MOVIMIENTOS MECÁNICOS
MÉTODO DE ELEMENTOS FINITOS
DEFORMACIONES
ANÁLISIS NUMÉRICO
ALGORITMOS(COMPUTADORES)
Kinematics
Mechanical movements
Finite element method
Numerical analysis
Computer algorithms
title_short Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
title_full Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
title_fullStr Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
title_full_unstemmed Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
title_sort Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
dc.creator.fl_str_mv Restrepo Arango, David
dc.contributor.advisor.none.fl_str_mv Ruíz Salguero, Oscar Eduardo
dc.contributor.author.none.fl_str_mv Restrepo Arango, David
dc.subject.spa.fl_str_mv Metamodelos
Cinemática inversa
Ángulos de Euler
Deformación elástica
Deformaciones cuasi-estáticas
topic Metamodelos
Cinemática inversa
Ángulos de Euler
Deformación elástica
Deformaciones cuasi-estáticas
CINEMÁTICA
MOVIMIENTOS MECÁNICOS
MÉTODO DE ELEMENTOS FINITOS
DEFORMACIONES
ANÁLISIS NUMÉRICO
ALGORITMOS(COMPUTADORES)
Kinematics
Mechanical movements
Finite element method
Numerical analysis
Computer algorithms
dc.subject.lemb.spa.fl_str_mv CINEMÁTICA
MOVIMIENTOS MECÁNICOS
MÉTODO DE ELEMENTOS FINITOS
DEFORMACIONES
ANÁLISIS NUMÉRICO
ALGORITMOS(COMPUTADORES)
dc.subject.keyword.spa.fl_str_mv Kinematics
Mechanical movements
Finite element method
Numerical analysis
Computer algorithms
description This article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology -- This approach produces a force-displacement meta-model that is suited for real-time control of compliant mechanisms -- The term meta-model is used to represent a simplified and efficient mathematical model of unknown phenomena -- The meta-modeling of compliant mechanisms is performed from virtual experiments based on factorial- and space-filling design of experiments -- The procedure is used to model the quasi-static behavior of the HexFlex compliant mechanism -- The HexFlex is a parallel compliant mechanism for nano-manipulation that allows six degrees of freedom of its moving stage -- The meta-model of the HexFlex is calculated from experiments with the Finite Element Method (FEM) -- The obtained meta-model for the HexFlex is linear for the range of movement of the mechanism -- The accuracy of the meta-model was calculated conducting a set of computer experiments with random uniform distribution of the input forces -- Three criteria were calculated in each displacement direction (x, y, z, θx, θy, θz) comparing the meta-model prediction with respect to the results of the virtual experiments: 1. maximum of the absolute value of the error, 2. relative error, and 3. root mean square error -- The maximum errors were founded adequate with respect to demanding manufacturing tolerances (absolute errors) and lower than errors reported by other authors (relative errors)
publishDate 2010
dc.date.issued.none.fl_str_mv 2010
dc.date.available.none.fl_str_mv 2015-08-03T16:33:23Z
dc.date.accessioned.none.fl_str_mv 2015-08-03T16:33:23Z
dc.type.eng.fl_str_mv bachelorThesis
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.hasVersion.eng.fl_str_mv acceptedVersion
dc.identifier.other.none.fl_str_mv 621.811R436
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10784/7234
identifier_str_mv 621.811R436
url http://hdl.handle.net/10784/7234
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
dc.coverage.spatial.eng.fl_str_mv Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.spa.fl_str_mv Universidad EAFIT
dc.publisher.program.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Escuela de Ingeniería. Departamento de Ingeniería Mecánica
institution Universidad EAFIT
bitstream.url.fl_str_mv https://repository.eafit.edu.co/bitstreams/1f8284d8-177a-4f77-908c-4feb06bc0ecd/download
https://repository.eafit.edu.co/bitstreams/86fa28b9-0b13-429e-9b07-1aae0a0e49cf/download
bitstream.checksum.fl_str_mv e473febff1af17c59d50ee2df83bfefd
76025f86b095439b7ac65b367055d40c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad EAFIT
repository.mail.fl_str_mv repositorio@eafit.edu.co
_version_ 1814110156605095936