Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms
This article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology -- This approach produces a force-displacement meta-model that is suited for real-time control of compliant mechanisms -- The term meta-model is used to repre...
- Autores:
-
Restrepo Arango, David
- Tipo de recurso:
- Fecha de publicación:
- 2010
- Institución:
- Universidad EAFIT
- Repositorio:
- Repositorio EAFIT
- Idioma:
- spa
- OAI Identifier:
- oai:repository.eafit.edu.co:10784/7234
- Acceso en línea:
- http://hdl.handle.net/10784/7234
- Palabra clave:
- Metamodelos
Cinemática inversa
Ángulos de Euler
Deformación elástica
Deformaciones cuasi-estáticas
CINEMÁTICA
MOVIMIENTOS MECÁNICOS
MÉTODO DE ELEMENTOS FINITOS
DEFORMACIONES
ANÁLISIS NUMÉRICO
ALGORITMOS(COMPUTADORES)
Kinematics
Mechanical movements
Finite element method
Numerical analysis
Computer algorithms
- Rights
- License
- Acceso abierto
id |
REPOEAFIT2_88d364e5605474538b862fdd86c16fb4 |
---|---|
oai_identifier_str |
oai:repository.eafit.edu.co:10784/7234 |
network_acronym_str |
REPOEAFIT2 |
network_name_str |
Repositorio EAFIT |
repository_id_str |
|
spelling |
Ruíz Salguero, Oscar EduardoRestrepo Arango, DavidIngeniero MecánicoDavid Restrepo Arango (drestr21@eafit.edu.co)Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees2015-08-03T16:33:23Z20102015-08-03T16:33:23Z621.811R436http://hdl.handle.net/10784/7234This article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology -- This approach produces a force-displacement meta-model that is suited for real-time control of compliant mechanisms -- The term meta-model is used to represent a simplified and efficient mathematical model of unknown phenomena -- The meta-modeling of compliant mechanisms is performed from virtual experiments based on factorial- and space-filling design of experiments -- The procedure is used to model the quasi-static behavior of the HexFlex compliant mechanism -- The HexFlex is a parallel compliant mechanism for nano-manipulation that allows six degrees of freedom of its moving stage -- The meta-model of the HexFlex is calculated from experiments with the Finite Element Method (FEM) -- The obtained meta-model for the HexFlex is linear for the range of movement of the mechanism -- The accuracy of the meta-model was calculated conducting a set of computer experiments with random uniform distribution of the input forces -- Three criteria were calculated in each displacement direction (x, y, z, θx, θy, θz) comparing the meta-model prediction with respect to the results of the virtual experiments: 1. maximum of the absolute value of the error, 2. relative error, and 3. root mean square error -- The maximum errors were founded adequate with respect to demanding manufacturing tolerances (absolute errors) and lower than errors reported by other authors (relative errors)spaUniversidad EAFITIngeniería MecánicaEscuela de Ingeniería. Departamento de Ingeniería MecánicaMetamodelosCinemática inversaÁngulos de EulerDeformación elásticaDeformaciones cuasi-estáticasCINEMÁTICAMOVIMIENTOS MECÁNICOSMÉTODO DE ELEMENTOS FINITOSDEFORMACIONESANÁLISIS NUMÉRICOALGORITMOS(COMPUTADORES)KinematicsMechanical movementsFinite element methodNumerical analysisComputer algorithmsExperiment design in compliant mechanisms and kinematic identification of parallel mechanismsbachelorThesisinfo:eu-repo/semantics/bachelorThesisTrabajo de gradoacceptedVersionhttp://purl.org/coar/resource_type/c_7a1fAcceso abiertohttp://purl.org/coar/access_right/c_abf2ORIGINALDavid_RestrepoArango_2010.pdfDavid_RestrepoArango_2010.pdfTexto Completoapplication/pdf3371917https://repository.eafit.edu.co/bitstreams/1f8284d8-177a-4f77-908c-4feb06bc0ecd/downloade473febff1af17c59d50ee2df83bfefdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82556https://repository.eafit.edu.co/bitstreams/86fa28b9-0b13-429e-9b07-1aae0a0e49cf/download76025f86b095439b7ac65b367055d40cMD5210784/7234oai:repository.eafit.edu.co:10784/72342015-08-03 11:33:23.617open.accesshttps://repository.eafit.edu.coRepositorio Institucional Universidad EAFITrepositorio@eafit.edu.co |
dc.title.spa.fl_str_mv |
Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms |
title |
Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms |
spellingShingle |
Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms Metamodelos Cinemática inversa Ángulos de Euler Deformación elástica Deformaciones cuasi-estáticas CINEMÁTICA MOVIMIENTOS MECÁNICOS MÉTODO DE ELEMENTOS FINITOS DEFORMACIONES ANÁLISIS NUMÉRICO ALGORITMOS(COMPUTADORES) Kinematics Mechanical movements Finite element method Numerical analysis Computer algorithms |
title_short |
Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms |
title_full |
Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms |
title_fullStr |
Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms |
title_full_unstemmed |
Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms |
title_sort |
Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms |
dc.creator.fl_str_mv |
Restrepo Arango, David |
dc.contributor.advisor.none.fl_str_mv |
Ruíz Salguero, Oscar Eduardo |
dc.contributor.author.none.fl_str_mv |
Restrepo Arango, David |
dc.subject.spa.fl_str_mv |
Metamodelos Cinemática inversa Ángulos de Euler Deformación elástica Deformaciones cuasi-estáticas |
topic |
Metamodelos Cinemática inversa Ángulos de Euler Deformación elástica Deformaciones cuasi-estáticas CINEMÁTICA MOVIMIENTOS MECÁNICOS MÉTODO DE ELEMENTOS FINITOS DEFORMACIONES ANÁLISIS NUMÉRICO ALGORITMOS(COMPUTADORES) Kinematics Mechanical movements Finite element method Numerical analysis Computer algorithms |
dc.subject.lemb.spa.fl_str_mv |
CINEMÁTICA MOVIMIENTOS MECÁNICOS MÉTODO DE ELEMENTOS FINITOS DEFORMACIONES ANÁLISIS NUMÉRICO ALGORITMOS(COMPUTADORES) |
dc.subject.keyword.spa.fl_str_mv |
Kinematics Mechanical movements Finite element method Numerical analysis Computer algorithms |
description |
This article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology -- This approach produces a force-displacement meta-model that is suited for real-time control of compliant mechanisms -- The term meta-model is used to represent a simplified and efficient mathematical model of unknown phenomena -- The meta-modeling of compliant mechanisms is performed from virtual experiments based on factorial- and space-filling design of experiments -- The procedure is used to model the quasi-static behavior of the HexFlex compliant mechanism -- The HexFlex is a parallel compliant mechanism for nano-manipulation that allows six degrees of freedom of its moving stage -- The meta-model of the HexFlex is calculated from experiments with the Finite Element Method (FEM) -- The obtained meta-model for the HexFlex is linear for the range of movement of the mechanism -- The accuracy of the meta-model was calculated conducting a set of computer experiments with random uniform distribution of the input forces -- Three criteria were calculated in each displacement direction (x, y, z, θx, θy, θz) comparing the meta-model prediction with respect to the results of the virtual experiments: 1. maximum of the absolute value of the error, 2. relative error, and 3. root mean square error -- The maximum errors were founded adequate with respect to demanding manufacturing tolerances (absolute errors) and lower than errors reported by other authors (relative errors) |
publishDate |
2010 |
dc.date.issued.none.fl_str_mv |
2010 |
dc.date.available.none.fl_str_mv |
2015-08-03T16:33:23Z |
dc.date.accessioned.none.fl_str_mv |
2015-08-03T16:33:23Z |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.hasVersion.eng.fl_str_mv |
acceptedVersion |
dc.identifier.other.none.fl_str_mv |
621.811R436 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10784/7234 |
identifier_str_mv |
621.811R436 |
url |
http://hdl.handle.net/10784/7234 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
dc.coverage.spatial.eng.fl_str_mv |
Medellín de: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees |
dc.publisher.spa.fl_str_mv |
Universidad EAFIT |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.department.spa.fl_str_mv |
Escuela de Ingeniería. Departamento de Ingeniería Mecánica |
institution |
Universidad EAFIT |
bitstream.url.fl_str_mv |
https://repository.eafit.edu.co/bitstreams/1f8284d8-177a-4f77-908c-4feb06bc0ecd/download https://repository.eafit.edu.co/bitstreams/86fa28b9-0b13-429e-9b07-1aae0a0e49cf/download |
bitstream.checksum.fl_str_mv |
e473febff1af17c59d50ee2df83bfefd 76025f86b095439b7ac65b367055d40c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad EAFIT |
repository.mail.fl_str_mv |
repositorio@eafit.edu.co |
_version_ |
1814110156605095936 |